godot/thirdparty/icu4c/common/normalizer2impl.h

979 lines
40 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
* Copyright (C) 2009-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: normalizer2impl.h
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov22
* created by: Markus W. Scherer
*/
#ifndef __NORMALIZER2IMPL_H__
#define __NORMALIZER2IMPL_H__
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/normalizer2.h"
#include "unicode/ucptrie.h"
#include "unicode/unistr.h"
#include "unicode/unorm.h"
#include "unicode/utf.h"
#include "unicode/utf16.h"
#include "mutex.h"
#include "udataswp.h"
#include "uset_imp.h"
// When the nfc.nrm data is *not* hardcoded into the common library
// (with this constant set to 0),
// then it needs to be built into the data package:
// Add nfc.nrm to icu4c/source/data/Makefile.in DAT_FILES_SHORT
#define NORM2_HARDCODE_NFC_DATA 1
U_NAMESPACE_BEGIN
struct CanonIterData;
class ByteSink;
class Edits;
class InitCanonIterData;
class LcccContext;
class U_COMMON_API Hangul {
public:
/* Korean Hangul and Jamo constants */
enum {
JAMO_L_BASE=0x1100, /* "lead" jamo */
JAMO_L_END=0x1112,
JAMO_V_BASE=0x1161, /* "vowel" jamo */
JAMO_V_END=0x1175,
JAMO_T_BASE=0x11a7, /* "trail" jamo */
JAMO_T_END=0x11c2,
HANGUL_BASE=0xac00,
HANGUL_END=0xd7a3,
JAMO_L_COUNT=19,
JAMO_V_COUNT=21,
JAMO_T_COUNT=28,
JAMO_VT_COUNT=JAMO_V_COUNT*JAMO_T_COUNT,
HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT,
HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT
};
static inline UBool isHangul(UChar32 c) {
return HANGUL_BASE<=c && c<HANGUL_LIMIT;
}
static inline UBool
isHangulLV(UChar32 c) {
c-=HANGUL_BASE;
return 0<=c && c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
}
static inline UBool isJamoL(UChar32 c) {
return (uint32_t)(c-JAMO_L_BASE)<JAMO_L_COUNT;
}
static inline UBool isJamoV(UChar32 c) {
return (uint32_t)(c-JAMO_V_BASE)<JAMO_V_COUNT;
}
static inline UBool isJamoT(UChar32 c) {
int32_t t=c-JAMO_T_BASE;
return 0<t && t<JAMO_T_COUNT; // not JAMO_T_BASE itself
}
static UBool isJamo(UChar32 c) {
return JAMO_L_BASE<=c && c<=JAMO_T_END &&
(c<=JAMO_L_END || (JAMO_V_BASE<=c && c<=JAMO_V_END) || JAMO_T_BASE<c);
}
/**
* Decomposes c, which must be a Hangul syllable, into buffer
* and returns the length of the decomposition (2 or 3).
*/
static inline int32_t decompose(UChar32 c, UChar buffer[3]) {
c-=HANGUL_BASE;
UChar32 c2=c%JAMO_T_COUNT;
c/=JAMO_T_COUNT;
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
if(c2==0) {
return 2;
} else {
buffer[2]=(UChar)(JAMO_T_BASE+c2);
return 3;
}
}
/**
* Decomposes c, which must be a Hangul syllable, into buffer.
* This is the raw, not recursive, decomposition. Its length is always 2.
*/
static inline void getRawDecomposition(UChar32 c, UChar buffer[2]) {
UChar32 orig=c;
c-=HANGUL_BASE;
UChar32 c2=c%JAMO_T_COUNT;
if(c2==0) {
c/=JAMO_T_COUNT;
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
} else {
buffer[0]=(UChar)(orig-c2); // LV syllable
buffer[1]=(UChar)(JAMO_T_BASE+c2);
}
}
private:
Hangul(); // no instantiation
};
class Normalizer2Impl;
class U_COMMON_API ReorderingBuffer : public UMemory {
public:
/** Constructs only; init() should be called. */
ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest) :
impl(ni), str(dest),
start(NULL), reorderStart(NULL), limit(NULL),
remainingCapacity(0), lastCC(0) {}
/** Constructs, removes the string contents, and initializes for a small initial capacity. */
ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, UErrorCode &errorCode);
~ReorderingBuffer() {
if(start!=NULL) {
str.releaseBuffer((int32_t)(limit-start));
}
}
UBool init(int32_t destCapacity, UErrorCode &errorCode);
UBool isEmpty() const { return start==limit; }
int32_t length() const { return (int32_t)(limit-start); }
UChar *getStart() { return start; }
UChar *getLimit() { return limit; }
uint8_t getLastCC() const { return lastCC; }
UBool equals(const UChar *start, const UChar *limit) const;
UBool equals(const uint8_t *otherStart, const uint8_t *otherLimit) const;
UBool append(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
return (c<=0xffff) ?
appendBMP((UChar)c, cc, errorCode) :
appendSupplementary(c, cc, errorCode);
}
UBool append(const UChar *s, int32_t length, UBool isNFD,
uint8_t leadCC, uint8_t trailCC,
UErrorCode &errorCode);
UBool appendBMP(UChar c, uint8_t cc, UErrorCode &errorCode) {
if(remainingCapacity==0 && !resize(1, errorCode)) {
return false;
}
if(lastCC<=cc || cc==0) {
*limit++=c;
lastCC=cc;
if(cc<=1) {
reorderStart=limit;
}
} else {
insert(c, cc);
}
--remainingCapacity;
return true;
}
UBool appendZeroCC(UChar32 c, UErrorCode &errorCode);
UBool appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode);
void remove();
void removeSuffix(int32_t suffixLength);
void setReorderingLimit(UChar *newLimit) {
remainingCapacity+=(int32_t)(limit-newLimit);
reorderStart=limit=newLimit;
lastCC=0;
}
void copyReorderableSuffixTo(UnicodeString &s) const {
s.setTo(ConstChar16Ptr(reorderStart), (int32_t)(limit-reorderStart));
}
private:
/*
* TODO: Revisit whether it makes sense to track reorderStart.
* It is set to after the last known character with cc<=1,
* which stops previousCC() before it reads that character and looks up its cc.
* previousCC() is normally only called from insert().
* In other words, reorderStart speeds up the insertion of a combining mark
* into a multi-combining mark sequence where it does not belong at the end.
* This might not be worth the trouble.
* On the other hand, it's not a huge amount of trouble.
*
* We probably need it for UNORM_SIMPLE_APPEND.
*/
UBool appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode);
void insert(UChar32 c, uint8_t cc);
static void writeCodePoint(UChar *p, UChar32 c) {
if(c<=0xffff) {
*p=(UChar)c;
} else {
p[0]=U16_LEAD(c);
p[1]=U16_TRAIL(c);
}
}
UBool resize(int32_t appendLength, UErrorCode &errorCode);
const Normalizer2Impl &impl;
UnicodeString &str;
UChar *start, *reorderStart, *limit;
int32_t remainingCapacity;
uint8_t lastCC;
// private backward iterator
void setIterator() { codePointStart=limit; }
void skipPrevious(); // Requires start<codePointStart.
uint8_t previousCC(); // Returns 0 if there is no previous character.
UChar *codePointStart, *codePointLimit;
};
/**
* Low-level implementation of the Unicode Normalization Algorithm.
* For the data structure and details see the documentation at the end of
* this normalizer2impl.h and in the design doc at
* http://site.icu-project.org/design/normalization/custom
*/
class U_COMMON_API Normalizer2Impl : public UObject {
public:
Normalizer2Impl() : normTrie(NULL), fCanonIterData(NULL) { }
virtual ~Normalizer2Impl();
void init(const int32_t *inIndexes, const UCPTrie *inTrie,
const uint16_t *inExtraData, const uint8_t *inSmallFCD);
void addLcccChars(UnicodeSet &set) const;
void addPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const;
void addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const;
// low-level properties ------------------------------------------------ ***
UBool ensureCanonIterData(UErrorCode &errorCode) const;
// The trie stores values for lead surrogate code *units*.
// Surrogate code *points* are inert.
uint16_t getNorm16(UChar32 c) const {
return U_IS_LEAD(c) ?
static_cast<uint16_t>(INERT) :
UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c);
}
uint16_t getRawNorm16(UChar32 c) const { return UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c); }
UNormalizationCheckResult getCompQuickCheck(uint16_t norm16) const {
if(norm16<minNoNo || MIN_YES_YES_WITH_CC<=norm16) {
return UNORM_YES;
} else if(minMaybeYes<=norm16) {
return UNORM_MAYBE;
} else {
return UNORM_NO;
}
}
UBool isAlgorithmicNoNo(uint16_t norm16) const { return limitNoNo<=norm16 && norm16<minMaybeYes; }
UBool isCompNo(uint16_t norm16) const { return minNoNo<=norm16 && norm16<minMaybeYes; }
UBool isDecompYes(uint16_t norm16) const { return norm16<minYesNo || minMaybeYes<=norm16; }
uint8_t getCC(uint16_t norm16) const {
if(norm16>=MIN_NORMAL_MAYBE_YES) {
return getCCFromNormalYesOrMaybe(norm16);
}
if(norm16<minNoNo || limitNoNo<=norm16) {
return 0;
}
return getCCFromNoNo(norm16);
}
static uint8_t getCCFromNormalYesOrMaybe(uint16_t norm16) {
return (uint8_t)(norm16 >> OFFSET_SHIFT);
}
static uint8_t getCCFromYesOrMaybe(uint16_t norm16) {
return norm16>=MIN_NORMAL_MAYBE_YES ? getCCFromNormalYesOrMaybe(norm16) : 0;
}
uint8_t getCCFromYesOrMaybeCP(UChar32 c) const {
if (c < minCompNoMaybeCP) { return 0; }
return getCCFromYesOrMaybe(getNorm16(c));
}
/**
* Returns the FCD data for code point c.
* @param c A Unicode code point.
* @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
*/
uint16_t getFCD16(UChar32 c) const {
if(c<minDecompNoCP) {
return 0;
} else if(c<=0xffff) {
if(!singleLeadMightHaveNonZeroFCD16(c)) { return 0; }
}
return getFCD16FromNormData(c);
}
/**
* Returns the FCD data for the next code point (post-increment).
* Might skip only a lead surrogate rather than the whole surrogate pair if none of
* the supplementary code points associated with the lead surrogate have non-zero FCD data.
* @param s A valid pointer into a string. Requires s!=limit.
* @param limit The end of the string, or NULL.
* @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
*/
uint16_t nextFCD16(const UChar *&s, const UChar *limit) const {
UChar32 c=*s++;
if(c<minDecompNoCP || !singleLeadMightHaveNonZeroFCD16(c)) {
return 0;
}
UChar c2;
if(U16_IS_LEAD(c) && s!=limit && U16_IS_TRAIL(c2=*s)) {
c=U16_GET_SUPPLEMENTARY(c, c2);
++s;
}
return getFCD16FromNormData(c);
}
/**
* Returns the FCD data for the previous code point (pre-decrement).
* @param start The start of the string.
* @param s A valid pointer into a string. Requires start<s.
* @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
*/
uint16_t previousFCD16(const UChar *start, const UChar *&s) const {
UChar32 c=*--s;
if(c<minDecompNoCP) {
return 0;
}
if(!U16_IS_TRAIL(c)) {
if(!singleLeadMightHaveNonZeroFCD16(c)) {
return 0;
}
} else {
UChar c2;
if(start<s && U16_IS_LEAD(c2=*(s-1))) {
c=U16_GET_SUPPLEMENTARY(c2, c);
--s;
}
}
return getFCD16FromNormData(c);
}
/** Returns true if the single-or-lead code unit c might have non-zero FCD data. */
UBool singleLeadMightHaveNonZeroFCD16(UChar32 lead) const {
// 0<=lead<=0xffff
uint8_t bits=smallFCD[lead>>8];
if(bits==0) { return false; }
return (UBool)((bits>>((lead>>5)&7))&1);
}
/** Returns the FCD value from the regular normalization data. */
uint16_t getFCD16FromNormData(UChar32 c) const;
/**
* Gets the decomposition for one code point.
* @param c code point
* @param buffer out-only buffer for algorithmic decompositions
* @param length out-only, takes the length of the decomposition, if any
* @return pointer to the decomposition, or NULL if none
*/
const UChar *getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const;
/**
* Gets the raw decomposition for one code point.
* @param c code point
* @param buffer out-only buffer for algorithmic decompositions
* @param length out-only, takes the length of the decomposition, if any
* @return pointer to the decomposition, or NULL if none
*/
const UChar *getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const;
UChar32 composePair(UChar32 a, UChar32 b) const;
UBool isCanonSegmentStarter(UChar32 c) const;
UBool getCanonStartSet(UChar32 c, UnicodeSet &set) const;
enum {
// Fixed norm16 values.
MIN_YES_YES_WITH_CC=0xfe02,
JAMO_VT=0xfe00,
MIN_NORMAL_MAYBE_YES=0xfc00,
JAMO_L=2, // offset=1 hasCompBoundaryAfter=false
INERT=1, // offset=0 hasCompBoundaryAfter=true
// norm16 bit 0 is comp-boundary-after.
HAS_COMP_BOUNDARY_AFTER=1,
OFFSET_SHIFT=1,
// For algorithmic one-way mappings, norm16 bits 2..1 indicate the
// tccc (0, 1, >1) for quick FCC boundary-after tests.
DELTA_TCCC_0=0,
DELTA_TCCC_1=2,
DELTA_TCCC_GT_1=4,
DELTA_TCCC_MASK=6,
DELTA_SHIFT=3,
MAX_DELTA=0x40
};
enum {
// Byte offsets from the start of the data, after the generic header.
IX_NORM_TRIE_OFFSET,
IX_EXTRA_DATA_OFFSET,
IX_SMALL_FCD_OFFSET,
IX_RESERVED3_OFFSET,
IX_RESERVED4_OFFSET,
IX_RESERVED5_OFFSET,
IX_RESERVED6_OFFSET,
IX_TOTAL_SIZE,
// Code point thresholds for quick check codes.
IX_MIN_DECOMP_NO_CP,
IX_MIN_COMP_NO_MAYBE_CP,
// Norm16 value thresholds for quick check combinations and types of extra data.
/** Mappings & compositions in [minYesNo..minYesNoMappingsOnly[. */
IX_MIN_YES_NO,
/** Mappings are comp-normalized. */
IX_MIN_NO_NO,
IX_LIMIT_NO_NO,
IX_MIN_MAYBE_YES,
/** Mappings only in [minYesNoMappingsOnly..minNoNo[. */
IX_MIN_YES_NO_MAPPINGS_ONLY,
/** Mappings are not comp-normalized but have a comp boundary before. */
IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE,
/** Mappings do not have a comp boundary before. */
IX_MIN_NO_NO_COMP_NO_MAYBE_CC,
/** Mappings to the empty string. */
IX_MIN_NO_NO_EMPTY,
IX_MIN_LCCC_CP,
IX_RESERVED19,
IX_COUNT
};
enum {
MAPPING_HAS_CCC_LCCC_WORD=0x80,
MAPPING_HAS_RAW_MAPPING=0x40,
// unused bit 0x20,
MAPPING_LENGTH_MASK=0x1f
};
enum {
COMP_1_LAST_TUPLE=0x8000,
COMP_1_TRIPLE=1,
COMP_1_TRAIL_LIMIT=0x3400,
COMP_1_TRAIL_MASK=0x7ffe,
COMP_1_TRAIL_SHIFT=9, // 10-1 for the "triple" bit
COMP_2_TRAIL_SHIFT=6,
COMP_2_TRAIL_MASK=0xffc0
};
// higher-level functionality ------------------------------------------ ***
// NFD without an NFD Normalizer2 instance.
UnicodeString &decompose(const UnicodeString &src, UnicodeString &dest,
UErrorCode &errorCode) const;
/**
* Decomposes [src, limit[ and writes the result to dest.
* limit can be NULL if src is NUL-terminated.
* destLengthEstimate is the initial dest buffer capacity and can be -1.
*/
void decompose(const UChar *src, const UChar *limit,
UnicodeString &dest, int32_t destLengthEstimate,
UErrorCode &errorCode) const;
const UChar *decompose(const UChar *src, const UChar *limit,
ReorderingBuffer *buffer, UErrorCode &errorCode) const;
void decomposeAndAppend(const UChar *src, const UChar *limit,
UBool doDecompose,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const;
UBool compose(const UChar *src, const UChar *limit,
UBool onlyContiguous,
UBool doCompose,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const;
const UChar *composeQuickCheck(const UChar *src, const UChar *limit,
UBool onlyContiguous,
UNormalizationCheckResult *pQCResult) const;
void composeAndAppend(const UChar *src, const UChar *limit,
UBool doCompose,
UBool onlyContiguous,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const;
/** sink==nullptr: isNormalized() */
UBool composeUTF8(uint32_t options, UBool onlyContiguous,
const uint8_t *src, const uint8_t *limit,
ByteSink *sink, icu::Edits *edits, UErrorCode &errorCode) const;
const UChar *makeFCD(const UChar *src, const UChar *limit,
ReorderingBuffer *buffer, UErrorCode &errorCode) const;
void makeFCDAndAppend(const UChar *src, const UChar *limit,
UBool doMakeFCD,
UnicodeString &safeMiddle,
ReorderingBuffer &buffer,
UErrorCode &errorCode) const;
UBool hasDecompBoundaryBefore(UChar32 c) const;
UBool norm16HasDecompBoundaryBefore(uint16_t norm16) const;
UBool hasDecompBoundaryAfter(UChar32 c) const;
UBool norm16HasDecompBoundaryAfter(uint16_t norm16) const;
UBool isDecompInert(UChar32 c) const { return isDecompYesAndZeroCC(getNorm16(c)); }
UBool hasCompBoundaryBefore(UChar32 c) const {
return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(getNorm16(c));
}
UBool hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous) const {
return norm16HasCompBoundaryAfter(getNorm16(c), onlyContiguous);
}
UBool isCompInert(UChar32 c, UBool onlyContiguous) const {
uint16_t norm16=getNorm16(c);
return isCompYesAndZeroCC(norm16) &&
(norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 &&
(!onlyContiguous || isInert(norm16) || *getMapping(norm16) <= 0x1ff);
}
UBool hasFCDBoundaryBefore(UChar32 c) const { return hasDecompBoundaryBefore(c); }
UBool hasFCDBoundaryAfter(UChar32 c) const { return hasDecompBoundaryAfter(c); }
UBool isFCDInert(UChar32 c) const { return getFCD16(c)<=1; }
private:
friend class InitCanonIterData;
friend class LcccContext;
UBool isMaybe(uint16_t norm16) const { return minMaybeYes<=norm16 && norm16<=JAMO_VT; }
UBool isMaybeOrNonZeroCC(uint16_t norm16) const { return norm16>=minMaybeYes; }
static UBool isInert(uint16_t norm16) { return norm16==INERT; }
static UBool isJamoL(uint16_t norm16) { return norm16==JAMO_L; }
static UBool isJamoVT(uint16_t norm16) { return norm16==JAMO_VT; }
uint16_t hangulLVT() const { return minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER; }
UBool isHangulLV(uint16_t norm16) const { return norm16==minYesNo; }
UBool isHangulLVT(uint16_t norm16) const {
return norm16==hangulLVT();
}
UBool isCompYesAndZeroCC(uint16_t norm16) const { return norm16<minNoNo; }
// UBool isCompYes(uint16_t norm16) const {
// return norm16>=MIN_YES_YES_WITH_CC || norm16<minNoNo;
// }
// UBool isCompYesOrMaybe(uint16_t norm16) const {
// return norm16<minNoNo || minMaybeYes<=norm16;
// }
// UBool hasZeroCCFromDecompYes(uint16_t norm16) const {
// return norm16<=MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
// }
UBool isDecompYesAndZeroCC(uint16_t norm16) const {
return norm16<minYesNo ||
norm16==JAMO_VT ||
(minMaybeYes<=norm16 && norm16<=MIN_NORMAL_MAYBE_YES);
}
/**
* A little faster and simpler than isDecompYesAndZeroCC() but does not include
* the MaybeYes which combine-forward and have ccc=0.
* (Standard Unicode 10 normalization does not have such characters.)
*/
UBool isMostDecompYesAndZeroCC(uint16_t norm16) const {
return norm16<minYesNo || norm16==MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
}
UBool isDecompNoAlgorithmic(uint16_t norm16) const { return norm16>=limitNoNo; }
// For use with isCompYes().
// Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC.
// static uint8_t getCCFromYes(uint16_t norm16) {
// return norm16>=MIN_YES_YES_WITH_CC ? getCCFromNormalYesOrMaybe(norm16) : 0;
// }
uint8_t getCCFromNoNo(uint16_t norm16) const {
const uint16_t *mapping=getMapping(norm16);
if(*mapping&MAPPING_HAS_CCC_LCCC_WORD) {
return (uint8_t)*(mapping-1);
} else {
return 0;
}
}
// requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC()
uint8_t getTrailCCFromCompYesAndZeroCC(uint16_t norm16) const {
if(norm16<=minYesNo) {
return 0; // yesYes and Hangul LV have ccc=tccc=0
} else {
// For Hangul LVT we harmlessly fetch a firstUnit with tccc=0 here.
return (uint8_t)(*getMapping(norm16)>>8); // tccc from yesNo
}
}
uint8_t getPreviousTrailCC(const UChar *start, const UChar *p) const;
uint8_t getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const;
// Requires algorithmic-NoNo.
UChar32 mapAlgorithmic(UChar32 c, uint16_t norm16) const {
return c+(norm16>>DELTA_SHIFT)-centerNoNoDelta;
}
UChar32 getAlgorithmicDelta(uint16_t norm16) const {
return (norm16>>DELTA_SHIFT)-centerNoNoDelta;
}
// Requires minYesNo<norm16<limitNoNo.
const uint16_t *getMapping(uint16_t norm16) const { return extraData+(norm16>>OFFSET_SHIFT); }
const uint16_t *getCompositionsListForDecompYes(uint16_t norm16) const {
if(norm16<JAMO_L || MIN_NORMAL_MAYBE_YES<=norm16) {
return NULL;
} else if(norm16<minMaybeYes) {
return getMapping(norm16); // for yesYes; if Jamo L: harmless empty list
} else {
return maybeYesCompositions+norm16-minMaybeYes;
}
}
const uint16_t *getCompositionsListForComposite(uint16_t norm16) const {
// A composite has both mapping & compositions list.
const uint16_t *list=getMapping(norm16);
return list+ // mapping pointer
1+ // +1 to skip the first unit with the mapping length
(*list&MAPPING_LENGTH_MASK); // + mapping length
}
const uint16_t *getCompositionsListForMaybe(uint16_t norm16) const {
// minMaybeYes<=norm16<MIN_NORMAL_MAYBE_YES
return maybeYesCompositions+((norm16-minMaybeYes)>>OFFSET_SHIFT);
}
/**
* @param c code point must have compositions
* @return compositions list pointer
*/
const uint16_t *getCompositionsList(uint16_t norm16) const {
return isDecompYes(norm16) ?
getCompositionsListForDecompYes(norm16) :
getCompositionsListForComposite(norm16);
}
const UChar *copyLowPrefixFromNulTerminated(const UChar *src,
UChar32 minNeedDataCP,
ReorderingBuffer *buffer,
UErrorCode &errorCode) const;
const UChar *decomposeShort(const UChar *src, const UChar *limit,
UBool stopAtCompBoundary, UBool onlyContiguous,
ReorderingBuffer &buffer, UErrorCode &errorCode) const;
UBool decompose(UChar32 c, uint16_t norm16,
ReorderingBuffer &buffer, UErrorCode &errorCode) const;
const uint8_t *decomposeShort(const uint8_t *src, const uint8_t *limit,
UBool stopAtCompBoundary, UBool onlyContiguous,
ReorderingBuffer &buffer, UErrorCode &errorCode) const;
static int32_t combine(const uint16_t *list, UChar32 trail);
void addComposites(const uint16_t *list, UnicodeSet &set) const;
void recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
UBool onlyContiguous) const;
UBool hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(norm16);
}
UBool norm16HasCompBoundaryBefore(uint16_t norm16) const {
return norm16 < minNoNoCompNoMaybeCC || isAlgorithmicNoNo(norm16);
}
UBool hasCompBoundaryBefore(const UChar *src, const UChar *limit) const;
UBool hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const;
UBool hasCompBoundaryAfter(const UChar *start, const UChar *p,
UBool onlyContiguous) const;
UBool hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
UBool onlyContiguous) const;
UBool norm16HasCompBoundaryAfter(uint16_t norm16, UBool onlyContiguous) const {
return (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 &&
(!onlyContiguous || isTrailCC01ForCompBoundaryAfter(norm16));
}
/** For FCC: Given norm16 HAS_COMP_BOUNDARY_AFTER, does it have tccc<=1? */
UBool isTrailCC01ForCompBoundaryAfter(uint16_t norm16) const {
return isInert(norm16) || (isDecompNoAlgorithmic(norm16) ?
(norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1 : *getMapping(norm16) <= 0x1ff);
}
const UChar *findPreviousCompBoundary(const UChar *start, const UChar *p, UBool onlyContiguous) const;
const UChar *findNextCompBoundary(const UChar *p, const UChar *limit, UBool onlyContiguous) const;
const UChar *findPreviousFCDBoundary(const UChar *start, const UChar *p) const;
const UChar *findNextFCDBoundary(const UChar *p, const UChar *limit) const;
void makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
CanonIterData &newData, UErrorCode &errorCode) const;
int32_t getCanonValue(UChar32 c) const;
const UnicodeSet &getCanonStartSet(int32_t n) const;
// UVersionInfo dataVersion;
// BMP code point thresholds for quick check loops looking at single UTF-16 code units.
UChar minDecompNoCP;
UChar minCompNoMaybeCP;
UChar minLcccCP;
// Norm16 value thresholds for quick check combinations and types of extra data.
uint16_t minYesNo;
uint16_t minYesNoMappingsOnly;
uint16_t minNoNo;
uint16_t minNoNoCompBoundaryBefore;
uint16_t minNoNoCompNoMaybeCC;
uint16_t minNoNoEmpty;
uint16_t limitNoNo;
uint16_t centerNoNoDelta;
uint16_t minMaybeYes;
const UCPTrie *normTrie;
const uint16_t *maybeYesCompositions;
const uint16_t *extraData; // mappings and/or compositions for yesYes, yesNo & noNo characters
const uint8_t *smallFCD; // [0x100] one bit per 32 BMP code points, set if any FCD!=0
UInitOnce fCanonIterDataInitOnce = U_INITONCE_INITIALIZER;
CanonIterData *fCanonIterData;
};
// bits in canonIterData
#define CANON_NOT_SEGMENT_STARTER 0x80000000
#define CANON_HAS_COMPOSITIONS 0x40000000
#define CANON_HAS_SET 0x200000
#define CANON_VALUE_MASK 0x1fffff
/**
* ICU-internal shortcut for quick access to standard Unicode normalization.
*/
class U_COMMON_API Normalizer2Factory {
public:
static const Normalizer2 *getFCDInstance(UErrorCode &errorCode);
static const Normalizer2 *getFCCInstance(UErrorCode &errorCode);
static const Normalizer2 *getNoopInstance(UErrorCode &errorCode);
static const Normalizer2 *getInstance(UNormalizationMode mode, UErrorCode &errorCode);
static const Normalizer2Impl *getNFCImpl(UErrorCode &errorCode);
static const Normalizer2Impl *getNFKCImpl(UErrorCode &errorCode);
static const Normalizer2Impl *getNFKC_CFImpl(UErrorCode &errorCode);
// Get the Impl instance of the Normalizer2.
// Must be used only when it is known that norm2 is a Normalizer2WithImpl instance.
static const Normalizer2Impl *getImpl(const Normalizer2 *norm2);
private:
Normalizer2Factory(); // No instantiation.
};
U_NAMESPACE_END
U_CAPI int32_t U_EXPORT2
unorm2_swap(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode);
/**
* Get the NF*_QC property for a code point, for u_getIntPropertyValue().
* @internal
*/
U_CFUNC UNormalizationCheckResult
unorm_getQuickCheck(UChar32 c, UNormalizationMode mode);
/**
* Gets the 16-bit FCD value (lead & trail CCs) for a code point, for u_getIntPropertyValue().
* @internal
*/
U_CFUNC uint16_t
unorm_getFCD16(UChar32 c);
/**
* Format of Normalizer2 .nrm data files.
* Format version 4.0.
*
* Normalizer2 .nrm data files provide data for the Unicode Normalization algorithms.
* ICU ships with data files for standard Unicode Normalization Forms
* NFC and NFD (nfc.nrm), NFKC and NFKD (nfkc.nrm) and NFKC_Casefold (nfkc_cf.nrm).
* Custom (application-specific) data can be built into additional .nrm files
* with the gennorm2 build tool.
* ICU ships with one such file, uts46.nrm, for the implementation of UTS #46.
*
* Normalizer2.getInstance() causes a .nrm file to be loaded, unless it has been
* cached already. Internally, Normalizer2Impl.load() reads the .nrm file.
*
* A .nrm file begins with a standard ICU data file header
* (DataHeader, see ucmndata.h and unicode/udata.h).
* The UDataInfo.dataVersion field usually contains the Unicode version
* for which the data was generated.
*
* After the header, the file contains the following parts.
* Constants are defined as enum values of the Normalizer2Impl class.
*
* Many details of the data structures are described in the design doc
* which is at http://site.icu-project.org/design/normalization/custom
*
* int32_t indexes[indexesLength]; -- indexesLength=indexes[IX_NORM_TRIE_OFFSET]/4;
*
* The first eight indexes are byte offsets in ascending order.
* Each byte offset marks the start of the next part in the data file,
* and the end of the previous one.
* When two consecutive byte offsets are the same, then the corresponding part is empty.
* Byte offsets are offsets from after the header,
* that is, from the beginning of the indexes[].
* Each part starts at an offset with proper alignment for its data.
* If necessary, the previous part may include padding bytes to achieve this alignment.
*
* minDecompNoCP=indexes[IX_MIN_DECOMP_NO_CP] is the lowest code point
* with a decomposition mapping, that is, with NF*D_QC=No.
* minCompNoMaybeCP=indexes[IX_MIN_COMP_NO_MAYBE_CP] is the lowest code point
* with NF*C_QC=No (has a one-way mapping) or Maybe (combines backward).
* minLcccCP=indexes[IX_MIN_LCCC_CP] (index 18, new in formatVersion 3)
* is the lowest code point with lccc!=0.
*
* The next eight indexes are thresholds of 16-bit trie values for ranges of
* values indicating multiple normalization properties.
* They are listed here in threshold order, not in the order they are stored in the indexes.
* minYesNo=indexes[IX_MIN_YES_NO];
* minYesNoMappingsOnly=indexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
* minNoNo=indexes[IX_MIN_NO_NO];
* minNoNoCompBoundaryBefore=indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE];
* minNoNoCompNoMaybeCC=indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC];
* minNoNoEmpty=indexes[IX_MIN_NO_NO_EMPTY];
* limitNoNo=indexes[IX_LIMIT_NO_NO];
* minMaybeYes=indexes[IX_MIN_MAYBE_YES];
* See the normTrie description below and the design doc for details.
*
* UCPTrie normTrie; -- see ucptrie_impl.h and ucptrie.h, same as Java CodePointTrie
*
* The trie holds the main normalization data. Each code point is mapped to a 16-bit value.
* Rather than using independent bits in the value (which would require more than 16 bits),
* information is extracted primarily via range checks.
* Except, format version 3 uses bit 0 for hasCompBoundaryAfter().
* For example, a 16-bit value norm16 in the range minYesNo<=norm16<minNoNo
* means that the character has NF*C_QC=Yes and NF*D_QC=No properties,
* which means it has a two-way (round-trip) decomposition mapping.
* Values in the range 2<=norm16<limitNoNo are also directly indexes into the extraData
* pointing to mappings, compositions lists, or both.
* Value norm16==INERT (0 in versions 1 & 2, 1 in version 3)
* means that the character is normalization-inert, that is,
* it does not have a mapping, does not participate in composition, has a zero
* canonical combining class, and forms a boundary where text before it and after it
* can be normalized independently.
* For details about how multiple properties are encoded in 16-bit values
* see the design doc.
* Note that the encoding cannot express all combinations of the properties involved;
* it only supports those combinations that are allowed by
* the Unicode Normalization algorithms. Details are in the design doc as well.
* The gennorm2 tool only builds .nrm files for data that conforms to the limitations.
*
* The trie has a value for each lead surrogate code unit representing the "worst case"
* properties of the 1024 supplementary characters whose UTF-16 form starts with
* the lead surrogate. If all of the 1024 supplementary characters are normalization-inert,
* then their lead surrogate code unit has the trie value INERT.
* When the lead surrogate unit's value exceeds the quick check minimum during processing,
* the properties for the full supplementary code point need to be looked up.
*
* uint16_t maybeYesCompositions[MIN_NORMAL_MAYBE_YES-minMaybeYes];
* uint16_t extraData[];
*
* There is only one byte offset for the end of these two arrays.
* The split between them is given by the constant and variable mentioned above.
* In version 3, the difference must be shifted right by OFFSET_SHIFT.
*
* The maybeYesCompositions array contains compositions lists for characters that
* combine both forward (as starters in composition pairs)
* and backward (as trailing characters in composition pairs).
* Such characters do not occur in Unicode 5.2 but are allowed by
* the Unicode Normalization algorithms.
* If there are no such characters, then minMaybeYes==MIN_NORMAL_MAYBE_YES
* and the maybeYesCompositions array is empty.
* If there are such characters, then minMaybeYes is subtracted from their norm16 values
* to get the index into this array.
*
* The extraData array contains compositions lists for "YesYes" characters,
* followed by mappings and optional compositions lists for "YesNo" characters,
* followed by only mappings for "NoNo" characters.
* (Referring to pairs of NFC/NFD quick check values.)
* The norm16 values of those characters are directly indexes into the extraData array.
* In version 3, the norm16 values must be shifted right by OFFSET_SHIFT
* for accessing extraData.
*
* The data structures for compositions lists and mappings are described in the design doc.
*
* uint8_t smallFCD[0x100]; -- new in format version 2
*
* This is a bit set to help speed up FCD value lookups in the absence of a full
* UTrie2 or other large data structure with the full FCD value mapping.
*
* Each smallFCD bit is set if any of the corresponding 32 BMP code points
* has a non-zero FCD value (lccc!=0 or tccc!=0).
* Bit 0 of smallFCD[0] is for U+0000..U+001F. Bit 7 of smallFCD[0xff] is for U+FFE0..U+FFFF.
* A bit for 32 lead surrogates is set if any of the 32k corresponding
* _supplementary_ code points has a non-zero FCD value.
*
* This bit set is most useful for the large blocks of CJK characters with FCD=0.
*
* Changes from format version 1 to format version 2 ---------------------------
*
* - Addition of data for raw (not recursively decomposed) mappings.
* + The MAPPING_NO_COMP_BOUNDARY_AFTER bit in the extraData is now also set when
* the mapping is to an empty string or when the character combines-forward.
* This subsumes the one actual use of the MAPPING_PLUS_COMPOSITION_LIST bit which
* is then repurposed for the MAPPING_HAS_RAW_MAPPING bit.
* + For details see the design doc.
* - Addition of indexes[IX_MIN_YES_NO_MAPPINGS_ONLY] and separation of the yesNo extraData into
* distinct ranges (combines-forward vs. not)
* so that a range check can be used to find out if there is a compositions list.
* This is fully equivalent with formatVersion 1's MAPPING_PLUS_COMPOSITION_LIST flag.
* It is needed for the new (in ICU 49) composePair(), not for other normalization.
* - Addition of the smallFCD[] bit set.
*
* Changes from format version 2 to format version 3 (ICU 60) ------------------
*
* - norm16 bit 0 indicates hasCompBoundaryAfter(),
* except that for contiguous composition (FCC) the tccc must be checked as well.
* Data indexes and ccc values are shifted left by one (OFFSET_SHIFT).
* Thresholds like minNoNo are tested before shifting.
*
* - Algorithmic mapping deltas are shifted left by two more bits (total DELTA_SHIFT),
* to make room for two bits (three values) indicating whether the tccc is 0, 1, or greater.
* See DELTA_TCCC_MASK etc.
* This helps with fetching tccc/FCD values and FCC hasCompBoundaryAfter().
* minMaybeYes is 8-aligned so that the DELTA_TCCC_MASK bits can be tested directly.
*
* - Algorithmic mappings are only used for mapping to "comp yes and ccc=0" characters,
* and ASCII characters are mapped algorithmically only to other ASCII characters.
* This helps with hasCompBoundaryBefore() and compose() fast paths.
* It is never necessary any more to loop for algorithmic mappings.
*
* - Addition of indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE],
* indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC], and indexes[IX_MIN_NO_NO_EMPTY],
* and separation of the noNo extraData into distinct ranges.
* With this, the noNo norm16 value indicates whether the mapping is
* compose-normalized, not normalized but hasCompBoundaryBefore(),
* not even that, or maps to an empty string.
* hasCompBoundaryBefore() can be determined solely from the norm16 value.
*
* - The norm16 value for Hangul LVT is now different from that for Hangul LV,
* so that hasCompBoundaryAfter() need not check for the syllable type.
* For Hangul LV, minYesNo continues to be used (no comp-boundary-after).
* For Hangul LVT, minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER is used.
* The extraData units at these indexes are set to firstUnit=2 and firstUnit=3, respectively,
* to simplify some code.
*
* - The extraData firstUnit bit 5 is no longer necessary
* (norm16 bit 0 used instead of firstUnit MAPPING_NO_COMP_BOUNDARY_AFTER),
* is reserved again, and always set to 0.
*
* - Addition of indexes[IX_MIN_LCCC_CP], the first code point where lccc!=0.
* This used to be hardcoded to U+0300, but in data like NFKC_Casefold it is lower:
* U+00AD Soft Hyphen maps to an empty string,
* which is artificially assigned "worst case" values lccc=1 and tccc=255.
*
* - A mapping to an empty string has explicit lccc=1 and tccc=255 values.
*
* Changes from format version 3 to format version 4 (ICU 63) ------------------
*
* Switched from UTrie2 to UCPTrie/CodePointTrie.
*
* The new trie no longer stores different values for surrogate code *units* vs.
* surrogate code *points*.
* Lead surrogates still have values for optimized UTF-16 string processing.
* When looking up code point properties, the code now checks for lead surrogates and
* treats them as inert.
*
* gennorm2 now has to reject mappings for surrogate code points.
* UTS #46 maps unpaired surrogates to U+FFFD in code rather than via its
* custom normalization data file.
*/
#endif /* !UCONFIG_NO_NORMALIZATION */
#endif /* __NORMALIZER2IMPL_H__ */