godot/scene/resources/surface_tool.cpp

1156 lines
33 KiB
C++

/**************************************************************************/
/* surface_tool.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "surface_tool.h"
#include "core/method_bind_ext.gen.inc"
#define _VERTEX_SNAP 0.0001
#define EQ_VERTEX_DIST 0.00001
bool SurfaceTool::Vertex::operator==(const Vertex &p_vertex) const {
if (vertex != p_vertex.vertex) {
return false;
}
if (uv != p_vertex.uv) {
return false;
}
if (uv2 != p_vertex.uv2) {
return false;
}
if (normal != p_vertex.normal) {
return false;
}
if (binormal != p_vertex.binormal) {
return false;
}
if (color != p_vertex.color) {
return false;
}
if (num_bones != p_vertex.num_bones) {
return false;
}
for (int i = 0; i < num_bones; i++) {
if (bones[i] != p_vertex.bones[i]) {
return false;
}
}
for (int i = 0; i < num_bones; i++) {
if (weights[i] != p_vertex.weights[i]) {
return false;
}
}
return true;
}
uint32_t SurfaceTool::VertexHasher::hash(const Vertex &p_vtx) {
uint32_t h = hash_djb2_buffer((const uint8_t *)&p_vtx.vertex, sizeof(real_t) * 3);
h = hash_djb2_buffer((const uint8_t *)&p_vtx.normal, sizeof(real_t) * 3, h);
h = hash_djb2_buffer((const uint8_t *)&p_vtx.binormal, sizeof(real_t) * 3, h);
h = hash_djb2_buffer((const uint8_t *)&p_vtx.tangent, sizeof(real_t) * 3, h);
h = hash_djb2_buffer((const uint8_t *)&p_vtx.uv, sizeof(real_t) * 2, h);
h = hash_djb2_buffer((const uint8_t *)&p_vtx.uv2, sizeof(real_t) * 2, h);
h = hash_djb2_buffer((const uint8_t *)&p_vtx.color, sizeof(real_t) * 4, h);
h = hash_djb2_buffer((const uint8_t *)p_vtx.bones, p_vtx.num_bones * sizeof(int16_t), h);
h = hash_djb2_buffer((const uint8_t *)p_vtx.weights, p_vtx.num_bones * sizeof(float), h);
return h;
}
void SurfaceTool::begin(Mesh::PrimitiveType p_primitive) {
clear();
primitive = p_primitive;
begun = true;
first = true;
}
bool SurfaceTool::_sanitize_last_bones_and_weights() {
const int expected_vertices = Vertex::MAX_BONES;
if ((last_bones.size() == expected_vertices) && (last_weights.size() == expected_vertices)) {
// already ideal
return true;
}
ERR_FAIL_COND_V(last_bones.size() != last_weights.size(), false);
int num_orig = last_weights.size();
if (num_orig < expected_vertices) {
//less than required, fill
for (int i = last_weights.size(); i < expected_vertices; i++) {
last_weights.push_back(0);
last_bones.push_back(0);
}
} else if (num_orig > expected_vertices) {
//more than required, sort, cap and normalize.
Vector<WeightSort> weights;
for (int i = 0; i < num_orig; i++) {
WeightSort ws;
ws.index = last_bones[i];
ws.weight = last_weights[i];
weights.push_back(ws);
}
//sort
weights.sort();
//cap
weights.resize(expected_vertices);
//renormalize
float total = 0;
for (int i = 0; i < expected_vertices; i++) {
total += weights[i].weight;
}
last_weights.resize(expected_vertices);
last_bones.resize(expected_vertices);
for (int i = 0; i < expected_vertices; i++) {
if (total > 0) {
last_weights.write[i] = weights[i].weight / total;
} else {
last_weights.write[i] = 0;
}
last_bones.write[i] = weights[i].index;
}
}
return true;
}
void SurfaceTool::add_vertex(const Vector3 &p_vertex) {
ERR_FAIL_COND(!begun);
Vertex vtx;
vtx.vertex = p_vertex;
vtx.color = last_color;
vtx.normal = last_normal;
vtx.uv = last_uv;
vtx.uv2 = last_uv2;
vtx.tangent = last_tangent.normal;
vtx.binormal = last_normal.cross(last_tangent.normal).normalized() * last_tangent.d;
if (format & Mesh::ARRAY_FORMAT_WEIGHTS || format & Mesh::ARRAY_FORMAT_BONES) {
ERR_FAIL_COND(!_sanitize_last_bones_and_weights());
vtx.num_bones = last_bones.size();
for (int n = 0; n < last_bones.size(); n++) {
vtx.bones[n] = last_bones[n];
vtx.weights[n] = last_weights[n];
}
}
vertex_array.push_back(vtx);
first = false;
format |= Mesh::ARRAY_FORMAT_VERTEX;
}
void SurfaceTool::add_color(Color p_color) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_COLOR));
format |= Mesh::ARRAY_FORMAT_COLOR;
last_color = p_color;
}
void SurfaceTool::add_normal(const Vector3 &p_normal) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_NORMAL));
format |= Mesh::ARRAY_FORMAT_NORMAL;
last_normal = p_normal;
}
void SurfaceTool::add_tangent(const Plane &p_tangent) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_TANGENT));
format |= Mesh::ARRAY_FORMAT_TANGENT;
last_tangent = p_tangent;
}
void SurfaceTool::add_uv(const Vector2 &p_uv) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_TEX_UV));
format |= Mesh::ARRAY_FORMAT_TEX_UV;
last_uv = p_uv;
}
void SurfaceTool::add_uv2(const Vector2 &p_uv2) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_TEX_UV2));
format |= Mesh::ARRAY_FORMAT_TEX_UV2;
last_uv2 = p_uv2;
}
void SurfaceTool::add_bones(const Vector<int> &p_bones) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_BONES));
format |= Mesh::ARRAY_FORMAT_BONES;
last_bones = p_bones;
}
void SurfaceTool::add_weights(const Vector<float> &p_weights) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(!first && !(format & Mesh::ARRAY_FORMAT_WEIGHTS));
format |= Mesh::ARRAY_FORMAT_WEIGHTS;
last_weights = p_weights;
}
void SurfaceTool::add_smooth_group(bool p_smooth) {
ERR_FAIL_COND(!begun);
smooth_groups[get_num_draw_vertices()] = p_smooth;
}
void SurfaceTool::add_triangle_fan(const Vector<Vector3> &p_vertices, const Vector<Vector2> &p_uvs, const Vector<Color> &p_colors, const Vector<Vector2> &p_uv2s, const Vector<Vector3> &p_normals, const Vector<Plane> &p_tangents) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(primitive != Mesh::PRIMITIVE_TRIANGLES);
ERR_FAIL_COND(p_vertices.size() < 3);
#define ADD_POINT(n) \
{ \
if (p_colors.size() > n) \
add_color(p_colors[n]); \
if (p_uvs.size() > n) \
add_uv(p_uvs[n]); \
if (p_uv2s.size() > n) \
add_uv2(p_uv2s[n]); \
if (p_normals.size() > n) \
add_normal(p_normals[n]); \
if (p_tangents.size() > n) \
add_tangent(p_tangents[n]); \
add_vertex(p_vertices[n]); \
}
for (int i = 0; i < p_vertices.size() - 2; i++) {
ADD_POINT(0);
ADD_POINT(i + 1);
ADD_POINT(i + 2);
}
#undef ADD_POINT
}
void SurfaceTool::add_index(int p_index) {
ERR_FAIL_COND(!begun);
ERR_FAIL_COND(p_index < 0);
format |= Mesh::ARRAY_FORMAT_INDEX;
index_array.push_back(p_index);
}
Array SurfaceTool::commit_to_arrays() {
int varr_len = vertex_array.size();
Array a;
a.resize(Mesh::ARRAY_MAX);
for (int i = 0; i < Mesh::ARRAY_MAX; i++) {
if (!(format & (1 << i))) {
continue; //not in format
}
switch (i) {
case Mesh::ARRAY_VERTEX:
case Mesh::ARRAY_NORMAL: {
PoolVector<Vector3> array;
array.resize(varr_len);
PoolVector<Vector3>::Write w = array.write();
for (uint32_t n = 0; n < vertex_array.size(); n++) {
const Vertex &v = vertex_array[n];
switch (i) {
case Mesh::ARRAY_VERTEX: {
w[n] = v.vertex;
} break;
case Mesh::ARRAY_NORMAL: {
w[n] = v.normal;
} break;
}
}
w.release();
a[i] = array;
} break;
case Mesh::ARRAY_TEX_UV:
case Mesh::ARRAY_TEX_UV2: {
PoolVector<Vector2> array;
array.resize(varr_len);
PoolVector<Vector2>::Write w = array.write();
int idx = 0;
for (uint32_t n = 0; n < vertex_array.size(); n++, idx++) {
const Vertex &v = vertex_array[n];
switch (i) {
case Mesh::ARRAY_TEX_UV: {
w[idx] = v.uv;
} break;
case Mesh::ARRAY_TEX_UV2: {
w[idx] = v.uv2;
} break;
}
}
w.release();
a[i] = array;
} break;
case Mesh::ARRAY_TANGENT: {
PoolVector<float> array;
array.resize(varr_len * 4);
PoolVector<float>::Write w = array.write();
int idx = 0;
for (uint32_t n = 0; n < vertex_array.size(); n++, idx += 4) {
const Vertex &v = vertex_array[n];
w[idx + 0] = v.tangent.x;
w[idx + 1] = v.tangent.y;
w[idx + 2] = v.tangent.z;
//float d = v.tangent.dot(v.binormal,v.normal);
float d = v.binormal.dot(v.normal.cross(v.tangent));
w[idx + 3] = d < 0 ? -1 : 1;
}
w.release();
a[i] = array;
} break;
case Mesh::ARRAY_COLOR: {
PoolVector<Color> array;
array.resize(varr_len);
PoolVector<Color>::Write w = array.write();
int idx = 0;
for (uint32_t n = 0; n < vertex_array.size(); n++, idx++) {
const Vertex &v = vertex_array[n];
w[idx] = v.color;
}
w.release();
a[i] = array;
} break;
case Mesh::ARRAY_BONES: {
PoolVector<int> array;
array.resize(varr_len * Vertex::MAX_BONES);
PoolVector<int>::Write w = array.write();
int idx = 0;
for (uint32_t n = 0; n < vertex_array.size(); n++, idx += Vertex::MAX_BONES) {
const Vertex &v = vertex_array[n];
ERR_CONTINUE(v.num_bones != Vertex::MAX_BONES);
for (int j = 0; j < Vertex::MAX_BONES; j++) {
w[idx + j] = v.bones[j];
}
}
w.release();
a[i] = array;
} break;
case Mesh::ARRAY_WEIGHTS: {
PoolVector<float> array;
array.resize(varr_len * Vertex::MAX_BONES);
PoolVector<float>::Write w = array.write();
int idx = 0;
for (uint32_t n = 0; n < vertex_array.size(); n++, idx += Vertex::MAX_BONES) {
const Vertex &v = vertex_array[n];
ERR_CONTINUE(v.num_bones != Vertex::MAX_BONES);
for (int j = 0; j < Vertex::MAX_BONES; j++) {
w[idx + j] = v.weights[j];
}
}
w.release();
a[i] = array;
} break;
case Mesh::ARRAY_INDEX: {
ERR_CONTINUE(index_array.size() == 0);
PoolVector<int> array;
array.resize(index_array.size());
PoolVector<int>::Write w = array.write();
for (uint32_t n = 0; n < index_array.size(); n++) {
w[n] = index_array[n];
}
w.release();
a[i] = array;
} break;
default: {
}
}
}
return a;
}
Ref<ArrayMesh> SurfaceTool::commit(const Ref<ArrayMesh> &p_existing, uint32_t p_flags) {
Ref<ArrayMesh> mesh;
if (p_existing.is_valid()) {
mesh = p_existing;
} else {
mesh.instance();
}
int varr_len = vertex_array.size();
if (varr_len == 0) {
return mesh;
}
int surface = mesh->get_surface_count();
Array a = commit_to_arrays();
mesh->add_surface_from_arrays(primitive, a, Array(), p_flags);
if (material.is_valid()) {
mesh->surface_set_material(surface, material);
}
return mesh;
}
void SurfaceTool::index() {
if (index_array.size()) {
return; //already indexed
}
HashMap<Vertex, int, VertexHasher> indices;
LocalVector<Vertex> new_vertices;
// probably will use less, but this prevents a bunch of resizing
new_vertices.reserve(vertex_array.size());
for (uint32_t n = 0; n < vertex_array.size(); n++) {
const Vertex &v = vertex_array[n];
int *idxptr = indices.getptr(v);
int idx;
if (!idxptr) {
idx = indices.size();
new_vertices.push_back(v);
indices[v] = idx;
} else {
idx = *idxptr;
}
index_array.push_back(idx);
}
vertex_array.clear();
vertex_array = new_vertices;
format |= Mesh::ARRAY_FORMAT_INDEX;
}
void SurfaceTool::deindex() {
if (index_array.size() == 0) {
return; //nothing to deindex
}
// make a copy of source verts
LocalVector<Vertex> varr = vertex_array;
vertex_array.resize(index_array.size());
Vertex *dest_vert = vertex_array.ptr();
for (uint32_t n = 0; n < index_array.size(); n++) {
int idx = index_array[n];
ERR_FAIL_INDEX(idx, (int)varr.size());
*dest_vert++ = varr[idx];
}
format &= ~Mesh::ARRAY_FORMAT_INDEX;
index_array.clear();
}
void SurfaceTool::_create_list(const Ref<Mesh> &p_existing, int p_surface, LocalVector<Vertex> *r_vertex, LocalVector<int> *r_index, uint32_t &lformat) {
ERR_FAIL_COND_MSG(p_existing.is_null(), "First argument in SurfaceTool::_create_list() must be a valid object of type Mesh");
Array arr = p_existing->surface_get_arrays(p_surface);
ERR_FAIL_COND(arr.size() != VS::ARRAY_MAX);
_create_list_from_arrays(arr, r_vertex, r_index, lformat);
}
Vector<SurfaceTool::Vertex> SurfaceTool::create_vertex_array_from_triangle_arrays(const Array &p_arrays) {
Vector<SurfaceTool::Vertex> ret;
PoolVector<Vector3> varr = p_arrays[VS::ARRAY_VERTEX];
PoolVector<Vector3> narr = p_arrays[VS::ARRAY_NORMAL];
PoolVector<float> tarr = p_arrays[VS::ARRAY_TANGENT];
PoolVector<Color> carr = p_arrays[VS::ARRAY_COLOR];
PoolVector<Vector2> uvarr = p_arrays[VS::ARRAY_TEX_UV];
PoolVector<Vector2> uv2arr = p_arrays[VS::ARRAY_TEX_UV2];
PoolVector<int> barr = p_arrays[VS::ARRAY_BONES];
PoolVector<float> warr = p_arrays[VS::ARRAY_WEIGHTS];
int vc = varr.size();
if (vc == 0) {
return ret;
}
int lformat = 0;
PoolVector<Vector3>::Read rv;
if (varr.size()) {
lformat |= VS::ARRAY_FORMAT_VERTEX;
rv = varr.read();
}
PoolVector<Vector3>::Read rn;
if (narr.size()) {
lformat |= VS::ARRAY_FORMAT_NORMAL;
rn = narr.read();
}
PoolVector<float>::Read rt;
if (tarr.size()) {
lformat |= VS::ARRAY_FORMAT_TANGENT;
rt = tarr.read();
}
PoolVector<Color>::Read rc;
if (carr.size()) {
lformat |= VS::ARRAY_FORMAT_COLOR;
rc = carr.read();
}
PoolVector<Vector2>::Read ruv;
if (uvarr.size()) {
lformat |= VS::ARRAY_FORMAT_TEX_UV;
ruv = uvarr.read();
}
PoolVector<Vector2>::Read ruv2;
if (uv2arr.size()) {
lformat |= VS::ARRAY_FORMAT_TEX_UV2;
ruv2 = uv2arr.read();
}
PoolVector<int>::Read rb;
if (barr.size()) {
lformat |= VS::ARRAY_FORMAT_BONES;
rb = barr.read();
}
PoolVector<float>::Read rw;
if (warr.size()) {
lformat |= VS::ARRAY_FORMAT_WEIGHTS;
rw = warr.read();
}
ret.resize(vc);
Vertex *ret_dest = ret.ptrw();
for (int i = 0; i < vc; i++) {
Vertex &v = *ret_dest++;
if (lformat & VS::ARRAY_FORMAT_VERTEX) {
v.vertex = varr[i];
}
if (lformat & VS::ARRAY_FORMAT_NORMAL) {
v.normal = narr[i];
}
if (lformat & VS::ARRAY_FORMAT_TANGENT) {
Plane p(tarr[i * 4 + 0], tarr[i * 4 + 1], tarr[i * 4 + 2], tarr[i * 4 + 3]);
v.tangent = p.normal;
v.binormal = p.normal.cross(v.tangent).normalized() * p.d;
}
if (lformat & VS::ARRAY_FORMAT_COLOR) {
v.color = carr[i];
}
if (lformat & VS::ARRAY_FORMAT_TEX_UV) {
v.uv = uvarr[i];
}
if (lformat & VS::ARRAY_FORMAT_TEX_UV2) {
v.uv2 = uv2arr[i];
}
if (lformat & VS::ARRAY_FORMAT_BONES) {
v.num_bones = Vertex::MAX_BONES;
for (int b = 0; b < Vertex::MAX_BONES; b++) {
v.bones[b] = barr[i * Vertex::MAX_BONES + b];
}
}
if (lformat & VS::ARRAY_FORMAT_WEIGHTS) {
v.num_bones = Vertex::MAX_BONES;
for (int b = 0; b < Vertex::MAX_BONES; b++) {
v.weights[b] = warr[i * Vertex::MAX_BONES + b];
}
}
}
return ret;
}
void SurfaceTool::_create_list_from_arrays(Array arr, LocalVector<Vertex> *r_vertex, LocalVector<int> *r_index, uint32_t &lformat) {
PoolVector<Vector3> varr = arr[VS::ARRAY_VERTEX];
PoolVector<Vector3> narr = arr[VS::ARRAY_NORMAL];
PoolVector<float> tarr = arr[VS::ARRAY_TANGENT];
PoolVector<Color> carr = arr[VS::ARRAY_COLOR];
PoolVector<Vector2> uvarr = arr[VS::ARRAY_TEX_UV];
PoolVector<Vector2> uv2arr = arr[VS::ARRAY_TEX_UV2];
PoolVector<int> barr = arr[VS::ARRAY_BONES];
PoolVector<float> warr = arr[VS::ARRAY_WEIGHTS];
int vc = varr.size();
if (vc == 0) {
return;
}
lformat = 0;
PoolVector<Vector3>::Read rv;
if (varr.size()) {
lformat |= VS::ARRAY_FORMAT_VERTEX;
rv = varr.read();
}
PoolVector<Vector3>::Read rn;
if (narr.size()) {
lformat |= VS::ARRAY_FORMAT_NORMAL;
rn = narr.read();
}
PoolVector<float>::Read rt;
if (tarr.size()) {
lformat |= VS::ARRAY_FORMAT_TANGENT;
rt = tarr.read();
}
PoolVector<Color>::Read rc;
if (carr.size()) {
lformat |= VS::ARRAY_FORMAT_COLOR;
rc = carr.read();
}
PoolVector<Vector2>::Read ruv;
if (uvarr.size()) {
lformat |= VS::ARRAY_FORMAT_TEX_UV;
ruv = uvarr.read();
}
PoolVector<Vector2>::Read ruv2;
if (uv2arr.size()) {
lformat |= VS::ARRAY_FORMAT_TEX_UV2;
ruv2 = uv2arr.read();
}
PoolVector<int>::Read rb;
if (barr.size()) {
lformat |= VS::ARRAY_FORMAT_BONES;
rb = barr.read();
}
PoolVector<float>::Read rw;
if (warr.size()) {
lformat |= VS::ARRAY_FORMAT_WEIGHTS;
rw = warr.read();
}
DEV_ASSERT(vc);
uint32_t start = r_vertex->size();
r_vertex->resize(start + vc);
Vertex *vert_dest = &r_vertex->operator[](start);
for (int i = 0; i < vc; i++) {
Vertex &v = *vert_dest++;
if (lformat & VS::ARRAY_FORMAT_VERTEX) {
v.vertex = varr[i];
}
if (lformat & VS::ARRAY_FORMAT_NORMAL) {
v.normal = narr[i];
}
if (lformat & VS::ARRAY_FORMAT_TANGENT) {
Plane p(tarr[i * 4 + 0], tarr[i * 4 + 1], tarr[i * 4 + 2], tarr[i * 4 + 3]);
v.tangent = p.normal;
v.binormal = p.normal.cross(v.tangent).normalized() * p.d;
}
if (lformat & VS::ARRAY_FORMAT_COLOR) {
v.color = carr[i];
}
if (lformat & VS::ARRAY_FORMAT_TEX_UV) {
v.uv = uvarr[i];
}
if (lformat & VS::ARRAY_FORMAT_TEX_UV2) {
v.uv2 = uv2arr[i];
}
if (lformat & VS::ARRAY_FORMAT_BONES) {
v.num_bones = Vertex::MAX_BONES;
for (int b = 0; b < Vertex::MAX_BONES; b++) {
v.bones[b] = barr[i * Vertex::MAX_BONES + b];
}
}
if (lformat & VS::ARRAY_FORMAT_WEIGHTS) {
v.num_bones = Vertex::MAX_BONES;
for (int b = 0; b < Vertex::MAX_BONES; b++) {
v.weights[b] = warr[i * Vertex::MAX_BONES + b];
}
}
}
//indices
PoolVector<int> idx = arr[VS::ARRAY_INDEX];
int is = idx.size();
if (is) {
lformat |= VS::ARRAY_FORMAT_INDEX;
PoolVector<int>::Read iarr = idx.read();
uint32_t ind_start = r_index->size();
r_index->resize(ind_start + is);
int *ind_dest = &r_index->operator[](ind_start);
for (int i = 0; i < is; i++) {
*ind_dest = iarr[i];
ind_dest++;
}
}
}
void SurfaceTool::create_from_triangle_arrays(const Array &p_arrays) {
clear();
primitive = Mesh::PRIMITIVE_TRIANGLES;
_create_list_from_arrays(p_arrays, &vertex_array, &index_array, format);
}
void SurfaceTool::create_from(const Ref<Mesh> &p_existing, int p_surface) {
ERR_FAIL_COND_MSG(p_existing.is_null(), "First argument in SurfaceTool::create_from() must be a valid object of type Mesh");
clear();
primitive = p_existing->surface_get_primitive_type(p_surface);
_create_list(p_existing, p_surface, &vertex_array, &index_array, format);
material = p_existing->surface_get_material(p_surface);
}
void SurfaceTool::create_from_blend_shape(const Ref<Mesh> &p_existing, int p_surface, const String &p_blend_shape_name) {
ERR_FAIL_COND_MSG(p_existing.is_null(), "First argument in SurfaceTool::create_from_blend_shape() must be a valid object of type Mesh");
clear();
primitive = p_existing->surface_get_primitive_type(p_surface);
Array arr = p_existing->surface_get_blend_shape_arrays(p_surface);
Array blend_shape_names;
int32_t shape_idx = -1;
for (int32_t i = 0; i < p_existing->get_blend_shape_count(); i++) {
String name = p_existing->get_blend_shape_name(i);
if (name == p_blend_shape_name) {
shape_idx = i;
break;
}
}
ERR_FAIL_COND(shape_idx == -1);
ERR_FAIL_COND(shape_idx >= arr.size());
Array mesh = arr[shape_idx];
ERR_FAIL_COND(mesh.size() != VS::ARRAY_MAX);
_create_list_from_arrays(arr[shape_idx], &vertex_array, &index_array, format);
}
// returns number of indices found within the subset
int SurfaceTool::create_from_subset(const SurfaceTool &p_source, const LocalVector<uint32_t> &p_ids, uint32_t p_subset_id) {
clear();
bool was_indexed = p_source.index_array.size() != 0;
// expecting deindexed input for now as easier to deal with
ERR_FAIL_COND_V(was_indexed, 0);
// only deals with triangles
ERR_FAIL_COND_V(p_source.primitive != Mesh::PRIMITIVE_TRIANGLES, 0);
primitive = p_source.primitive;
uint32_t num_source_tris = p_source.vertex_array.size() / 3;
DEV_ASSERT((p_source.vertex_array.size() % 3) == 0);
ERR_FAIL_COND_V(num_source_tris != p_ids.size(), 0);
const Vertex *v[3];
const Vertex *input = p_source.vertex_array.ptr();
HashMap<Vertex, int, VertexHasher> indices;
for (uint32_t t = 0; t < num_source_tris; t++) {
v[0] = input++;
v[1] = input++;
v[2] = input++;
if (p_ids[t] == p_subset_id) {
// we can use this triangle
for (int i = 0; i < 3; i++) {
const Vertex &vert = *v[i];
int *idxptr = indices.getptr(vert);
int idx;
if (!idxptr) {
idx = indices.size();
vertex_array.push_back(vert);
indices[vert] = idx;
} else {
idx = *idxptr;
}
index_array.push_back(idx);
} // for i
} // bound intersects
}
// steal the format from the source surface tool
format = p_source.format;
format |= Mesh::ARRAY_FORMAT_INDEX;
return get_num_draw_vertices();
}
void SurfaceTool::append_from(const Ref<Mesh> &p_existing, int p_surface, const Transform &p_xform) {
ERR_FAIL_COND_MSG(p_existing.is_null(), "First argument in SurfaceTool::append_from() must be a valid object of type Mesh");
if (vertex_array.size() == 0) {
primitive = p_existing->surface_get_primitive_type(p_surface);
format = 0;
}
uint32_t nformat;
LocalVector<Vertex> nvertices;
LocalVector<int> nindices;
_create_list(p_existing, p_surface, &nvertices, &nindices, nformat);
format |= nformat;
int vfrom = vertex_array.size();
if (nvertices.size()) {
vertex_array.resize(vfrom + nvertices.size());
Vertex *dest_vert = &vertex_array[vfrom];
for (uint32_t n = 0; n < nvertices.size(); n++) {
Vertex &v = *dest_vert++;
v = nvertices[n];
v.vertex = p_xform.xform(v.vertex);
if (nformat & VS::ARRAY_FORMAT_NORMAL) {
v.normal = p_xform.basis.xform(v.normal);
}
if (nformat & VS::ARRAY_FORMAT_TANGENT) {
v.tangent = p_xform.basis.xform(v.tangent);
v.binormal = p_xform.basis.xform(v.binormal);
}
}
} // if there were new vertices to add
if (nindices.size()) {
int ind_start = index_array.size();
index_array.resize(ind_start + nindices.size());
int *dest_ind = &index_array[ind_start];
for (uint32_t n = 0; n < nindices.size(); n++) {
int dst_index = nindices[n] + vfrom;
*dest_ind++ = dst_index;
}
} // if there were new indices to add
if (index_array.size() % 3) {
WARN_PRINT("SurfaceTool: Index array not a multiple of 3.");
}
}
//mikktspace callbacks
namespace {
struct TangentGenerationContextUserData {
Vector<SurfaceTool::Vertex *> vertices;
Vector<int> indices;
};
} // namespace
int SurfaceTool::mikktGetNumFaces(const SMikkTSpaceContext *pContext) {
TangentGenerationContextUserData &triangle_data = *reinterpret_cast<TangentGenerationContextUserData *>(pContext->m_pUserData);
if (triangle_data.indices.size() > 0) {
return triangle_data.indices.size() / 3;
} else {
return triangle_data.vertices.size() / 3;
}
}
int SurfaceTool::mikktGetNumVerticesOfFace(const SMikkTSpaceContext *pContext, const int iFace) {
return 3; //always 3
}
void SurfaceTool::mikktGetPosition(const SMikkTSpaceContext *pContext, float fvPosOut[], const int iFace, const int iVert) {
TangentGenerationContextUserData &triangle_data = *reinterpret_cast<TangentGenerationContextUserData *>(pContext->m_pUserData);
Vector3 v;
if (triangle_data.indices.size() > 0) {
int index = triangle_data.indices[iFace * 3 + iVert];
if (index < triangle_data.vertices.size()) {
v = triangle_data.vertices[index]->vertex;
}
} else {
v = triangle_data.vertices[iFace * 3 + iVert]->vertex;
}
fvPosOut[0] = v.x;
fvPosOut[1] = v.y;
fvPosOut[2] = v.z;
}
void SurfaceTool::mikktGetNormal(const SMikkTSpaceContext *pContext, float fvNormOut[], const int iFace, const int iVert) {
TangentGenerationContextUserData &triangle_data = *reinterpret_cast<TangentGenerationContextUserData *>(pContext->m_pUserData);
Vector3 v;
if (triangle_data.indices.size() > 0) {
int index = triangle_data.indices[iFace * 3 + iVert];
if (index < triangle_data.vertices.size()) {
v = triangle_data.vertices[index]->normal;
}
} else {
v = triangle_data.vertices[iFace * 3 + iVert]->normal;
}
fvNormOut[0] = v.x;
fvNormOut[1] = v.y;
fvNormOut[2] = v.z;
}
void SurfaceTool::mikktGetTexCoord(const SMikkTSpaceContext *pContext, float fvTexcOut[], const int iFace, const int iVert) {
TangentGenerationContextUserData &triangle_data = *reinterpret_cast<TangentGenerationContextUserData *>(pContext->m_pUserData);
Vector2 v;
if (triangle_data.indices.size() > 0) {
int index = triangle_data.indices[iFace * 3 + iVert];
if (index < triangle_data.vertices.size()) {
v = triangle_data.vertices[index]->uv;
}
} else {
v = triangle_data.vertices[iFace * 3 + iVert]->uv;
}
fvTexcOut[0] = v.x;
fvTexcOut[1] = v.y;
}
void SurfaceTool::mikktSetTSpaceDefault(const SMikkTSpaceContext *pContext, const float fvTangent[], const float fvBiTangent[], const float fMagS, const float fMagT,
const tbool bIsOrientationPreserving, const int iFace, const int iVert) {
TangentGenerationContextUserData &triangle_data = *reinterpret_cast<TangentGenerationContextUserData *>(pContext->m_pUserData);
Vertex *vtx = nullptr;
if (triangle_data.indices.size() > 0) {
int index = triangle_data.indices[iFace * 3 + iVert];
if (index < triangle_data.vertices.size()) {
vtx = triangle_data.vertices[index];
}
} else {
vtx = triangle_data.vertices[iFace * 3 + iVert];
}
if (vtx != nullptr) {
vtx->tangent = Vector3(fvTangent[0], fvTangent[1], fvTangent[2]);
vtx->binormal = Vector3(-fvBiTangent[0], -fvBiTangent[1], -fvBiTangent[2]); // for some reason these are reversed, something with the coordinate system in Godot
}
}
void SurfaceTool::generate_tangents() {
ERR_FAIL_COND(!(format & Mesh::ARRAY_FORMAT_TEX_UV));
ERR_FAIL_COND(!(format & Mesh::ARRAY_FORMAT_NORMAL));
SMikkTSpaceInterface mkif;
mkif.m_getNormal = mikktGetNormal;
mkif.m_getNumFaces = mikktGetNumFaces;
mkif.m_getNumVerticesOfFace = mikktGetNumVerticesOfFace;
mkif.m_getPosition = mikktGetPosition;
mkif.m_getTexCoord = mikktGetTexCoord;
mkif.m_setTSpace = mikktSetTSpaceDefault;
mkif.m_setTSpaceBasic = nullptr;
SMikkTSpaceContext msc;
msc.m_pInterface = &mkif;
TangentGenerationContextUserData triangle_data;
triangle_data.vertices.resize(vertex_array.size());
int idx = 0;
for (uint32_t n = 0; n < vertex_array.size(); n++) {
Vertex &v = vertex_array[n];
triangle_data.vertices.write[idx++] = &v;
v.binormal = Vector3();
v.tangent = Vector3();
}
triangle_data.indices.resize(index_array.size());
for (uint32_t n = 0; n < index_array.size(); n++) {
triangle_data.indices.write[n] = index_array[n];
}
msc.m_pUserData = &triangle_data;
bool res = genTangSpaceDefault(&msc);
ERR_FAIL_COND(!res);
format |= Mesh::ARRAY_FORMAT_TANGENT;
}
void SurfaceTool::generate_normals(bool p_flip) {
ERR_FAIL_COND(primitive != Mesh::PRIMITIVE_TRIANGLES);
bool was_indexed = index_array.size();
deindex();
HashMap<Vertex, Vector3, VertexHasher> vertex_hash;
int count = 0;
bool smooth = false;
int smooth_group_start = 0;
if (smooth_groups.has(0)) {
smooth = smooth_groups[0];
}
for (uint32_t t = 0; t < vertex_array.size(); t += 3) {
Vertex *v[3];
v[0] = &vertex_array[t];
v[1] = &vertex_array[t + 1];
v[2] = &vertex_array[t + 2];
Vector3 normal;
if (!p_flip) {
normal = Plane(v[0]->vertex, v[1]->vertex, v[2]->vertex).normal;
} else {
normal = Plane(v[2]->vertex, v[1]->vertex, v[0]->vertex).normal;
}
if (smooth) {
for (int i = 0; i < 3; i++) {
Vector3 *lv = vertex_hash.getptr(*v[i]);
if (!lv) {
vertex_hash.set(*v[i], normal);
} else {
(*lv) += normal;
}
}
} else {
for (int i = 0; i < 3; i++) {
v[i]->normal = normal;
}
}
count += 3;
// terminating smooth group, bake the smoothing group
if (smooth_groups.has(count)) {
_apply_smoothing_group(vertex_hash, smooth_group_start, count, smooth);
smooth_group_start = count;
}
}
// always terminate the last smoothing group
_apply_smoothing_group(vertex_hash, smooth_group_start, vertex_array.size(), smooth);
format |= Mesh::ARRAY_FORMAT_NORMAL;
if (was_indexed) {
index();
smooth_groups.clear();
}
}
void SurfaceTool::_apply_smoothing_group(HashMap<Vertex, Vector3, VertexHasher> &r_vertex_hash, uint32_t p_from, uint32_t p_to, bool &r_smooth) {
if (r_vertex_hash.size()) {
for (uint32_t n = p_from; n < p_to; n++) {
Vertex &v = vertex_array[n];
Vector3 *lv = r_vertex_hash.getptr(v);
if (lv) {
v.normal = lv->normalized();
}
}
}
r_vertex_hash.clear();
if (p_to < vertex_array.size()) {
r_smooth = smooth_groups[p_to];
}
}
void SurfaceTool::set_material(const Ref<Material> &p_material) {
material = p_material;
}
void SurfaceTool::clear() {
begun = false;
primitive = Mesh::PRIMITIVE_LINES;
format = 0;
last_bones.clear();
last_weights.clear();
index_array.clear();
vertex_array.clear();
smooth_groups.clear();
material.unref();
}
void SurfaceTool::_bind_methods() {
ClassDB::bind_method(D_METHOD("begin", "primitive"), &SurfaceTool::begin);
ClassDB::bind_method(D_METHOD("add_vertex", "vertex"), &SurfaceTool::add_vertex);
ClassDB::bind_method(D_METHOD("add_color", "color"), &SurfaceTool::add_color);
ClassDB::bind_method(D_METHOD("add_normal", "normal"), &SurfaceTool::add_normal);
ClassDB::bind_method(D_METHOD("add_tangent", "tangent"), &SurfaceTool::add_tangent);
ClassDB::bind_method(D_METHOD("add_uv", "uv"), &SurfaceTool::add_uv);
ClassDB::bind_method(D_METHOD("add_uv2", "uv2"), &SurfaceTool::add_uv2);
ClassDB::bind_method(D_METHOD("add_bones", "bones"), &SurfaceTool::add_bones);
ClassDB::bind_method(D_METHOD("add_weights", "weights"), &SurfaceTool::add_weights);
ClassDB::bind_method(D_METHOD("add_smooth_group", "smooth"), &SurfaceTool::add_smooth_group);
ClassDB::bind_method(D_METHOD("add_triangle_fan", "vertices", "uvs", "colors", "uv2s", "normals", "tangents"), &SurfaceTool::add_triangle_fan, DEFVAL(Vector<Vector2>()), DEFVAL(Vector<Color>()), DEFVAL(Vector<Vector2>()), DEFVAL(Vector<Vector3>()), DEFVAL(Vector<Plane>()));
ClassDB::bind_method(D_METHOD("add_index", "index"), &SurfaceTool::add_index);
ClassDB::bind_method(D_METHOD("index"), &SurfaceTool::index);
ClassDB::bind_method(D_METHOD("deindex"), &SurfaceTool::deindex);
ClassDB::bind_method(D_METHOD("generate_normals", "flip"), &SurfaceTool::generate_normals, DEFVAL(false));
ClassDB::bind_method(D_METHOD("generate_tangents"), &SurfaceTool::generate_tangents);
ClassDB::bind_method(D_METHOD("set_material", "material"), &SurfaceTool::set_material);
ClassDB::bind_method(D_METHOD("clear"), &SurfaceTool::clear);
ClassDB::bind_method(D_METHOD("create_from", "existing", "surface"), &SurfaceTool::create_from);
ClassDB::bind_method(D_METHOD("create_from_blend_shape", "existing", "surface", "blend_shape"), &SurfaceTool::create_from_blend_shape);
ClassDB::bind_method(D_METHOD("append_from", "existing", "surface", "transform"), &SurfaceTool::append_from);
ClassDB::bind_method(D_METHOD("commit", "existing", "flags"), &SurfaceTool::commit, DEFVAL(Variant()), DEFVAL(Mesh::ARRAY_COMPRESS_DEFAULT));
ClassDB::bind_method(D_METHOD("commit_to_arrays"), &SurfaceTool::commit_to_arrays);
}
SurfaceTool::SurfaceTool() {
first = false;
begun = false;
primitive = Mesh::PRIMITIVE_LINES;
format = 0;
}