4357506e64
This closes #42820. Co-authored-by: Clay John <claynjohn@gmail.com>
245 lines
6.3 KiB
GLSL
245 lines
6.3 KiB
GLSL
#[vertex]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
layout(location = 0) out vec2 uv_interp;
|
|
|
|
layout(push_constant, binding = 1, std430) uniform Params {
|
|
mat3 orientation;
|
|
vec4 proj;
|
|
vec4 position_multiplier;
|
|
float time;
|
|
}
|
|
params;
|
|
|
|
void main() {
|
|
vec2 base_arr[4] = vec2[](vec2(-1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0), vec2(1.0, -1.0));
|
|
uv_interp = base_arr[gl_VertexIndex];
|
|
gl_Position = vec4(uv_interp, 1.0, 1.0);
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#define M_PI 3.14159265359
|
|
|
|
layout(location = 0) in vec2 uv_interp;
|
|
|
|
layout(push_constant, binding = 1, std430) uniform Params {
|
|
mat3 orientation;
|
|
vec4 proj;
|
|
vec4 position_multiplier;
|
|
float time; //TODO consider adding vec2 screen res, and float radiance size
|
|
}
|
|
params;
|
|
|
|
#define SAMPLER_NEAREST_CLAMP 0
|
|
#define SAMPLER_LINEAR_CLAMP 1
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP 2
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP 3
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP 4
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP 5
|
|
#define SAMPLER_NEAREST_REPEAT 6
|
|
#define SAMPLER_LINEAR_REPEAT 7
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT 8
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT 9
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11
|
|
|
|
layout(set = 0, binding = 0) uniform sampler material_samplers[12];
|
|
|
|
layout(set = 0, binding = 1, std430) restrict readonly buffer GlobalVariableData {
|
|
vec4 data[];
|
|
}
|
|
global_variables;
|
|
|
|
layout(set = 0, binding = 2, std140) uniform SceneData {
|
|
bool volumetric_fog_enabled;
|
|
float volumetric_fog_inv_length;
|
|
float volumetric_fog_detail_spread;
|
|
uint volumetric_fog_pad;
|
|
|
|
vec3 fog_light_color;
|
|
float fog_sun_scatter;
|
|
|
|
bool fog_enabled;
|
|
float fog_density;
|
|
|
|
float z_far;
|
|
uint directional_light_count;
|
|
}
|
|
scene_data;
|
|
|
|
struct DirectionalLightData {
|
|
vec4 direction_energy;
|
|
vec4 color_size;
|
|
bool enabled;
|
|
};
|
|
|
|
layout(set = 0, binding = 3, std140) uniform DirectionalLights {
|
|
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
|
|
}
|
|
|
|
directional_lights;
|
|
|
|
#ifdef USE_MATERIAL_UNIFORMS
|
|
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
|
|
/* clang-format off */
|
|
|
|
MATERIAL_UNIFORMS
|
|
|
|
/* clang-format on */
|
|
} material;
|
|
#endif
|
|
|
|
layout(set = 2, binding = 0) uniform textureCube radiance;
|
|
#ifdef USE_CUBEMAP_PASS
|
|
layout(set = 2, binding = 1) uniform textureCube half_res;
|
|
layout(set = 2, binding = 2) uniform textureCube quarter_res;
|
|
#else
|
|
layout(set = 2, binding = 1) uniform texture2D half_res;
|
|
layout(set = 2, binding = 2) uniform texture2D quarter_res;
|
|
#endif
|
|
|
|
layout(set = 3, binding = 0) uniform texture3D volumetric_fog_texture;
|
|
|
|
#ifdef USE_CUBEMAP_PASS
|
|
#define AT_CUBEMAP_PASS true
|
|
#else
|
|
#define AT_CUBEMAP_PASS false
|
|
#endif
|
|
|
|
#ifdef USE_HALF_RES_PASS
|
|
#define AT_HALF_RES_PASS true
|
|
#else
|
|
#define AT_HALF_RES_PASS false
|
|
#endif
|
|
|
|
#ifdef USE_QUARTER_RES_PASS
|
|
#define AT_QUARTER_RES_PASS true
|
|
#else
|
|
#define AT_QUARTER_RES_PASS false
|
|
#endif
|
|
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_GLOBALS
|
|
|
|
/* clang-format on */
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
|
|
vec4 volumetric_fog_process(vec2 screen_uv) {
|
|
vec3 fog_pos = vec3(screen_uv, 1.0);
|
|
|
|
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
|
|
}
|
|
|
|
vec4 fog_process(vec3 view) {
|
|
vec3 fog_color = scene_data.fog_light_color;
|
|
|
|
if (scene_data.fog_sun_scatter > 0.001) {
|
|
vec4 sun_scatter = vec4(0.0);
|
|
float sun_total = 0.0;
|
|
for (uint i = 0; i < scene_data.directional_light_count; i++) {
|
|
vec3 light_color = directional_lights.data[i].color_size.xyz * directional_lights.data[i].direction_energy.w;
|
|
float light_amount = pow(max(dot(view, directional_lights.data[i].direction_energy.xyz), 0.0), 8.0);
|
|
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
|
|
}
|
|
}
|
|
|
|
float fog_amount = clamp(1.0 - exp(-scene_data.z_far * scene_data.fog_density), 0.0, 1.0);
|
|
|
|
return vec4(fog_color, fog_amount);
|
|
}
|
|
|
|
void main() {
|
|
vec3 cube_normal;
|
|
cube_normal.z = -1.0;
|
|
cube_normal.x = (cube_normal.z * (-uv_interp.x - params.proj.x)) / params.proj.y;
|
|
cube_normal.y = -(cube_normal.z * (-uv_interp.y - params.proj.z)) / params.proj.w;
|
|
cube_normal = mat3(params.orientation) * cube_normal;
|
|
cube_normal.z = -cube_normal.z;
|
|
cube_normal = normalize(cube_normal);
|
|
|
|
vec2 uv = uv_interp * 0.5 + 0.5;
|
|
|
|
vec2 panorama_coords = vec2(atan(cube_normal.x, cube_normal.z), acos(cube_normal.y));
|
|
|
|
if (panorama_coords.x < 0.0) {
|
|
panorama_coords.x += M_PI * 2.0;
|
|
}
|
|
|
|
panorama_coords /= vec2(M_PI * 2.0, M_PI);
|
|
|
|
vec3 color = vec3(0.0, 0.0, 0.0);
|
|
float alpha = 1.0; // Only available to subpasses
|
|
vec4 half_res_color = vec4(1.0);
|
|
vec4 quarter_res_color = vec4(1.0);
|
|
|
|
#ifdef USE_CUBEMAP_PASS
|
|
vec3 inverted_cube_normal = cube_normal;
|
|
inverted_cube_normal.z *= -1.0;
|
|
#ifdef USES_HALF_RES_COLOR
|
|
half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal);
|
|
#endif
|
|
#ifdef USES_QUARTER_RES_COLOR
|
|
quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal);
|
|
#endif
|
|
#else
|
|
#ifdef USES_HALF_RES_COLOR
|
|
half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0);
|
|
#endif
|
|
#ifdef USES_QUARTER_RES_COLOR
|
|
quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0);
|
|
#endif
|
|
#endif
|
|
|
|
// unused, just here to make our compiler happy, make sure we don't execute any light code the user adds in..
|
|
#ifndef REALLYINCLUDETHIS
|
|
{
|
|
/* clang-format off */
|
|
|
|
LIGHT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
#endif
|
|
{
|
|
/* clang-format off */
|
|
|
|
FRAGMENT_SHADER_CODE
|
|
|
|
/* clang-format on */
|
|
}
|
|
|
|
frag_color.rgb = color * params.position_multiplier.w;
|
|
frag_color.a = alpha;
|
|
|
|
#if !defined(DISABLE_FOG) && !defined(USE_CUBEMAP_PASS)
|
|
|
|
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
|
|
if (scene_data.fog_enabled) {
|
|
vec4 fog = fog_process(cube_normal);
|
|
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
|
|
}
|
|
|
|
if (scene_data.volumetric_fog_enabled) {
|
|
vec4 fog = volumetric_fog_process(uv);
|
|
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
|
|
}
|
|
|
|
#endif // DISABLE_FOG
|
|
|
|
// Blending is disabled for Sky, so alpha doesn't blend
|
|
// alpha is used for subsurface scattering so make sure it doesn't get applied to Sky
|
|
if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) {
|
|
frag_color.a = 0.0;
|
|
}
|
|
}
|