godot/thirdparty/embree/kernels/geometry/grid_soa.h
jfons 767e374dce Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.

`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
2021-05-21 17:00:24 +02:00

276 lines
12 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "../common/scene_subdiv_mesh.h"
#include "../bvh/bvh.h"
#include "../subdiv/tessellation.h"
#include "../subdiv/tessellation_cache.h"
#include "subdivpatch1.h"
namespace embree
{
namespace isa
{
class GridSOA
{
public:
/*! GridSOA constructor */
GridSOA(const SubdivPatch1Base* patches, const unsigned time_steps,
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
const SubdivMesh* const geom, const size_t totalBvhBytes, const size_t gridBytes, BBox3fa* bounds_o = nullptr);
/*! Subgrid creation */
template<typename Allocator>
static GridSOA* create(const SubdivPatch1Base* patches, const unsigned time_steps,
unsigned x0, unsigned x1, unsigned y0, unsigned y1,
const Scene* scene, Allocator& alloc, BBox3fa* bounds_o = nullptr)
{
const unsigned width = x1-x0+1;
const unsigned height = y1-y0+1;
const GridRange range(0,width-1,0,height-1);
size_t bvhBytes = 0;
if (time_steps == 1)
bvhBytes = getBVHBytes(range,sizeof(BVH4::AABBNode),0);
else {
bvhBytes = (time_steps-1)*getBVHBytes(range,sizeof(BVH4::AABBNodeMB),0);
bvhBytes += getTemporalBVHBytes(make_range(0,int(time_steps-1)),sizeof(BVH4::AABBNodeMB4D));
}
const size_t gridBytes = 4*size_t(width)*size_t(height)*sizeof(float);
size_t rootBytes = time_steps*sizeof(BVH4::NodeRef);
#if !defined(__64BIT__)
rootBytes += 4; // We read 2 elements behind the grid. As we store at least 8 root bytes after the grid we are fine in 64 bit mode. But in 32 bit mode we have to do additional padding.
#endif
void* data = alloc(offsetof(GridSOA,data)+bvhBytes+time_steps*gridBytes+rootBytes);
assert(data);
return new (data) GridSOA(patches,time_steps,x0,x1,y0,y1,patches->grid_u_res,patches->grid_v_res,scene->get<SubdivMesh>(patches->geomID()),bvhBytes,gridBytes,bounds_o);
}
/*! Grid creation */
template<typename Allocator>
static GridSOA* create(const SubdivPatch1Base* const patches, const unsigned time_steps,
const Scene* scene, const Allocator& alloc, BBox3fa* bounds_o = nullptr)
{
return create(patches,time_steps,0,patches->grid_u_res-1,0,patches->grid_v_res-1,scene,alloc,bounds_o);
}
/*! returns reference to root */
__forceinline BVH4::NodeRef& root(size_t t = 0) { return (BVH4::NodeRef&)data[rootOffset + t*sizeof(BVH4::NodeRef)]; }
__forceinline const BVH4::NodeRef& root(size_t t = 0) const { return (BVH4::NodeRef&)data[rootOffset + t*sizeof(BVH4::NodeRef)]; }
/*! returns pointer to BVH array */
__forceinline char* bvhData() { return &data[0]; }
__forceinline const char* bvhData() const { return &data[0]; }
/*! returns pointer to Grid array */
__forceinline float* gridData(size_t t = 0) { return (float*) &data[gridOffset + t*gridBytes]; }
__forceinline const float* gridData(size_t t = 0) const { return (float*) &data[gridOffset + t*gridBytes]; }
__forceinline void* encodeLeaf(size_t u, size_t v) {
return (void*) (16*(v * width + u + 1)); // +1 to not create empty leaf
}
__forceinline float* decodeLeaf(size_t t, const void* ptr) {
return gridData(t) + (((size_t) (ptr) >> 4) - 1);
}
/*! returns the size of the BVH over the grid in bytes */
static size_t getBVHBytes(const GridRange& range, const size_t nodeBytes, const size_t leafBytes);
/*! returns the size of the temporal BVH over the time range BVHs */
static size_t getTemporalBVHBytes(const range<int> time_range, const size_t nodeBytes);
/*! calculates bounding box of grid range */
__forceinline BBox3fa calculateBounds(size_t time, const GridRange& range) const
{
const float* const grid_array = gridData(time);
const float* const grid_x_array = grid_array + 0 * dim_offset;
const float* const grid_y_array = grid_array + 1 * dim_offset;
const float* const grid_z_array = grid_array + 2 * dim_offset;
/* compute the bounds just for the range! */
BBox3fa bounds( empty );
for (unsigned v = range.v_start; v<=range.v_end; v++)
{
for (unsigned u = range.u_start; u<=range.u_end; u++)
{
const float x = grid_x_array[ v * width + u];
const float y = grid_y_array[ v * width + u];
const float z = grid_z_array[ v * width + u];
bounds.extend( Vec3fa(x,y,z) );
}
}
assert(is_finite(bounds));
return bounds;
}
/*! Evaluates grid over patch and builds BVH4 tree over the grid. */
std::pair<BVH4::NodeRef,BBox3fa> buildBVH(BBox3fa* bounds_o);
/*! Create BVH4 tree over grid. */
std::pair<BVH4::NodeRef,BBox3fa> buildBVH(const GridRange& range, size_t& allocator);
/*! Evaluates grid over patch and builds MSMBlur BVH4 tree over the grid. */
std::pair<BVH4::NodeRef,LBBox3fa> buildMSMBlurBVH(const range<int> time_range, BBox3fa* bounds_o);
/*! Create MBlur BVH4 tree over grid. */
std::pair<BVH4::NodeRef,LBBox3fa> buildMBlurBVH(size_t time, const GridRange& range, size_t& allocator);
/*! Create MSMBlur BVH4 tree over grid. */
std::pair<BVH4::NodeRef,LBBox3fa> buildMSMBlurBVH(const range<int> time_range, size_t& allocator, BBox3fa* bounds_o);
template<typename Loader>
struct MapUV
{
typedef typename Loader::vfloat vfloat;
const float* const grid_uv;
size_t line_offset;
size_t lines;
__forceinline MapUV(const float* const grid_uv, size_t line_offset, const size_t lines)
: grid_uv(grid_uv), line_offset(line_offset), lines(lines) {}
__forceinline void operator() (vfloat& u, vfloat& v, Vec3<vfloat>& Ng) const {
const Vec3<vfloat> tri_v012_uv = Loader::gather(grid_uv,line_offset,lines);
const Vec2<vfloat> uv0 = GridSOA::decodeUV(tri_v012_uv[0]);
const Vec2<vfloat> uv1 = GridSOA::decodeUV(tri_v012_uv[1]);
const Vec2<vfloat> uv2 = GridSOA::decodeUV(tri_v012_uv[2]);
const Vec2<vfloat> uv = u * uv1 + v * uv2 + (1.0f-u-v) * uv0;
u = uv[0];v = uv[1];
}
};
struct Gather2x3
{
enum { M = 4 };
typedef vbool4 vbool;
typedef vint4 vint;
typedef vfloat4 vfloat;
static __forceinline const Vec3vf4 gather(const float* const grid, const size_t line_offset, const size_t lines)
{
vfloat4 r0 = vfloat4::loadu(grid + 0*line_offset);
vfloat4 r1 = vfloat4::loadu(grid + 1*line_offset); // this accesses 2 elements too much in case of 2x2 grid, but this is ok as we ensure enough padding after the grid
if (unlikely(line_offset == 2))
{
r0 = shuffle<0,1,1,1>(r0);
r1 = shuffle<0,1,1,1>(r1);
}
return Vec3vf4(unpacklo(r0,r1), // r00, r10, r01, r11
shuffle<1,1,2,2>(r0), // r01, r01, r02, r02
shuffle<0,1,1,2>(r1)); // r10, r11, r11, r12
}
static __forceinline void gather(const float* const grid_x,
const float* const grid_y,
const float* const grid_z,
const size_t line_offset,
const size_t lines,
Vec3vf4& v0_o,
Vec3vf4& v1_o,
Vec3vf4& v2_o)
{
const Vec3vf4 tri_v012_x = gather(grid_x,line_offset,lines);
const Vec3vf4 tri_v012_y = gather(grid_y,line_offset,lines);
const Vec3vf4 tri_v012_z = gather(grid_z,line_offset,lines);
v0_o = Vec3vf4(tri_v012_x[0],tri_v012_y[0],tri_v012_z[0]);
v1_o = Vec3vf4(tri_v012_x[1],tri_v012_y[1],tri_v012_z[1]);
v2_o = Vec3vf4(tri_v012_x[2],tri_v012_y[2],tri_v012_z[2]);
}
};
#if defined (__AVX__)
struct Gather3x3
{
enum { M = 8 };
typedef vbool8 vbool;
typedef vint8 vint;
typedef vfloat8 vfloat;
static __forceinline const Vec3vf8 gather(const float* const grid, const size_t line_offset, const size_t lines)
{
vfloat4 ra = vfloat4::loadu(grid + 0*line_offset);
vfloat4 rb = vfloat4::loadu(grid + 1*line_offset); // this accesses 2 elements too much in case of 2x2 grid, but this is ok as we ensure enough padding after the grid
vfloat4 rc;
if (likely(lines > 2))
rc = vfloat4::loadu(grid + 2*line_offset);
else
rc = rb;
if (unlikely(line_offset == 2))
{
ra = shuffle<0,1,1,1>(ra);
rb = shuffle<0,1,1,1>(rb);
rc = shuffle<0,1,1,1>(rc);
}
const vfloat8 r0 = vfloat8(ra,rb);
const vfloat8 r1 = vfloat8(rb,rc);
return Vec3vf8(unpacklo(r0,r1), // r00, r10, r01, r11, r10, r20, r11, r21
shuffle<1,1,2,2>(r0), // r01, r01, r02, r02, r11, r11, r12, r12
shuffle<0,1,1,2>(r1)); // r10, r11, r11, r12, r20, r21, r21, r22
}
static __forceinline void gather(const float* const grid_x,
const float* const grid_y,
const float* const grid_z,
const size_t line_offset,
const size_t lines,
Vec3vf8& v0_o,
Vec3vf8& v1_o,
Vec3vf8& v2_o)
{
const Vec3vf8 tri_v012_x = gather(grid_x,line_offset,lines);
const Vec3vf8 tri_v012_y = gather(grid_y,line_offset,lines);
const Vec3vf8 tri_v012_z = gather(grid_z,line_offset,lines);
v0_o = Vec3vf8(tri_v012_x[0],tri_v012_y[0],tri_v012_z[0]);
v1_o = Vec3vf8(tri_v012_x[1],tri_v012_y[1],tri_v012_z[1]);
v2_o = Vec3vf8(tri_v012_x[2],tri_v012_y[2],tri_v012_z[2]);
}
};
#endif
template<typename vfloat>
static __forceinline Vec2<vfloat> decodeUV(const vfloat& uv)
{
typedef typename vfloat::Int vint;
const vint iu = asInt(uv) & 0xffff;
const vint iv = srl(asInt(uv),16);
const vfloat u = (vfloat)iu * vfloat(8.0f/0x10000);
const vfloat v = (vfloat)iv * vfloat(8.0f/0x10000);
return Vec2<vfloat>(u,v);
}
__forceinline unsigned int geomID() const {
return _geomID;
}
__forceinline unsigned int primID() const {
return _primID;
}
public:
BVH4::NodeRef troot;
#if !defined(__64BIT__)
unsigned align1;
#endif
unsigned time_steps;
unsigned width;
unsigned height;
unsigned dim_offset;
unsigned _geomID;
unsigned _primID;
unsigned align2;
unsigned gridOffset;
unsigned gridBytes;
unsigned rootOffset;
char data[1]; //!< after the struct we first store the BVH, then the grid, and finally the roots
};
}
}