646 lines
14 KiB
C++
646 lines
14 KiB
C++
/*************************************************************************/
|
|
/* math_2d.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#include "math_2d.h"
|
|
|
|
real_t Vector2::angle() const {
|
|
|
|
return Math::atan2(x, y);
|
|
}
|
|
|
|
float Vector2::length() const {
|
|
|
|
return Math::sqrt(x * x + y * y);
|
|
}
|
|
|
|
float Vector2::length_squared() const {
|
|
|
|
return x * x + y * y;
|
|
}
|
|
|
|
void Vector2::normalize() {
|
|
|
|
float l = x * x + y * y;
|
|
if (l != 0) {
|
|
|
|
l = Math::sqrt(l);
|
|
x /= l;
|
|
y /= l;
|
|
}
|
|
}
|
|
|
|
Vector2 Vector2::normalized() const {
|
|
|
|
Vector2 v = *this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
float Vector2::distance_to(const Vector2 &p_vector2) const {
|
|
|
|
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
|
}
|
|
|
|
float Vector2::distance_squared_to(const Vector2 &p_vector2) const {
|
|
|
|
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
|
}
|
|
|
|
float Vector2::angle_to(const Vector2 &p_vector2) const {
|
|
|
|
return Math::atan2(tangent().dot(p_vector2), dot(p_vector2));
|
|
}
|
|
|
|
float Vector2::angle_to_point(const Vector2 &p_vector2) const {
|
|
|
|
return Math::atan2(x - p_vector2.x, y - p_vector2.y);
|
|
}
|
|
|
|
float Vector2::dot(const Vector2 &p_other) const {
|
|
|
|
return x * p_other.x + y * p_other.y;
|
|
}
|
|
|
|
float Vector2::cross(const Vector2 &p_other) const {
|
|
|
|
return x * p_other.y - y * p_other.x;
|
|
}
|
|
|
|
Vector2 Vector2::cross(real_t p_other) const {
|
|
|
|
return Vector2(p_other * y, -p_other * x);
|
|
}
|
|
|
|
Vector2 Vector2::operator+(const Vector2 &p_v) const {
|
|
|
|
return Vector2(x + p_v.x, y + p_v.y);
|
|
}
|
|
void Vector2::operator+=(const Vector2 &p_v) {
|
|
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
Vector2 Vector2::operator-(const Vector2 &p_v) const {
|
|
|
|
return Vector2(x - p_v.x, y - p_v.y);
|
|
}
|
|
void Vector2::operator-=(const Vector2 &p_v) {
|
|
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
Vector2 Vector2::operator*(const Vector2 &p_v1) const {
|
|
|
|
return Vector2(x * p_v1.x, y * p_v1.y);
|
|
};
|
|
|
|
Vector2 Vector2::operator*(const float &rvalue) const {
|
|
|
|
return Vector2(x * rvalue, y * rvalue);
|
|
};
|
|
void Vector2::operator*=(const float &rvalue) {
|
|
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
};
|
|
|
|
Vector2 Vector2::operator/(const Vector2 &p_v1) const {
|
|
|
|
return Vector2(x / p_v1.x, y / p_v1.y);
|
|
};
|
|
|
|
Vector2 Vector2::operator/(const float &rvalue) const {
|
|
|
|
return Vector2(x / rvalue, y / rvalue);
|
|
};
|
|
|
|
void Vector2::operator/=(const float &rvalue) {
|
|
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
};
|
|
|
|
Vector2 Vector2::operator-() const {
|
|
|
|
return Vector2(-x, -y);
|
|
}
|
|
|
|
bool Vector2::operator==(const Vector2 &p_vec2) const {
|
|
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
}
|
|
bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
|
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
}
|
|
Vector2 Vector2::floor() const {
|
|
|
|
return Vector2(Math::floor(x), Math::floor(y));
|
|
}
|
|
|
|
Vector2 Vector2::rotated(float p_by) const {
|
|
|
|
Vector2 v;
|
|
v.set_rotation(angle() + p_by);
|
|
v *= length();
|
|
return v;
|
|
}
|
|
|
|
Vector2 Vector2::project(const Vector2 &p_vec) const {
|
|
|
|
Vector2 v1 = p_vec;
|
|
Vector2 v2 = *this;
|
|
return v2 * (v1.dot(v2) / v2.dot(v2));
|
|
}
|
|
|
|
Vector2 Vector2::snapped(const Vector2 &p_by) const {
|
|
|
|
return Vector2(
|
|
Math::stepify(x, p_by.x),
|
|
Math::stepify(y, p_by.y));
|
|
}
|
|
|
|
Vector2 Vector2::clamped(real_t p_len) const {
|
|
|
|
real_t l = length();
|
|
Vector2 v = *this;
|
|
if (l > 0 && p_len < l) {
|
|
|
|
v /= l;
|
|
v *= p_len;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 Vector2::cubic_interpolate_soft(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, float p_t) const {
|
|
#if 0
|
|
k[0] = ((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) (vi[0],
|
|
vi[1],vi[2])); //fk = a0
|
|
k[1] = (((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) ((int) (v(0) -
|
|
1), vi[1],vi[2])))*0.5; //dk = a1
|
|
k[2] = (((*this) ((int) (v(0) + 2), vi[1], vi[2])) - ((*this) (vi[0],
|
|
vi[1],vi[2])))*0.5; //dk+1
|
|
k[3] = k[0]*3 - k[1]*2 - k[2];//a2
|
|
k[4] = k[1] + k[2] - k[0]*2;//a3
|
|
|
|
//ip = a3(t-tk)³ + a2(t-tk)² + a1(t-tk) + a0
|
|
//
|
|
//a3 = dk + dk+1 - Dk
|
|
//a2 = 3Dk - 2dk - dk+1
|
|
//a1 = dk
|
|
//a0 = fk
|
|
//
|
|
//dk = (fk+1 - fk-1)*0.5
|
|
//Dk = (fk+1 - fk)
|
|
|
|
float dk =
|
|
#endif
|
|
|
|
return Vector2();
|
|
}
|
|
|
|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, float p_t) const {
|
|
|
|
Vector2 p0 = p_pre_a;
|
|
Vector2 p1 = *this;
|
|
Vector2 p2 = p_b;
|
|
Vector2 p3 = p_post_b;
|
|
|
|
float t = p_t;
|
|
float t2 = t * t;
|
|
float t3 = t2 * t;
|
|
|
|
Vector2 out;
|
|
out = 0.5f * ((p1 * 2.0f) +
|
|
(-p0 + p2) * t +
|
|
(2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 +
|
|
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
|
|
return out;
|
|
|
|
/*
|
|
float mu = p_t;
|
|
float mu2 = mu*mu;
|
|
|
|
Vector2 a0 = p_post_b - p_b - p_pre_a + *this;
|
|
Vector2 a1 = p_pre_a - *this - a0;
|
|
Vector2 a2 = p_b - p_pre_a;
|
|
Vector2 a3 = *this;
|
|
|
|
return ( a0*mu*mu2 + a1*mu2 + a2*mu + a3 );
|
|
*/
|
|
/*
|
|
float t = p_t;
|
|
real_t t2 = t*t;
|
|
real_t t3 = t2*t;
|
|
|
|
real_t a = 2.0*t3- 3.0*t2 + 1;
|
|
real_t b = -2.0*t3+ 3.0*t2;
|
|
real_t c = t3- 2.0*t2 + t;
|
|
real_t d = t3- t2;
|
|
|
|
Vector2 p_a=*this;
|
|
|
|
return Vector2(
|
|
(a * p_a.x) + (b *p_b.x) + (c * p_pre_a.x) + (d * p_post_b.x),
|
|
(a * p_a.y) + (b *p_b.y) + (c * p_pre_a.y) + (d * p_post_b.y)
|
|
);
|
|
*/
|
|
}
|
|
|
|
Vector2 Vector2::slide(const Vector2 &p_vec) const {
|
|
|
|
return p_vec - *this * this->dot(p_vec);
|
|
}
|
|
Vector2 Vector2::reflect(const Vector2 &p_vec) const {
|
|
|
|
return p_vec - *this * this->dot(p_vec) * 2.0;
|
|
}
|
|
|
|
bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
|
|
|
|
real_t min = 0, max = 1;
|
|
int axis = 0;
|
|
float sign = 0;
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
real_t seg_from = p_from[i];
|
|
real_t seg_to = p_to[i];
|
|
real_t box_begin = pos[i];
|
|
real_t box_end = box_begin + size[i];
|
|
real_t cmin, cmax;
|
|
float csign;
|
|
|
|
if (seg_from < seg_to) {
|
|
|
|
if (seg_from > box_end || seg_to < box_begin)
|
|
return false;
|
|
real_t length = seg_to - seg_from;
|
|
cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
|
|
cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
|
|
csign = -1.0;
|
|
|
|
} else {
|
|
|
|
if (seg_to > box_end || seg_from < box_begin)
|
|
return false;
|
|
real_t length = seg_to - seg_from;
|
|
cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
|
|
cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
|
|
csign = 1.0;
|
|
}
|
|
|
|
if (cmin > min) {
|
|
min = cmin;
|
|
axis = i;
|
|
sign = csign;
|
|
}
|
|
if (cmax < max)
|
|
max = cmax;
|
|
if (max < min)
|
|
return false;
|
|
}
|
|
|
|
Vector2 rel = p_to - p_from;
|
|
|
|
if (r_normal) {
|
|
Vector2 normal;
|
|
normal[axis] = sign;
|
|
*r_normal = normal;
|
|
}
|
|
|
|
if (r_pos)
|
|
*r_pos = p_from + rel * min;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Point2i */
|
|
|
|
Point2i Point2i::operator+(const Point2i &p_v) const {
|
|
|
|
return Point2i(x + p_v.x, y + p_v.y);
|
|
}
|
|
void Point2i::operator+=(const Point2i &p_v) {
|
|
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
Point2i Point2i::operator-(const Point2i &p_v) const {
|
|
|
|
return Point2i(x - p_v.x, y - p_v.y);
|
|
}
|
|
void Point2i::operator-=(const Point2i &p_v) {
|
|
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
Point2i Point2i::operator*(const Point2i &p_v1) const {
|
|
|
|
return Point2i(x * p_v1.x, y * p_v1.y);
|
|
};
|
|
|
|
Point2i Point2i::operator*(const int &rvalue) const {
|
|
|
|
return Point2i(x * rvalue, y * rvalue);
|
|
};
|
|
void Point2i::operator*=(const int &rvalue) {
|
|
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
};
|
|
|
|
Point2i Point2i::operator/(const Point2i &p_v1) const {
|
|
|
|
return Point2i(x / p_v1.x, y / p_v1.y);
|
|
};
|
|
|
|
Point2i Point2i::operator/(const int &rvalue) const {
|
|
|
|
return Point2i(x / rvalue, y / rvalue);
|
|
};
|
|
|
|
void Point2i::operator/=(const int &rvalue) {
|
|
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
};
|
|
|
|
Point2i Point2i::operator-() const {
|
|
|
|
return Point2i(-x, -y);
|
|
}
|
|
|
|
bool Point2i::operator==(const Point2i &p_vec2) const {
|
|
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
}
|
|
bool Point2i::operator!=(const Point2i &p_vec2) const {
|
|
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
}
|
|
|
|
void Matrix32::invert() {
|
|
|
|
SWAP(elements[0][1], elements[1][0]);
|
|
elements[2] = basis_xform(-elements[2]);
|
|
}
|
|
|
|
Matrix32 Matrix32::inverse() const {
|
|
|
|
Matrix32 inv = *this;
|
|
inv.invert();
|
|
return inv;
|
|
}
|
|
|
|
void Matrix32::affine_invert() {
|
|
|
|
float det = basis_determinant();
|
|
ERR_FAIL_COND(det == 0);
|
|
float idet = 1.0 / det;
|
|
|
|
SWAP(elements[0][0], elements[1][1]);
|
|
elements[0] *= Vector2(idet, -idet);
|
|
elements[1] *= Vector2(-idet, idet);
|
|
|
|
elements[2] = basis_xform(-elements[2]);
|
|
}
|
|
|
|
Matrix32 Matrix32::affine_inverse() const {
|
|
|
|
Matrix32 inv = *this;
|
|
inv.affine_invert();
|
|
return inv;
|
|
}
|
|
|
|
void Matrix32::rotate(real_t p_phi) {
|
|
|
|
Matrix32 rot(p_phi, Vector2());
|
|
*this *= rot;
|
|
}
|
|
|
|
real_t Matrix32::get_rotation() const {
|
|
|
|
return Math::atan2(elements[1].x, elements[1].y);
|
|
}
|
|
|
|
void Matrix32::set_rotation(real_t p_rot) {
|
|
|
|
real_t cr = Math::cos(p_rot);
|
|
real_t sr = Math::sin(p_rot);
|
|
elements[0][0] = cr;
|
|
elements[1][1] = cr;
|
|
elements[0][1] = -sr;
|
|
elements[1][0] = sr;
|
|
}
|
|
|
|
Matrix32::Matrix32(real_t p_rot, const Vector2 &p_pos) {
|
|
|
|
real_t cr = Math::cos(p_rot);
|
|
real_t sr = Math::sin(p_rot);
|
|
elements[0][0] = cr;
|
|
elements[1][1] = cr;
|
|
elements[0][1] = -sr;
|
|
elements[1][0] = sr;
|
|
elements[2] = p_pos;
|
|
}
|
|
|
|
Size2 Matrix32::get_scale() const {
|
|
|
|
return Size2(elements[0].length(), elements[1].length());
|
|
}
|
|
|
|
void Matrix32::scale(const Size2 &p_scale) {
|
|
|
|
elements[0] *= p_scale;
|
|
elements[1] *= p_scale;
|
|
elements[2] *= p_scale;
|
|
}
|
|
void Matrix32::scale_basis(const Size2 &p_scale) {
|
|
|
|
elements[0] *= p_scale;
|
|
elements[1] *= p_scale;
|
|
}
|
|
void Matrix32::translate(real_t p_tx, real_t p_ty) {
|
|
|
|
translate(Vector2(p_tx, p_ty));
|
|
}
|
|
void Matrix32::translate(const Vector2 &p_translation) {
|
|
|
|
elements[2] += basis_xform(p_translation);
|
|
}
|
|
|
|
void Matrix32::orthonormalize() {
|
|
|
|
// Gram-Schmidt Process
|
|
|
|
Vector2 x = elements[0];
|
|
Vector2 y = elements[1];
|
|
|
|
x.normalize();
|
|
y = (y - x * (x.dot(y)));
|
|
y.normalize();
|
|
|
|
elements[0] = x;
|
|
elements[1] = y;
|
|
}
|
|
Matrix32 Matrix32::orthonormalized() const {
|
|
|
|
Matrix32 on = *this;
|
|
on.orthonormalize();
|
|
return on;
|
|
}
|
|
|
|
bool Matrix32::operator==(const Matrix32 &p_transform) const {
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (elements[i] != p_transform.elements[i])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Matrix32::operator!=(const Matrix32 &p_transform) const {
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (elements[i] != p_transform.elements[i])
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Matrix32::operator*=(const Matrix32 &p_transform) {
|
|
|
|
elements[2] = xform(p_transform.elements[2]);
|
|
|
|
float x0, x1, y0, y1;
|
|
|
|
x0 = tdotx(p_transform.elements[0]);
|
|
x1 = tdoty(p_transform.elements[0]);
|
|
y0 = tdotx(p_transform.elements[1]);
|
|
y1 = tdoty(p_transform.elements[1]);
|
|
|
|
elements[0][0] = x0;
|
|
elements[0][1] = x1;
|
|
elements[1][0] = y0;
|
|
elements[1][1] = y1;
|
|
}
|
|
|
|
Matrix32 Matrix32::operator*(const Matrix32 &p_transform) const {
|
|
|
|
Matrix32 t = *this;
|
|
t *= p_transform;
|
|
return t;
|
|
}
|
|
|
|
Matrix32 Matrix32::scaled(const Size2 &p_scale) const {
|
|
|
|
Matrix32 copy = *this;
|
|
copy.scale(p_scale);
|
|
return copy;
|
|
}
|
|
|
|
Matrix32 Matrix32::basis_scaled(const Size2 &p_scale) const {
|
|
|
|
Matrix32 copy = *this;
|
|
copy.scale_basis(p_scale);
|
|
return copy;
|
|
}
|
|
|
|
Matrix32 Matrix32::untranslated() const {
|
|
|
|
Matrix32 copy = *this;
|
|
copy.elements[2] = Vector2();
|
|
return copy;
|
|
}
|
|
|
|
Matrix32 Matrix32::translated(const Vector2 &p_offset) const {
|
|
|
|
Matrix32 copy = *this;
|
|
copy.translate(p_offset);
|
|
return copy;
|
|
}
|
|
|
|
Matrix32 Matrix32::rotated(float p_phi) const {
|
|
|
|
Matrix32 copy = *this;
|
|
copy.rotate(p_phi);
|
|
return copy;
|
|
}
|
|
|
|
float Matrix32::basis_determinant() const {
|
|
|
|
return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
|
|
}
|
|
|
|
Matrix32 Matrix32::interpolate_with(const Matrix32 &p_transform, float p_c) const {
|
|
|
|
//extract parameters
|
|
Vector2 p1 = get_origin();
|
|
Vector2 p2 = p_transform.get_origin();
|
|
|
|
real_t r1 = get_rotation();
|
|
real_t r2 = p_transform.get_rotation();
|
|
|
|
Size2 s1 = get_scale();
|
|
Size2 s2 = p_transform.get_scale();
|
|
|
|
//slerp rotation
|
|
Vector2 v1(Math::cos(r1), Math::sin(r1));
|
|
Vector2 v2(Math::cos(r2), Math::sin(r2));
|
|
|
|
real_t dot = v1.dot(v2);
|
|
|
|
dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
|
|
|
|
Vector2 v;
|
|
|
|
if (dot > 0.9995) {
|
|
v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
|
|
} else {
|
|
real_t angle = p_c * Math::acos(dot);
|
|
Vector2 v3 = (v2 - v1 * dot).normalized();
|
|
v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
|
|
}
|
|
|
|
//construct matrix
|
|
Matrix32 res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
|
|
res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
|
|
return res;
|
|
}
|
|
|
|
Matrix32::operator String() const {
|
|
|
|
return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
|
|
}
|