33e46aac13
Commit 2c000cb72f
changed the interpolation limits from (0.04, 1.0) to (0.04, 0.37). This is incorrect, as we want to have an F0 of 0.04 for dielectrics (materials with metalness of 0.0) and an F0 of 1.0 for metals.
The Schlick approximation uses an F0 of 0.04 for all dielectrics and it's good enough.
Having it lower than 1.0 leads to an incorrect application of the Fresnel effect for metals and leads to bugs like #79549
283 lines
8.9 KiB
GLSL
283 lines
8.9 KiB
GLSL
#[compute]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
|
|
|
|
layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D source_diffuse;
|
|
layout(r32f, set = 0, binding = 1) uniform restrict readonly image2D source_depth;
|
|
layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2D ssr_image;
|
|
#ifdef MODE_ROUGH
|
|
layout(r8, set = 1, binding = 1) uniform restrict writeonly image2D blur_radius_image;
|
|
#endif
|
|
layout(rgba8, set = 2, binding = 0) uniform restrict readonly image2D source_normal_roughness;
|
|
layout(set = 3, binding = 0) uniform sampler2D source_metallic;
|
|
|
|
layout(push_constant, std430) uniform Params {
|
|
vec4 proj_info;
|
|
|
|
ivec2 screen_size;
|
|
float camera_z_near;
|
|
float camera_z_far;
|
|
|
|
int num_steps;
|
|
float depth_tolerance;
|
|
float distance_fade;
|
|
float curve_fade_in;
|
|
|
|
bool orthogonal;
|
|
float filter_mipmap_levels;
|
|
bool use_half_res;
|
|
uint view_index;
|
|
}
|
|
params;
|
|
|
|
#include "screen_space_reflection_inc.glsl"
|
|
|
|
vec2 view_to_screen(vec3 view_pos, out float w) {
|
|
vec4 projected = scene_data.projection[params.view_index] * vec4(view_pos, 1.0);
|
|
projected.xyz /= projected.w;
|
|
projected.xy = projected.xy * 0.5 + 0.5;
|
|
w = projected.w;
|
|
return projected.xy;
|
|
}
|
|
|
|
#define M_PI 3.14159265359
|
|
|
|
void main() {
|
|
// Pixel being shaded
|
|
ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
|
|
|
|
if (any(greaterThanEqual(ssC.xy, params.screen_size))) { //too large, do nothing
|
|
return;
|
|
}
|
|
|
|
vec2 pixel_size = 1.0 / vec2(params.screen_size);
|
|
vec2 uv = vec2(ssC.xy) * pixel_size;
|
|
|
|
uv += pixel_size * 0.5;
|
|
|
|
float base_depth = imageLoad(source_depth, ssC).r;
|
|
|
|
// World space point being shaded
|
|
vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth);
|
|
|
|
vec4 normal_roughness = imageLoad(source_normal_roughness, ssC);
|
|
vec3 normal = normal_roughness.xyz * 2.0 - 1.0;
|
|
float roughness = normal_roughness.w;
|
|
|
|
// The roughness cutoff of 0.6 is chosen to match the roughness fadeout from GH-69828.
|
|
if (roughness > 0.6) {
|
|
// Do not compute SSR for rough materials to improve performance at the cost of
|
|
// subtle artifacting.
|
|
#ifdef MODE_ROUGH
|
|
imageStore(blur_radius_image, ssC, vec4(0.0));
|
|
#endif
|
|
imageStore(ssr_image, ssC, vec4(0.0));
|
|
return;
|
|
}
|
|
|
|
normal = normalize(normal);
|
|
normal.y = -normal.y; //because this code reads flipped
|
|
|
|
vec3 view_dir;
|
|
if (sc_multiview) {
|
|
view_dir = normalize(vertex + scene_data.eye_offset[params.view_index].xyz);
|
|
} else {
|
|
view_dir = normalize(vertex);
|
|
}
|
|
vec3 ray_dir = normalize(reflect(view_dir, normal));
|
|
|
|
if (dot(ray_dir, normal) < 0.001) {
|
|
imageStore(ssr_image, ssC, vec4(0.0));
|
|
return;
|
|
}
|
|
|
|
////////////////
|
|
|
|
// make ray length and clip it against the near plane (don't want to trace beyond visible)
|
|
float ray_len = (vertex.z + ray_dir.z * params.camera_z_far) > -params.camera_z_near ? (-params.camera_z_near - vertex.z) / ray_dir.z : params.camera_z_far;
|
|
vec3 ray_end = vertex + ray_dir * ray_len;
|
|
|
|
float w_begin;
|
|
vec2 vp_line_begin = view_to_screen(vertex, w_begin);
|
|
float w_end;
|
|
vec2 vp_line_end = view_to_screen(ray_end, w_end);
|
|
vec2 vp_line_dir = vp_line_end - vp_line_begin;
|
|
|
|
// we need to interpolate w along the ray, to generate perspective correct reflections
|
|
w_begin = 1.0 / w_begin;
|
|
w_end = 1.0 / w_end;
|
|
|
|
float z_begin = vertex.z * w_begin;
|
|
float z_end = ray_end.z * w_end;
|
|
|
|
vec2 line_begin = vp_line_begin / pixel_size;
|
|
vec2 line_dir = vp_line_dir / pixel_size;
|
|
float z_dir = z_end - z_begin;
|
|
float w_dir = w_end - w_begin;
|
|
|
|
// clip the line to the viewport edges
|
|
|
|
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
|
|
float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
|
|
float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
|
|
float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
|
|
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
|
|
line_dir *= line_clip;
|
|
z_dir *= line_clip;
|
|
w_dir *= line_clip;
|
|
|
|
// clip z and w advance to line advance
|
|
vec2 line_advance = normalize(line_dir); // down to pixel
|
|
float step_size = 1.0 / length(line_dir);
|
|
float z_advance = z_dir * step_size; // adapt z advance to line advance
|
|
float w_advance = w_dir * step_size; // adapt w advance to line advance
|
|
|
|
// make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
|
|
float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
|
|
line_advance *= advance_angle_adj; // adapt z advance to line advance
|
|
z_advance *= advance_angle_adj;
|
|
w_advance *= advance_angle_adj;
|
|
|
|
vec2 pos = line_begin;
|
|
float z = z_begin;
|
|
float w = w_begin;
|
|
float z_from = z / w;
|
|
float z_to = z_from;
|
|
float depth;
|
|
vec2 prev_pos = pos;
|
|
|
|
if (ivec2(pos + line_advance - 0.5) == ssC) {
|
|
// It is possible for rounding to cause our first pixel to check to be the pixel we're reflecting.
|
|
// Make sure we skip it
|
|
pos += line_advance;
|
|
z += z_advance;
|
|
w += w_advance;
|
|
}
|
|
|
|
bool found = false;
|
|
|
|
float steps_taken = 0.0;
|
|
|
|
for (int i = 0; i < params.num_steps; i++) {
|
|
pos += line_advance;
|
|
z += z_advance;
|
|
w += w_advance;
|
|
|
|
// convert to linear depth
|
|
ivec2 test_pos = ivec2(pos - 0.5);
|
|
depth = imageLoad(source_depth, test_pos).r;
|
|
if (sc_multiview) {
|
|
depth = depth * 2.0 - 1.0;
|
|
depth = 2.0 * params.camera_z_near * params.camera_z_far / (params.camera_z_far + params.camera_z_near - depth * (params.camera_z_far - params.camera_z_near));
|
|
depth = -depth;
|
|
}
|
|
|
|
z_from = z_to;
|
|
z_to = z / w;
|
|
|
|
if (depth > z_to) {
|
|
// Test if our ray is hitting the "right" side of the surface, if not we're likely self reflecting and should skip.
|
|
vec4 test_normal_roughness = imageLoad(source_normal_roughness, test_pos);
|
|
vec3 test_normal = test_normal_roughness.xyz * 2.0 - 1.0;
|
|
test_normal = normalize(test_normal);
|
|
test_normal.y = -test_normal.y; //because this code reads flipped
|
|
|
|
if (dot(ray_dir, test_normal) < 0.001) {
|
|
// if depth was surpassed
|
|
if (depth <= max(z_to, z_from) + params.depth_tolerance && -depth < params.camera_z_far * 0.95) {
|
|
// check the depth tolerance and far clip
|
|
// check that normal is valid
|
|
found = true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
steps_taken += 1.0;
|
|
prev_pos = pos;
|
|
}
|
|
|
|
if (found) {
|
|
float margin_blend = 1.0;
|
|
|
|
vec2 margin = vec2((params.screen_size.x + params.screen_size.y) * 0.05); // make a uniform margin
|
|
if (any(bvec4(lessThan(pos, vec2(0.0, 0.0)), greaterThan(pos, params.screen_size)))) {
|
|
// clip at the screen edges
|
|
imageStore(ssr_image, ssC, vec4(0.0));
|
|
return;
|
|
}
|
|
|
|
{
|
|
//blend fading out towards inner margin
|
|
// 0.5 = midpoint of reflection
|
|
vec2 margin_grad = mix(params.screen_size - pos, pos, lessThan(pos, params.screen_size * 0.5));
|
|
margin_blend = smoothstep(0.0, margin.x * margin.y, margin_grad.x * margin_grad.y);
|
|
//margin_blend = 1.0;
|
|
}
|
|
|
|
vec2 final_pos;
|
|
float grad = (steps_taken + 1.0) / float(params.num_steps);
|
|
float initial_fade = params.curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), params.curve_fade_in);
|
|
float fade = pow(clamp(1.0 - grad, 0.0, 1.0), params.distance_fade) * initial_fade;
|
|
// This is an ad-hoc term to fade out the SSR as roughness increases. Values used
|
|
// are meant to match the visual appearance of a ReflectionProbe.
|
|
float roughness_fade = smoothstep(0.4, 0.7, 1.0 - normal_roughness.w);
|
|
final_pos = pos;
|
|
|
|
vec4 final_color;
|
|
|
|
#ifdef MODE_ROUGH
|
|
|
|
// if roughness is enabled, do screen space cone tracing
|
|
float blur_radius = 0.0;
|
|
|
|
if (roughness > 0.001) {
|
|
float cone_angle = min(roughness, 0.999) * M_PI * 0.5;
|
|
float cone_len = length(final_pos - line_begin);
|
|
float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
|
|
{
|
|
// fit to sphere inside cone (sphere ends at end of cone), something like this:
|
|
// ___
|
|
// \O/
|
|
// V
|
|
//
|
|
// as it avoids bleeding from beyond the reflection as much as possible. As a plus
|
|
// it also makes the rough reflection more elongated.
|
|
float a = op_len;
|
|
float h = cone_len;
|
|
float a2 = a * a;
|
|
float fh2 = 4.0f * h * h;
|
|
blur_radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
|
|
}
|
|
}
|
|
|
|
imageStore(blur_radius_image, ssC, vec4(blur_radius / 255.0)); //stored in r8
|
|
|
|
#endif // MODE_ROUGH
|
|
|
|
final_color = vec4(imageLoad(source_diffuse, ivec2(final_pos - 0.5)).rgb, fade * margin_blend * roughness_fade);
|
|
|
|
// Schlick term.
|
|
float metallic = texelFetch(source_metallic, ssC << 1, 0).w;
|
|
// F0 is the reflectance of normally incident light (perpendicular to the surface).
|
|
// Dielectric materials have a widely accepted default value of 0.04. We assume that metals reflect all light, so their F0 is 1.0.
|
|
float f0 = mix(0.04, 1.0, metallic);
|
|
float m = clamp(1.0 - dot(normal, -view_dir), 0.0, 1.0);
|
|
float m2 = m * m;
|
|
m = m2 * m2 * m; // pow(m,5)
|
|
final_color.a *= f0 + (1.0 - f0) * m; // Fresnel Schlick term.
|
|
|
|
imageStore(ssr_image, ssC, final_color);
|
|
|
|
} else {
|
|
#ifdef MODE_ROUGH
|
|
imageStore(blur_radius_image, ssC, vec4(0.0));
|
|
#endif
|
|
imageStore(ssr_image, ssC, vec4(0.0));
|
|
}
|
|
}
|