502 lines
12 KiB
Common Lisp
502 lines
12 KiB
Common Lisp
/*
|
|
Copyright (c) 2012 Advanced Micro Devices, Inc.
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
//Originally written by Takahiro Harada
|
|
|
|
|
|
//#pragma OPENCL EXTENSION cl_amd_printf : enable
|
|
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
|
|
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
|
|
#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable
|
|
#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable
|
|
|
|
|
|
#ifdef cl_ext_atomic_counters_32
|
|
#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable
|
|
#else
|
|
#define counter32_t volatile global int*
|
|
#endif
|
|
|
|
typedef unsigned int u32;
|
|
typedef unsigned short u16;
|
|
typedef unsigned char u8;
|
|
|
|
#define GET_GROUP_IDX get_group_id(0)
|
|
#define GET_LOCAL_IDX get_local_id(0)
|
|
#define GET_GLOBAL_IDX get_global_id(0)
|
|
#define GET_GROUP_SIZE get_local_size(0)
|
|
#define GET_NUM_GROUPS get_num_groups(0)
|
|
#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)
|
|
#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)
|
|
#define AtomInc(x) atom_inc(&(x))
|
|
#define AtomInc1(x, out) out = atom_inc(&(x))
|
|
#define AppendInc(x, out) out = atomic_inc(x)
|
|
#define AtomAdd(x, value) atom_add(&(x), value)
|
|
#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )
|
|
#define AtomXhg(x, value) atom_xchg ( &(x), value )
|
|
|
|
|
|
#define SELECT_UINT4( b, a, condition ) select( b,a,condition )
|
|
|
|
#define mymake_float4 (float4)
|
|
//#define make_float2 (float2)
|
|
//#define make_uint4 (uint4)
|
|
//#define make_int4 (int4)
|
|
//#define make_uint2 (uint2)
|
|
//#define make_int2 (int2)
|
|
|
|
|
|
#define max2 max
|
|
#define min2 min
|
|
|
|
|
|
///////////////////////////////////////
|
|
// Vector
|
|
///////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
__inline
|
|
float4 fastNormalize4(float4 v)
|
|
{
|
|
return fast_normalize(v);
|
|
}
|
|
|
|
|
|
|
|
__inline
|
|
float4 cross3(float4 a, float4 b)
|
|
{
|
|
return cross(a,b);
|
|
}
|
|
|
|
__inline
|
|
float dot3F4(float4 a, float4 b)
|
|
{
|
|
float4 a1 = mymake_float4(a.xyz,0.f);
|
|
float4 b1 = mymake_float4(b.xyz,0.f);
|
|
return dot(a1, b1);
|
|
}
|
|
|
|
|
|
|
|
|
|
__inline
|
|
float4 normalize3(const float4 a)
|
|
{
|
|
float4 n = mymake_float4(a.x, a.y, a.z, 0.f);
|
|
return fastNormalize4( n );
|
|
// float length = sqrtf(dot3F4(a, a));
|
|
// return 1.f/length * a;
|
|
}
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////
|
|
// Matrix3x3
|
|
///////////////////////////////////////
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_row[3];
|
|
}Matrix3x3;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__inline
|
|
float4 mtMul1(Matrix3x3 a, float4 b);
|
|
|
|
__inline
|
|
float4 mtMul3(float4 a, Matrix3x3 b);
|
|
|
|
|
|
|
|
|
|
__inline
|
|
float4 mtMul1(Matrix3x3 a, float4 b)
|
|
{
|
|
float4 ans;
|
|
ans.x = dot3F4( a.m_row[0], b );
|
|
ans.y = dot3F4( a.m_row[1], b );
|
|
ans.z = dot3F4( a.m_row[2], b );
|
|
ans.w = 0.f;
|
|
return ans;
|
|
}
|
|
|
|
__inline
|
|
float4 mtMul3(float4 a, Matrix3x3 b)
|
|
{
|
|
float4 colx = mymake_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);
|
|
float4 coly = mymake_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);
|
|
float4 colz = mymake_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);
|
|
|
|
float4 ans;
|
|
ans.x = dot3F4( a, colx );
|
|
ans.y = dot3F4( a, coly );
|
|
ans.z = dot3F4( a, colz );
|
|
return ans;
|
|
}
|
|
|
|
///////////////////////////////////////
|
|
// Quaternion
|
|
///////////////////////////////////////
|
|
|
|
typedef float4 Quaternion;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define WG_SIZE 64
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_pos;
|
|
Quaternion m_quat;
|
|
float4 m_linVel;
|
|
float4 m_angVel;
|
|
|
|
u32 m_shapeIdx;
|
|
float m_invMass;
|
|
float m_restituitionCoeff;
|
|
float m_frictionCoeff;
|
|
} Body;
|
|
|
|
typedef struct
|
|
{
|
|
Matrix3x3 m_invInertia;
|
|
Matrix3x3 m_initInvInertia;
|
|
} Shape;
|
|
|
|
typedef struct
|
|
{
|
|
float4 m_linear;
|
|
float4 m_worldPos[4];
|
|
float4 m_center;
|
|
float m_jacCoeffInv[4];
|
|
float m_b[4];
|
|
float m_appliedRambdaDt[4];
|
|
|
|
float m_fJacCoeffInv[2];
|
|
float m_fAppliedRambdaDt[2];
|
|
|
|
u32 m_bodyA;
|
|
u32 m_bodyB;
|
|
|
|
int m_batchIdx;
|
|
u32 m_paddings[1];
|
|
} Constraint4;
|
|
|
|
|
|
|
|
typedef struct
|
|
{
|
|
int m_nConstraints;
|
|
int m_start;
|
|
int m_batchIdx;
|
|
int m_nSplit;
|
|
// int m_paddings[1];
|
|
} ConstBuffer;
|
|
|
|
typedef struct
|
|
{
|
|
int m_solveFriction;
|
|
int m_maxBatch; // long batch really kills the performance
|
|
int m_batchIdx;
|
|
int m_nSplit;
|
|
// int m_paddings[1];
|
|
} ConstBufferBatchSolve;
|
|
|
|
void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1);
|
|
|
|
void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1)
|
|
{
|
|
*linear = mymake_float4(-n.xyz,0.f);
|
|
*angular0 = -cross3(r0, n);
|
|
*angular1 = cross3(r1, n);
|
|
}
|
|
|
|
float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 );
|
|
|
|
float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 )
|
|
{
|
|
return dot3F4(l0, linVel0) + dot3F4(a0, angVel0) + dot3F4(l1, linVel1) + dot3F4(a1, angVel1);
|
|
}
|
|
|
|
|
|
float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1,
|
|
float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1);
|
|
|
|
float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1,
|
|
float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1)
|
|
{
|
|
// linear0,1 are normlized
|
|
float jmj0 = invMass0;//dot3F4(linear0, linear0)*invMass0;
|
|
float jmj1 = dot3F4(mtMul3(angular0,*invInertia0), angular0);
|
|
float jmj2 = invMass1;//dot3F4(linear1, linear1)*invMass1;
|
|
float jmj3 = dot3F4(mtMul3(angular1,*invInertia1), angular1);
|
|
return -1.f/(jmj0+jmj1+jmj2+jmj3);
|
|
}
|
|
|
|
|
|
void solveContact(__global Constraint4* cs,
|
|
float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA,
|
|
float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB);
|
|
|
|
void solveContact(__global Constraint4* cs,
|
|
float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA,
|
|
float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB)
|
|
{
|
|
float minRambdaDt = 0;
|
|
float maxRambdaDt = FLT_MAX;
|
|
|
|
for(int ic=0; ic<4; ic++)
|
|
{
|
|
if( cs->m_jacCoeffInv[ic] == 0.f ) continue;
|
|
|
|
float4 angular0, angular1, linear;
|
|
float4 r0 = cs->m_worldPos[ic] - posA;
|
|
float4 r1 = cs->m_worldPos[ic] - posB;
|
|
setLinearAndAngular( -cs->m_linear, r0, r1, &linear, &angular0, &angular1 );
|
|
|
|
float rambdaDt = calcRelVel( cs->m_linear, -cs->m_linear, angular0, angular1,
|
|
*linVelA, *angVelA, *linVelB, *angVelB ) + cs->m_b[ic];
|
|
rambdaDt *= cs->m_jacCoeffInv[ic];
|
|
|
|
{
|
|
float prevSum = cs->m_appliedRambdaDt[ic];
|
|
float updated = prevSum;
|
|
updated += rambdaDt;
|
|
updated = max2( updated, minRambdaDt );
|
|
updated = min2( updated, maxRambdaDt );
|
|
rambdaDt = updated - prevSum;
|
|
cs->m_appliedRambdaDt[ic] = updated;
|
|
}
|
|
|
|
float4 linImp0 = invMassA*linear*rambdaDt;
|
|
float4 linImp1 = invMassB*(-linear)*rambdaDt;
|
|
float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt;
|
|
float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt;
|
|
|
|
*linVelA += linImp0;
|
|
*angVelA += angImp0;
|
|
*linVelB += linImp1;
|
|
*angVelB += angImp1;
|
|
}
|
|
}
|
|
|
|
void btPlaneSpace1 (const float4* n, float4* p, float4* q);
|
|
void btPlaneSpace1 (const float4* n, float4* p, float4* q)
|
|
{
|
|
if (fabs(n[0].z) > 0.70710678f) {
|
|
// choose p in y-z plane
|
|
float a = n[0].y*n[0].y + n[0].z*n[0].z;
|
|
float k = 1.f/sqrt(a);
|
|
p[0].x = 0;
|
|
p[0].y = -n[0].z*k;
|
|
p[0].z = n[0].y*k;
|
|
// set q = n x p
|
|
q[0].x = a*k;
|
|
q[0].y = -n[0].x*p[0].z;
|
|
q[0].z = n[0].x*p[0].y;
|
|
}
|
|
else {
|
|
// choose p in x-y plane
|
|
float a = n[0].x*n[0].x + n[0].y*n[0].y;
|
|
float k = 1.f/sqrt(a);
|
|
p[0].x = -n[0].y*k;
|
|
p[0].y = n[0].x*k;
|
|
p[0].z = 0;
|
|
// set q = n x p
|
|
q[0].x = -n[0].z*p[0].y;
|
|
q[0].y = n[0].z*p[0].x;
|
|
q[0].z = a*k;
|
|
}
|
|
}
|
|
|
|
void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs);
|
|
void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs)
|
|
{
|
|
//float frictionCoeff = ldsCs[0].m_linear.w;
|
|
int aIdx = ldsCs[0].m_bodyA;
|
|
int bIdx = ldsCs[0].m_bodyB;
|
|
|
|
float4 posA = gBodies[aIdx].m_pos;
|
|
float4 linVelA = gBodies[aIdx].m_linVel;
|
|
float4 angVelA = gBodies[aIdx].m_angVel;
|
|
float invMassA = gBodies[aIdx].m_invMass;
|
|
Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia;
|
|
|
|
float4 posB = gBodies[bIdx].m_pos;
|
|
float4 linVelB = gBodies[bIdx].m_linVel;
|
|
float4 angVelB = gBodies[bIdx].m_angVel;
|
|
float invMassB = gBodies[bIdx].m_invMass;
|
|
Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia;
|
|
|
|
solveContact( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA,
|
|
posB, &linVelB, &angVelB, invMassB, invInertiaB );
|
|
|
|
if (gBodies[aIdx].m_invMass)
|
|
{
|
|
gBodies[aIdx].m_linVel = linVelA;
|
|
gBodies[aIdx].m_angVel = angVelA;
|
|
} else
|
|
{
|
|
gBodies[aIdx].m_linVel = mymake_float4(0,0,0,0);
|
|
gBodies[aIdx].m_angVel = mymake_float4(0,0,0,0);
|
|
|
|
}
|
|
if (gBodies[bIdx].m_invMass)
|
|
{
|
|
gBodies[bIdx].m_linVel = linVelB;
|
|
gBodies[bIdx].m_angVel = angVelB;
|
|
} else
|
|
{
|
|
gBodies[bIdx].m_linVel = mymake_float4(0,0,0,0);
|
|
gBodies[bIdx].m_angVel = mymake_float4(0,0,0,0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct
|
|
{
|
|
int m_valInt0;
|
|
int m_valInt1;
|
|
int m_valInt2;
|
|
int m_valInt3;
|
|
|
|
float m_val0;
|
|
float m_val1;
|
|
float m_val2;
|
|
float m_val3;
|
|
} SolverDebugInfo;
|
|
|
|
|
|
|
|
|
|
__kernel
|
|
__attribute__((reqd_work_group_size(WG_SIZE,1,1)))
|
|
void BatchSolveKernelContact(__global Body* gBodies,
|
|
__global Shape* gShapes,
|
|
__global Constraint4* gConstraints,
|
|
__global int* gN,
|
|
__global int* gOffsets,
|
|
__global int* batchSizes,
|
|
int maxBatch1,
|
|
int cellBatch,
|
|
int4 nSplit
|
|
)
|
|
{
|
|
//__local int ldsBatchIdx[WG_SIZE+1];
|
|
__local int ldsCurBatch;
|
|
__local int ldsNextBatch;
|
|
__local int ldsStart;
|
|
|
|
int lIdx = GET_LOCAL_IDX;
|
|
int wgIdx = GET_GROUP_IDX;
|
|
|
|
// int gIdx = GET_GLOBAL_IDX;
|
|
// debugInfo[gIdx].m_valInt0 = gIdx;
|
|
//debugInfo[gIdx].m_valInt1 = GET_GROUP_SIZE;
|
|
|
|
|
|
|
|
|
|
int zIdx = (wgIdx/((nSplit.x*nSplit.y)/4))*2+((cellBatch&4)>>2);
|
|
int remain= (wgIdx%((nSplit.x*nSplit.y)/4));
|
|
int yIdx = (remain/(nSplit.x/2))*2 + ((cellBatch&2)>>1);
|
|
int xIdx = (remain%(nSplit.x/2))*2 + (cellBatch&1);
|
|
int cellIdx = xIdx+yIdx*nSplit.x+zIdx*(nSplit.x*nSplit.y);
|
|
|
|
//int xIdx = (wgIdx/(nSplit/2))*2 + (bIdx&1);
|
|
//int yIdx = (wgIdx%(nSplit/2))*2 + (bIdx>>1);
|
|
//int cellIdx = xIdx+yIdx*nSplit;
|
|
|
|
if( gN[cellIdx] == 0 )
|
|
return;
|
|
|
|
int maxBatch = batchSizes[cellIdx];
|
|
|
|
|
|
const int start = gOffsets[cellIdx];
|
|
const int end = start + gN[cellIdx];
|
|
|
|
|
|
|
|
|
|
if( lIdx == 0 )
|
|
{
|
|
ldsCurBatch = 0;
|
|
ldsNextBatch = 0;
|
|
ldsStart = start;
|
|
}
|
|
|
|
|
|
GROUP_LDS_BARRIER;
|
|
|
|
int idx=ldsStart+lIdx;
|
|
while (ldsCurBatch < maxBatch)
|
|
{
|
|
for(; idx<end; )
|
|
{
|
|
if (gConstraints[idx].m_batchIdx == ldsCurBatch)
|
|
{
|
|
solveContactConstraint( gBodies, gShapes, &gConstraints[idx] );
|
|
|
|
idx+=64;
|
|
} else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
GROUP_LDS_BARRIER;
|
|
|
|
if( lIdx == 0 )
|
|
{
|
|
ldsCurBatch++;
|
|
}
|
|
GROUP_LDS_BARRIER;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
__kernel void solveSingleContactKernel(__global Body* gBodies,
|
|
__global Shape* gShapes,
|
|
__global Constraint4* gConstraints,
|
|
int cellIdx,
|
|
int batchOffset,
|
|
int numConstraintsInBatch
|
|
)
|
|
{
|
|
|
|
int index = get_global_id(0);
|
|
if (index < numConstraintsInBatch)
|
|
{
|
|
int idx=batchOffset+index;
|
|
solveContactConstraint( gBodies, gShapes, &gConstraints[idx] );
|
|
}
|
|
}
|