godot/drivers/gles3/shaders/canvas.glsl
clayjohn b6a1aa15b1 Use instanced array buffer instead of UBO for canvas item batching
This simplifies the generated shader code which increases both performance and compile time on low end devices
2022-12-15 08:25:44 -08:00

786 lines
24 KiB
GLSL

/* clang-format off */
#[modes]
mode_quad =
mode_ninepatch = #define USE_NINEPATCH
mode_primitive = #define USE_PRIMITIVE
mode_attributes = #define USE_ATTRIBUTES
mode_instanced = #define USE_ATTRIBUTES \n#define USE_INSTANCING
#[specializations]
DISABLE_LIGHTING = false
USE_RGBA_SHADOWS = false
SINGLE_INSTANCE = false
#[vertex]
#ifdef USE_ATTRIBUTES
layout(location = 0) in vec2 vertex_attrib;
layout(location = 3) in vec4 color_attrib;
layout(location = 4) in vec2 uv_attrib;
#ifdef USE_INSTANCING
layout(location = 1) in highp vec4 instance_xform0;
layout(location = 2) in highp vec4 instance_xform1;
layout(location = 5) in highp uvec4 instance_color_custom_data; // Color packed into xy, custom_data packed into zw for compatibility with 3D
#endif // USE_INSTANCING
#endif // USE_ATTRIBUTES
#include "stdlib_inc.glsl"
layout(location = 6) in highp vec4 attrib_A;
layout(location = 7) in highp vec4 attrib_B;
layout(location = 8) in highp vec4 attrib_C;
layout(location = 9) in highp vec4 attrib_D;
layout(location = 10) in highp vec4 attrib_E;
#ifdef USE_PRIMITIVE
layout(location = 11) in highp uvec4 attrib_F;
#else
layout(location = 11) in highp vec4 attrib_F;
#endif
layout(location = 12) in highp uvec4 attrib_G;
layout(location = 13) in highp uvec4 attrib_H;
#define read_draw_data_world_x attrib_A.xy
#define read_draw_data_world_y attrib_A.zw
#define read_draw_data_world_ofs attrib_B.xy
#define read_draw_data_color_texture_pixel_size attrib_B.zw
#ifdef USE_PRIMITIVE
#define read_draw_data_point_a attrib_C.xy
#define read_draw_data_point_b attrib_C.zw
#define read_draw_data_point_c attrib_D.xy
#define read_draw_data_uv_a attrib_D.zw
#define read_draw_data_uv_b attrib_E.xy
#define read_draw_data_uv_c attrib_E.zw
#define read_draw_data_color_a_rg attrib_F.x
#define read_draw_data_color_a_ba attrib_F.y
#define read_draw_data_color_b_rg attrib_F.z
#define read_draw_data_color_b_ba attrib_F.w
#define read_draw_data_color_c_rg attrib_G.x
#define read_draw_data_color_c_ba attrib_G.y
#else
#define read_draw_data_modulation attrib_C
#define read_draw_data_ninepatch_margins attrib_D
#define read_draw_data_dst_rect attrib_E
#define read_draw_data_src_rect attrib_F
#endif
#define read_draw_data_flags attrib_G.z
#define read_draw_data_specular_shininess attrib_G.w
#define read_draw_data_lights attrib_H
// Varyings so the per-instance info can be used in the fragment shader
flat out vec4 varying_A;
flat out vec2 varying_B;
#ifndef USE_PRIMITIVE
flat out vec4 varying_C;
#ifndef USE_ATTRIBUTES
#ifdef USE_NINEPATCH
flat out vec2 varying_D;
#endif
flat out vec4 varying_E;
#endif
#endif
flat out uvec2 varying_F;
flat out uvec4 varying_G;
// This needs to be outside clang-format so the ubo comment is in the right place
#ifdef MATERIAL_UNIFORMS_USED
layout(std140) uniform MaterialUniforms{ //ubo:4
#MATERIAL_UNIFORMS
};
#endif
/* clang-format on */
#include "canvas_uniforms_inc.glsl"
out vec2 uv_interp;
out vec4 color_interp;
out vec2 vertex_interp;
#ifdef USE_NINEPATCH
out vec2 pixel_size_interp;
#endif
#GLOBALS
void main() {
varying_A = vec4(read_draw_data_world_x, read_draw_data_world_y);
varying_B = read_draw_data_color_texture_pixel_size;
#ifndef USE_PRIMITIVE
varying_C = read_draw_data_ninepatch_margins;
#ifndef USE_ATTRIBUTES
#ifdef USE_NINEPATCH
varying_D = vec2(read_draw_data_dst_rect.z, read_draw_data_dst_rect.w);
#endif // USE_NINEPATCH
varying_E = read_draw_data_src_rect;
#endif // !USE_ATTRIBUTES
#endif // USE_PRIMITIVE
varying_F = uvec2(read_draw_data_flags, read_draw_data_specular_shininess);
varying_G = read_draw_data_lights;
vec4 instance_custom = vec4(0.0);
#ifdef USE_PRIMITIVE
vec2 vertex;
vec2 uv;
vec4 color;
if (gl_VertexID % 3 == 0) {
vertex = read_draw_data_point_a;
uv = read_draw_data_uv_a;
color = vec4(unpackHalf2x16(read_draw_data_color_a_rg), unpackHalf2x16(read_draw_data_color_a_ba));
} else if (gl_VertexID % 3 == 1) {
vertex = read_draw_data_point_b;
uv = read_draw_data_uv_b;
color = vec4(unpackHalf2x16(read_draw_data_color_b_rg), unpackHalf2x16(read_draw_data_color_b_ba));
} else {
vertex = read_draw_data_point_c;
uv = read_draw_data_uv_c;
color = vec4(unpackHalf2x16(read_draw_data_color_c_rg), unpackHalf2x16(read_draw_data_color_c_ba));
}
#elif defined(USE_ATTRIBUTES)
vec2 vertex = vertex_attrib;
vec4 color = color_attrib * read_draw_data_modulation;
vec2 uv = uv_attrib;
#ifdef USE_INSTANCING
vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y));
color *= instance_color;
instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w));
#endif
#else
vec2 vertex_base_arr[6] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0), vec2(0.0, 0.0), vec2(1.0, 1.0));
vec2 vertex_base = vertex_base_arr[gl_VertexID % 6];
vec2 uv = read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw) * ((read_draw_data_flags & FLAGS_TRANSPOSE_RECT) != uint(0) ? vertex_base.yx : vertex_base.xy);
vec4 color = read_draw_data_modulation;
vec2 vertex = read_draw_data_dst_rect.xy + abs(read_draw_data_dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(read_draw_data_src_rect.zw, vec2(0.0, 0.0)));
#endif
mat4 model_matrix = mat4(vec4(read_draw_data_world_x, 0.0, 0.0), vec4(read_draw_data_world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(read_draw_data_world_ofs, 0.0, 1.0));
#ifdef USE_INSTANCING
model_matrix = model_matrix * transpose(mat4(instance_xform0, instance_xform1, vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)));
#endif // USE_INSTANCING
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
if (bool(read_draw_data_flags & FLAGS_USING_PARTICLES)) {
//scale by texture size
vertex /= read_draw_data_color_texture_pixel_size;
}
#endif
vec2 color_texture_pixel_size = read_draw_data_color_texture_pixel_size;
#ifdef USE_POINT_SIZE
float point_size = 1.0;
#endif
{
#CODE : VERTEX
}
#ifdef USE_NINEPATCH
pixel_size_interp = abs(read_draw_data_dst_rect.zw) * vertex_base;
#endif
#if !defined(SKIP_TRANSFORM_USED)
vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
#endif
color_interp = color;
if (use_pixel_snap) {
vertex = floor(vertex + 0.5);
// precision issue on some hardware creates artifacts within texture
// offset uv by a small amount to avoid
uv += 1e-5;
}
vertex = (canvas_transform * vec4(vertex, 0.0, 1.0)).xy;
vertex_interp = vertex;
uv_interp = uv;
gl_Position = screen_transform * vec4(vertex, 0.0, 1.0);
#ifdef USE_POINT_SIZE
gl_PointSize = point_size;
#endif
}
#[fragment]
#include "canvas_uniforms_inc.glsl"
#include "stdlib_inc.glsl"
in vec2 uv_interp;
in vec2 vertex_interp;
in vec4 color_interp;
#ifdef USE_NINEPATCH
in vec2 pixel_size_interp;
#endif
// Can all be flat as they are the same for the whole batched instance
flat in vec4 varying_A;
flat in vec2 varying_B;
#define read_draw_data_world_x varying_A.xy
#define read_draw_data_world_y varying_A.zw
#define read_draw_data_color_texture_pixel_size varying_B
#ifndef USE_PRIMITIVE
flat in vec4 varying_C;
#define read_draw_data_ninepatch_margins varying_C
#ifndef USE_ATTRIBUTES
#ifdef USE_NINEPATCH
flat in vec2 varying_D;
#define read_draw_data_dst_rect_z varying_D.x
#define read_draw_data_dst_rect_w varying_D.y
#endif
flat in vec4 varying_E;
#define read_draw_data_src_rect varying_E
#endif // USE_ATTRIBUTES
#endif // USE_PRIMITIVE
flat in uvec2 varying_F;
flat in uvec4 varying_G;
#define read_draw_data_flags varying_F.x
#define read_draw_data_specular_shininess varying_F.y
#define read_draw_data_lights varying_G
#ifndef DISABLE_LIGHTING
uniform sampler2D atlas_texture; //texunit:-2
uniform sampler2D shadow_atlas_texture; //texunit:-3
#endif // DISABLE_LIGHTING
uniform sampler2D screen_texture; //texunit:-4
uniform sampler2D sdf_texture; //texunit:-5
uniform sampler2D normal_texture; //texunit:-6
uniform sampler2D specular_texture; //texunit:-7
uniform sampler2D color_texture; //texunit:0
layout(location = 0) out vec4 frag_color;
#ifdef MATERIAL_UNIFORMS_USED
layout(std140) uniform MaterialUniforms{
//ubo:4
#MATERIAL_UNIFORMS
};
#endif
#GLOBALS
float vec4_to_float(vec4 p_vec) {
return dot(p_vec, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0;
}
vec2 screen_uv_to_sdf(vec2 p_uv) {
return screen_to_sdf * p_uv;
}
float texture_sdf(vec2 p_sdf) {
vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw;
float d = vec4_to_float(texture(sdf_texture, uv));
d *= SDF_MAX_LENGTH;
return d * tex_to_sdf;
}
vec2 texture_sdf_normal(vec2 p_sdf) {
vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw;
const float EPSILON = 0.001;
return normalize(vec2(
vec4_to_float(texture(sdf_texture, uv + vec2(EPSILON, 0.0))) - vec4_to_float(texture(sdf_texture, uv - vec2(EPSILON, 0.0))),
vec4_to_float(texture(sdf_texture, uv + vec2(0.0, EPSILON))) - vec4_to_float(texture(sdf_texture, uv - vec2(0.0, EPSILON)))));
}
vec2 sdf_to_screen_uv(vec2 p_sdf) {
return p_sdf * sdf_to_screen;
}
#ifndef DISABLE_LIGHTING
#ifdef LIGHT_CODE_USED
vec4 light_compute(
vec3 light_vertex,
vec3 light_position,
vec3 normal,
vec4 light_color,
float light_energy,
vec4 specular_shininess,
inout vec4 shadow_modulate,
vec2 screen_uv,
vec2 uv,
vec4 color, bool is_directional) {
vec4 light = vec4(0.0);
vec3 light_direction = vec3(0.0);
if (is_directional) {
light_direction = normalize(mix(vec3(light_position.xy, 0.0), vec3(0, 0, 1), light_position.z));
light_position = vec3(0.0);
} else {
light_direction = normalize(light_position - light_vertex);
}
#CODE : LIGHT
return light;
}
#endif
vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) {
float cNdotL = max(0.0, dot(normal, light_vec));
if (specular_shininess_used) {
//blinn
vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough
vec3 half_vec = normalize(view + light_vec);
float cNdotV = max(dot(normal, view), 0.0);
float cNdotH = max(dot(normal, half_vec), 0.0);
float cVdotH = max(dot(view, half_vec), 0.0);
float cLdotH = max(dot(light_vec, half_vec), 0.0);
float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL;
} else {
return light_color * base_color * cNdotL;
}
}
#ifdef USE_RGBA_SHADOWS
#define SHADOW_DEPTH(m_uv) (dot(textureLod(shadow_atlas_texture, (m_uv), 0.0), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0)
#else
#define SHADOW_DEPTH(m_uv) (textureLod(shadow_atlas_texture, (m_uv), 0.0).r)
#endif
/* clang-format off */
#define SHADOW_TEST(m_uv) { highp float sd = SHADOW_DEPTH(m_uv); shadow += step(sd, shadow_uv.z / shadow_uv.w); }
/* clang-format on */
//float distance = length(shadow_pos);
vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
#ifdef LIGHT_CODE_USED
,
vec3 shadow_modulate
#endif
) {
float shadow = 0.0;
uint shadow_mode = light_array[light_base].flags & LIGHT_FLAGS_FILTER_MASK;
if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) {
SHADOW_TEST(shadow_uv.xy);
} else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) {
vec2 shadow_pixel_size = vec2(light_array[light_base].shadow_pixel_size, 0.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 2.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size);
SHADOW_TEST(shadow_uv.xy);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 2.0);
shadow /= 5.0;
} else { //PCF13
vec2 shadow_pixel_size = vec2(light_array[light_base].shadow_pixel_size, 0.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 6.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 5.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 4.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 3.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size * 2.0);
SHADOW_TEST(shadow_uv.xy - shadow_pixel_size);
SHADOW_TEST(shadow_uv.xy);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 2.0);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 3.0);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 4.0);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 5.0);
SHADOW_TEST(shadow_uv.xy + shadow_pixel_size * 6.0);
shadow /= 13.0;
}
vec4 shadow_color = godot_unpackUnorm4x8(light_array[light_base].shadow_color);
#ifdef LIGHT_CODE_USED
shadow_color.rgb *= shadow_modulate;
#endif
shadow_color.a *= light_color.a; //respect light alpha
return mix(light_color, shadow_color, shadow);
}
void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) {
uint blend_mode = light_array[light_base].flags & LIGHT_FLAGS_BLEND_MASK;
switch (blend_mode) {
case LIGHT_FLAGS_BLEND_MODE_ADD: {
color.rgb += light_color.rgb * light_color.a;
} break;
case LIGHT_FLAGS_BLEND_MODE_SUB: {
color.rgb -= light_color.rgb * light_color.a;
} break;
case LIGHT_FLAGS_BLEND_MODE_MIX: {
color.rgb = mix(color.rgb, light_color.rgb, light_color.a);
} break;
}
}
#endif
#ifdef USE_NINEPATCH
float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
float tex_size = 1.0 / tex_pixel_size;
if (pixel < margin_begin) {
return pixel * tex_pixel_size;
} else if (pixel >= draw_size - margin_end) {
return (tex_size - (draw_size - pixel)) * tex_pixel_size;
} else {
if (!bool(read_draw_data_flags & FLAGS_NINEPACH_DRAW_CENTER)) {
draw_center--;
}
// np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
if (np_repeat == 0) { // Stretch.
// Convert to ratio.
float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
// Scale to source texture.
return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
} else if (np_repeat == 1) { // Tile.
// Convert to offset.
float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
// Scale to source texture.
return (margin_begin + ofs) * tex_pixel_size;
} else if (np_repeat == 2) { // Tile Fit.
// Calculate scale.
float src_area = draw_size - margin_begin - margin_end;
float dst_area = tex_size - margin_begin - margin_end;
float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
// Convert to ratio.
float ratio = (pixel - margin_begin) / src_area;
ratio = mod(ratio * scale, 1.0);
// Scale to source texture.
return (margin_begin + ratio * dst_area) * tex_pixel_size;
} else { // Shouldn't happen, but silences compiler warning.
return 0.0;
}
}
}
#endif
float msdf_median(float r, float g, float b, float a) {
return min(max(min(r, g), min(max(r, g), b)), a);
}
void main() {
vec4 color = color_interp;
vec2 uv = uv_interp;
vec2 vertex = vertex_interp;
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
#ifdef USE_NINEPATCH
int draw_center = 2;
uv = vec2(
map_ninepatch_axis(pixel_size_interp.x, abs(read_draw_data_dst_rect_z), read_draw_data_color_texture_pixel_size.x, read_draw_data_ninepatch_margins.x, read_draw_data_ninepatch_margins.z, int(read_draw_data_flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center),
map_ninepatch_axis(pixel_size_interp.y, abs(read_draw_data_dst_rect_w), read_draw_data_color_texture_pixel_size.y, read_draw_data_ninepatch_margins.y, read_draw_data_ninepatch_margins.w, int(read_draw_data_flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center));
if (draw_center == 0) {
color.a = 0.0;
}
uv = uv * read_draw_data_src_rect.zw + read_draw_data_src_rect.xy; //apply region if needed
#endif
if (bool(read_draw_data_flags & FLAGS_CLIP_RECT_UV)) {
uv = clamp(uv, read_draw_data_src_rect.xy, read_draw_data_src_rect.xy + abs(read_draw_data_src_rect.zw));
}
#endif
#ifndef USE_PRIMITIVE
if (bool(read_draw_data_flags & FLAGS_USE_MSDF)) {
float px_range = read_draw_data_ninepatch_margins.x;
float outline_thickness = read_draw_data_ninepatch_margins.y;
vec4 msdf_sample = texture(color_texture, uv);
vec2 msdf_size = vec2(textureSize(color_texture, 0));
vec2 dest_size = vec2(1.0) / fwidth(uv);
float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
if (outline_thickness > 0.0) {
float cr = clamp(outline_thickness, 0.0, px_range / 2.0) / px_range;
float a = clamp((d + cr) * px_size, 0.0, 1.0);
color.a = a * color.a;
} else {
float a = clamp(d * px_size + 0.5, 0.0, 1.0);
color.a = a * color.a;
}
} else if (bool(read_draw_data_flags & FLAGS_USE_LCD)) {
vec4 lcd_sample = texture(color_texture, uv);
if (lcd_sample.a == 1.0) {
color.rgb = lcd_sample.rgb * color.a;
} else {
color = vec4(0.0, 0.0, 0.0, 0.0);
}
} else {
#else
{
#endif
color *= texture(color_texture, uv);
}
uint light_count = (read_draw_data_flags >> uint(FLAGS_LIGHT_COUNT_SHIFT)) & uint(0xF); //max 16 lights
bool using_light = light_count > 0u || directional_light_count > 0u;
vec3 normal;
#if defined(NORMAL_USED)
bool normal_used = true;
#else
bool normal_used = false;
#endif
if (normal_used || (using_light && bool(read_draw_data_flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) {
normal.xy = texture(normal_texture, uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0);
normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
normal_used = true;
} else {
normal = vec3(0.0, 0.0, 1.0);
}
vec4 specular_shininess;
#if defined(SPECULAR_SHININESS_USED)
bool specular_shininess_used = true;
#else
bool specular_shininess_used = false;
#endif
if (specular_shininess_used || (using_light && normal_used && bool(read_draw_data_flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) {
specular_shininess = texture(specular_texture, uv);
specular_shininess *= godot_unpackUnorm4x8(read_draw_data_specular_shininess);
specular_shininess_used = true;
} else {
specular_shininess = vec4(1.0);
}
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#else
vec2 screen_uv = vec2(0.0);
#endif
vec2 color_texture_pixel_size = read_draw_data_color_texture_pixel_size.xy;
vec3 light_vertex = vec3(vertex, 0.0);
vec2 shadow_vertex = vertex;
{
float normal_map_depth = 1.0;
#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.0, 0.0, 1.0);
normal_used = true;
#endif
#CODE : FRAGMENT
#if defined(NORMAL_MAP_USED)
normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
#endif
}
if (normal_used) {
//convert by item transform
normal.xy = mat2(normalize(read_draw_data_world_x), normalize(read_draw_data_world_y)) * normal.xy;
//convert by canvas transform
normal = normalize((canvas_normal_transform * vec4(normal, 0.0)).xyz);
}
vec4 base_color = color;
#ifdef MODE_LIGHT_ONLY
color = vec4(0.0);
#else
color *= canvas_modulation;
#endif
#if !defined(DISABLE_LIGHTING) && !defined(MODE_UNSHADED)
// Directional Lights
for (uint i = 0u; i < directional_light_count; i++) {
uint light_base = i;
vec2 direction = light_array[light_base].position;
vec4 light_color = light_array[light_base].color;
#ifdef LIGHT_CODE_USED
vec4 shadow_modulate = vec4(1.0);
light_color = light_compute(light_vertex, vec3(direction, light_array[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, true);
#else
if (normal_used) {
vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array[light_base].height));
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
} else {
light_color.rgb *= base_color.rgb;
}
#endif
if (bool(light_array[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array[light_base].shadow_matrix[0], light_array[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
vec4 shadow_uv = vec4(shadow_pos.x, light_array[light_base].shadow_y_ofs, shadow_pos.y * light_array[light_base].shadow_zfar_inv, 1.0);
light_color = light_shadow_compute(light_base, light_color, shadow_uv
#ifdef LIGHT_CODE_USED
,
shadow_modulate.rgb
#endif
);
}
light_blend_compute(light_base, light_color, color.rgb);
}
// Positional Lights
for (uint i = 0u; i < MAX_LIGHTS_PER_ITEM; i++) {
if (i >= light_count) {
break;
}
uint light_base;
if (i < 8u) {
if (i < 4u) {
light_base = read_draw_data_lights[0];
} else {
light_base = read_draw_data_lights[1];
}
} else {
if (i < 12u) {
light_base = read_draw_data_lights[2];
} else {
light_base = read_draw_data_lights[3];
}
}
light_base >>= (i & 3u) * 8u;
light_base &= uint(0xFF);
vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array[light_base].texture_matrix[0], light_array[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
vec2 tex_uv_atlas = tex_uv * light_array[light_base].atlas_rect.zw + light_array[light_base].atlas_rect.xy;
vec4 light_color = textureLod(atlas_texture, tex_uv_atlas, 0.0);
vec4 light_base_color = light_array[light_base].color;
#ifdef LIGHT_CODE_USED
vec4 shadow_modulate = vec4(1.0);
vec3 light_position = vec3(light_array[light_base].position, light_array[light_base].height);
light_color.rgb *= light_base_color.rgb;
light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, false);
#else
light_color.rgb *= light_base_color.rgb * light_base_color.a;
if (normal_used) {
vec3 light_pos = vec3(light_array[light_base].position, light_array[light_base].height);
vec3 pos = light_vertex;
vec3 light_vec = normalize(light_pos - pos);
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
} else {
light_color.rgb *= base_color.rgb;
}
#endif
if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) {
//if outside the light texture, light color is zero
light_color.a = 0.0;
}
if (bool(light_array[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array[light_base].shadow_matrix[0], light_array[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
vec2 pos_norm = normalize(shadow_pos);
vec2 pos_abs = abs(pos_norm);
vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y);
vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
float tex_ofs;
float dist;
if (pos_rot.y > 0.0) {
if (pos_rot.x > 0.0) {
tex_ofs = pos_box.y * 0.125 + 0.125;
dist = shadow_pos.x;
} else {
tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125);
dist = shadow_pos.y;
}
} else {
if (pos_rot.x < 0.0) {
tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
dist = -shadow_pos.x;
} else {
tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125);
dist = -shadow_pos.y;
}
}
dist *= light_array[light_base].shadow_zfar_inv;
//float distance = length(shadow_pos);
vec4 shadow_uv = vec4(tex_ofs, light_array[light_base].shadow_y_ofs, dist, 1.0);
light_color = light_shadow_compute(light_base, light_color, shadow_uv
#ifdef LIGHT_CODE_USED
,
shadow_modulate.rgb
#endif
);
}
light_blend_compute(light_base, light_color, color.rgb);
}
#endif
frag_color = color;
}