godot/thirdparty/libwebp/dsp/lossless_neon.c
2017-02-17 23:49:40 +09:00

643 lines
25 KiB
C

// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// NEON variant of methods for lossless decoder
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./dsp.h"
#if defined(WEBP_USE_NEON)
#include <arm_neon.h>
#include "./lossless.h"
#include "./neon.h"
//------------------------------------------------------------------------------
// Colorspace conversion functions
#if !defined(WORK_AROUND_GCC)
// gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for
// gcc-4.8.x at least.
static void ConvertBGRAToRGBA(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const end = src + (num_pixels & ~15);
for (; src < end; src += 16) {
uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
// swap B and R. (VSWP d0,d2 has no intrinsics equivalent!)
const uint8x16_t tmp = pixel.val[0];
pixel.val[0] = pixel.val[2];
pixel.val[2] = tmp;
vst4q_u8(dst, pixel);
dst += 64;
}
VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs
}
static void ConvertBGRAToBGR(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const end = src + (num_pixels & ~15);
for (; src < end; src += 16) {
const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } };
vst3q_u8(dst, tmp);
dst += 48;
}
VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs
}
static void ConvertBGRAToRGB(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const end = src + (num_pixels & ~15);
for (; src < end; src += 16) {
const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src);
const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } };
vst3q_u8(dst, tmp);
dst += 48;
}
VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs
}
#else // WORK_AROUND_GCC
// gcc-4.6.0 fallback
static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 };
static void ConvertBGRAToRGBA(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const end = src + (num_pixels & ~1);
const uint8x8_t shuffle = vld1_u8(kRGBAShuffle);
for (; src < end; src += 2) {
const uint8x8_t pixels = vld1_u8((uint8_t*)src);
vst1_u8(dst, vtbl1_u8(pixels, shuffle));
dst += 8;
}
VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs
}
static const uint8_t kBGRShuffle[3][8] = {
{ 0, 1, 2, 4, 5, 6, 8, 9 },
{ 10, 12, 13, 14, 16, 17, 18, 20 },
{ 21, 22, 24, 25, 26, 28, 29, 30 }
};
static void ConvertBGRAToBGR(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const end = src + (num_pixels & ~7);
const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]);
const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]);
const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]);
for (; src < end; src += 8) {
uint8x8x4_t pixels;
INIT_VECTOR4(pixels,
vld1_u8((const uint8_t*)(src + 0)),
vld1_u8((const uint8_t*)(src + 2)),
vld1_u8((const uint8_t*)(src + 4)),
vld1_u8((const uint8_t*)(src + 6)));
vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0));
vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1));
vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2));
dst += 8 * 3;
}
VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs
}
static const uint8_t kRGBShuffle[3][8] = {
{ 2, 1, 0, 6, 5, 4, 10, 9 },
{ 8, 14, 13, 12, 18, 17, 16, 22 },
{ 21, 20, 26, 25, 24, 30, 29, 28 }
};
static void ConvertBGRAToRGB(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const end = src + (num_pixels & ~7);
const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]);
const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]);
const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]);
for (; src < end; src += 8) {
uint8x8x4_t pixels;
INIT_VECTOR4(pixels,
vld1_u8((const uint8_t*)(src + 0)),
vld1_u8((const uint8_t*)(src + 2)),
vld1_u8((const uint8_t*)(src + 4)),
vld1_u8((const uint8_t*)(src + 6)));
vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0));
vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1));
vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2));
dst += 8 * 3;
}
VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs
}
#endif // !WORK_AROUND_GCC
//------------------------------------------------------------------------------
// Predictor Transform
#define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN)))
#define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN)))
#define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN)))
#define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN)))
#define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0);
#define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0);
#define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN)));
#define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D
static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) {
const uint8x8_t A0 = LOAD_U32_AS_U8(a0);
const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
return vhadd_u8(A0, A1);
}
static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0,
uint32_t c1,
uint32_t c2) {
const uint8x8_t avg = Average2_u8_NEON(c0, c1);
// Remove one to c2 when bigger than avg.
const uint8x8_t C2 = LOAD_U32_AS_U8(c2);
const uint8x8_t cmp = vcgt_u8(C2, avg);
const uint8x8_t C2_1 = vadd_u8(C2, cmp);
// Compute half of the difference between avg and c2.
const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1));
// Compute the sum with avg and saturate.
const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg));
const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg));
const uint32_t output = GET_U8_AS_U32(res);
return output;
}
static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) {
const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1);
const uint32_t avg = GET_U8_AS_U32(avg_u8x8);
return avg;
}
static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1,
uint32_t a2) {
const uint8x8_t avg0 = Average2_u8_NEON(a0, a2);
const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1));
return avg;
}
static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) {
return Average3_NEON(left, top[0], top[1]);
}
static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) {
return Average2_NEON(left, top[-1]);
}
static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) {
return Average2_NEON(left, top[0]);
}
static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) {
return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]);
}
// Batch versions of those functions.
// Predictor0: ARGB_BLACK.
static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK));
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t res = vaddq_u8(src, black);
STOREQ_U8_AS_U32P(&out[i], res);
}
VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
}
// Predictor1: left.
static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
const uint8x16_t zero = LOADQ_U32_AS_U8(0);
for (i = 0; i + 4 <= num_pixels; i += 4) {
// a | b | c | d
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
// 0 | a | b | c
const uint8x16_t shift0 = vextq_u8(zero, src, 12);
// a | a + b | b + c | c + d
const uint8x16_t sum0 = vaddq_u8(src, shift0);
// 0 | 0 | a | a + b
const uint8x16_t shift1 = vextq_u8(zero, sum0, 8);
// a | a + b | a + b + c | a + b + c + d
const uint8x16_t sum1 = vaddq_u8(sum0, shift1);
const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]);
const uint8x16_t res = vaddq_u8(sum1, prev);
STOREQ_U8_AS_U32P(&out[i], res);
}
VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
}
// Macro that adds 32-bit integers from IN using mod 256 arithmetic
// per 8 bit channel.
#define GENERATE_PREDICTOR_1(X, IN) \
static void PredictorAdd##X##_NEON(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* out) { \
int i; \
for (i = 0; i + 4 <= num_pixels; i += 4) { \
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \
const uint8x16_t res = vaddq_u8(src, other); \
STOREQ_U8_AS_U32P(&out[i], res); \
} \
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
}
// Predictor2: Top.
GENERATE_PREDICTOR_1(2, upper[i])
// Predictor3: Top-right.
GENERATE_PREDICTOR_1(3, upper[i + 1])
// Predictor4: Top-left.
GENERATE_PREDICTOR_1(4, upper[i - 1])
#undef GENERATE_PREDICTOR_1
// Predictor5: average(average(left, TR), T)
#define DO_PRED5(LANE) do { \
const uint8x16_t avgLTR = vhaddq_u8(L, TR); \
const uint8x16_t avg = vhaddq_u8(avgLTR, T); \
const uint8x16_t res = vaddq_u8(avg, src); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]);
const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
DO_PRED5(0);
DO_PRED5(1);
DO_PRED5(2);
DO_PRED5(3);
}
VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED5
#define DO_PRED67(LANE) do { \
const uint8x16_t avg = vhaddq_u8(L, top); \
const uint8x16_t res = vaddq_u8(avg, src); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
// Predictor6: average(left, TL)
static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]);
DO_PRED67(0);
DO_PRED67(1);
DO_PRED67(2);
DO_PRED67(3);
}
VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i);
}
// Predictor7: average(left, T)
static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]);
DO_PRED67(0);
DO_PRED67(1);
DO_PRED67(2);
DO_PRED67(3);
}
VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED67
#define GENERATE_PREDICTOR_2(X, IN) \
static void PredictorAdd##X##_NEON(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* out) { \
int i; \
for (i = 0; i + 4 <= num_pixels; i += 4) { \
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \
const uint8x16_t avg = vhaddq_u8(T, Tother); \
const uint8x16_t res = vaddq_u8(avg, src); \
STOREQ_U8_AS_U32P(&out[i], res); \
} \
VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
}
// Predictor8: average TL T.
GENERATE_PREDICTOR_2(8, upper[i - 1])
// Predictor9: average T TR.
GENERATE_PREDICTOR_2(9, upper[i + 1])
#undef GENERATE_PREDICTOR_2
// Predictor10: average of (average of (L,TL), average of (T, TR)).
#define DO_PRED10(LANE) do { \
const uint8x16_t avgLTL = vhaddq_u8(L, TL); \
const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \
const uint8x16_t res = vaddq_u8(avg, src); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
const uint8x16_t avgTTR = vhaddq_u8(T, TR);
DO_PRED10(0);
DO_PRED10(1);
DO_PRED10(2);
DO_PRED10(3);
}
VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED10
// Predictor11: select.
#define DO_PRED11(LANE) do { \
const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \
const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \
const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \
const uint32x4_t pa = vpaddlq_u16(sum_LTL); \
const uint32x4_t mask = vcleq_u32(pa, pb); \
const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \
vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
L = ROTATE32_LEFT(res); \
} while (0)
static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL|
const uint16x8_t sum_TTL = vpaddlq_u8(pTTL);
const uint32x4_t pb = vpaddlq_u16(sum_TTL);
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t sumTin = vaddq_u8(T, src); // in + T
DO_PRED11(0);
DO_PRED11(1);
DO_PRED11(2);
DO_PRED11(3);
}
VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED11
// Predictor12: ClampedAddSubtractFull.
#define DO_PRED12(DIFF, LANE) do { \
const uint8x8_t pred = \
vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \
const uint8x8_t res = \
vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \
const uint16x8_t res16 = vmovl_u8(res); \
vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
/* rotate in the left predictor for next iteration */ \
L = vextq_u16(res16, res16, 4); \
} while (0)
static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1]));
for (i = 0; i + 4 <= num_pixels; i += 4) {
// load four pixels of source
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
// precompute the difference T - TL once for all, stored as s16
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const int16x8_t diff_lo =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL)));
const int16x8_t diff_hi =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL)));
// loop over the four reconstructed pixels
DO_PRED12(diff_lo, 0);
DO_PRED12(diff_lo, 1);
DO_PRED12(diff_hi, 2);
DO_PRED12(diff_hi, 3);
}
VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED12
// Predictor13: ClampedAddSubtractHalf
#define DO_PRED13(LANE, LOW_OR_HI) do { \
const uint8x16_t avg = vhaddq_u8(L, T); \
const uint8x16_t cmp = vcgtq_u8(TL, avg); \
const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \
/* Compute half of the difference between avg and TL'. */ \
const int8x8_t diff_avg = \
vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \
/* Compute the sum with avg and saturate. */ \
const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \
const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \
const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \
const uint8x16_t res2 = vcombine_u8(res, res); \
vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
L = ROTATE32_LEFT(res2); \
} while (0)
static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* out) {
int i;
uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
DO_PRED13(0, vget_low_u8);
DO_PRED13(1, vget_low_u8);
DO_PRED13(2, vget_high_u8);
DO_PRED13(3, vget_high_u8);
}
VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i);
}
#undef DO_PRED13
#undef LOAD_U32_AS_U8
#undef LOAD_U32P_AS_U8
#undef LOADQ_U32_AS_U8
#undef LOADQ_U32P_AS_U8
#undef GET_U8_AS_U32
#undef GETQ_U8_AS_U32
#undef STOREQ_U8_AS_U32P
#undef ROTATE32_LEFT
//------------------------------------------------------------------------------
// Subtract-Green Transform
// vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use
// non-standard versions there.
#if defined(__APPLE__) && defined(__aarch64__) && \
defined(__apple_build_version__) && (__apple_build_version__< 6020037)
#define USE_VTBLQ
#endif
#ifdef USE_VTBLQ
// 255 = byte will be zeroed
static const uint8_t kGreenShuffle[16] = {
1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255
};
static WEBP_INLINE uint8x16_t DoGreenShuffle(const uint8x16_t argb,
const uint8x16_t shuffle) {
return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)),
vtbl1q_u8(argb, vget_high_u8(shuffle)));
}
#else // !USE_VTBLQ
// 255 = byte will be zeroed
static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 };
static WEBP_INLINE uint8x16_t DoGreenShuffle(const uint8x16_t argb,
const uint8x8_t shuffle) {
return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle),
vtbl1_u8(vget_high_u8(argb), shuffle));
}
#endif // USE_VTBLQ
static void AddGreenToBlueAndRed(const uint32_t* src, int num_pixels,
uint32_t* dst) {
const uint32_t* const end = src + (num_pixels & ~3);
#ifdef USE_VTBLQ
const uint8x16_t shuffle = vld1q_u8(kGreenShuffle);
#else
const uint8x8_t shuffle = vld1_u8(kGreenShuffle);
#endif
for (; src < end; src += 4, dst += 4) {
const uint8x16_t argb = vld1q_u8((const uint8_t*)src);
const uint8x16_t greens = DoGreenShuffle(argb, shuffle);
vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens));
}
// fallthrough and finish off with plain-C
VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst);
}
//------------------------------------------------------------------------------
// Color Transform
static void TransformColorInverse(const VP8LMultipliers* const m,
const uint32_t* const src, int num_pixels,
uint32_t* dst) {
// sign-extended multiplying constants, pre-shifted by 6.
#define CST(X) (((int16_t)(m->X << 8)) >> 6)
const int16_t rb[8] = {
CST(green_to_blue_), CST(green_to_red_),
CST(green_to_blue_), CST(green_to_red_),
CST(green_to_blue_), CST(green_to_red_),
CST(green_to_blue_), CST(green_to_red_)
};
const int16x8_t mults_rb = vld1q_s16(rb);
const int16_t b2[8] = {
0, CST(red_to_blue_), 0, CST(red_to_blue_),
0, CST(red_to_blue_), 0, CST(red_to_blue_),
};
const int16x8_t mults_b2 = vld1q_s16(b2);
#undef CST
#ifdef USE_VTBLQ
static const uint8_t kg0g0[16] = {
255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13
};
const uint8x16_t shuffle = vld1q_u8(kg0g0);
#else
static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 };
const uint8x8_t shuffle = vld1_u8(k0g0g);
#endif
const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u);
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i));
const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag);
// 0 g 0 g
const uint8x16_t greens = DoGreenShuffle(in, shuffle);
// x dr x db1
const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb);
// x r' x b'
const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in),
vreinterpretq_s8_s16(A));
// r' 0 b' 0
const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8);
// x db2 0 0
const int16x8_t D = vqdmulhq_s16(C, mults_b2);
// 0 x db2 0
const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8);
// r' x b'' 0
const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E),
vreinterpretq_s8_s16(C));
// 0 r' 0 b''
const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8);
const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0);
vst1q_u32(dst + i, out);
}
// Fall-back to C-version for left-overs.
VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
}
#undef USE_VTBLQ
//------------------------------------------------------------------------------
// Entry point
extern void VP8LDspInitNEON(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) {
VP8LPredictors[5] = Predictor5_NEON;
VP8LPredictors[6] = Predictor6_NEON;
VP8LPredictors[7] = Predictor7_NEON;
VP8LPredictors[13] = Predictor13_NEON;
VP8LPredictorsAdd[0] = PredictorAdd0_NEON;
VP8LPredictorsAdd[1] = PredictorAdd1_NEON;
VP8LPredictorsAdd[2] = PredictorAdd2_NEON;
VP8LPredictorsAdd[3] = PredictorAdd3_NEON;
VP8LPredictorsAdd[4] = PredictorAdd4_NEON;
VP8LPredictorsAdd[5] = PredictorAdd5_NEON;
VP8LPredictorsAdd[6] = PredictorAdd6_NEON;
VP8LPredictorsAdd[7] = PredictorAdd7_NEON;
VP8LPredictorsAdd[8] = PredictorAdd8_NEON;
VP8LPredictorsAdd[9] = PredictorAdd9_NEON;
VP8LPredictorsAdd[10] = PredictorAdd10_NEON;
VP8LPredictorsAdd[11] = PredictorAdd11_NEON;
VP8LPredictorsAdd[12] = PredictorAdd12_NEON;
VP8LPredictorsAdd[13] = PredictorAdd13_NEON;
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA;
VP8LConvertBGRAToBGR = ConvertBGRAToBGR;
VP8LConvertBGRAToRGB = ConvertBGRAToRGB;
VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed;
VP8LTransformColorInverse = TransformColorInverse;
}
#else // !WEBP_USE_NEON
WEBP_DSP_INIT_STUB(VP8LDspInitNEON)
#endif // WEBP_USE_NEON