godot/scene/resources/animation.cpp

1922 lines
47 KiB
C++

/*************************************************************************/
/* animation.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "animation.h"
#include "geometry.h"
bool Animation::_set(const StringName &p_name, const Variant &p_value) {
String name = p_name;
if (name == "length")
set_length(p_value);
else if (name == "loop")
set_loop(p_value);
else if (name == "step")
set_step(p_value);
else if (name.begins_with("tracks/")) {
int track = name.get_slicec('/', 1).to_int();
String what = name.get_slicec('/', 2);
if (tracks.size() == track && what == "type") {
String type = p_value;
if (type == "transform") {
add_track(TYPE_TRANSFORM);
} else if (type == "value") {
add_track(TYPE_VALUE);
} else if (type == "method") {
add_track(TYPE_METHOD);
} else {
return false;
}
return true;
}
ERR_FAIL_INDEX_V(track, tracks.size(), false);
if (what == "path")
track_set_path(track, p_value);
else if (what == "interp")
track_set_interpolation_type(track, InterpolationType(p_value.operator int()));
else if (what == "imported")
track_set_imported(track, p_value);
else if (what == "keys" || what == "key_values") {
if (track_get_type(track) == TYPE_TRANSFORM) {
TransformTrack *tt = static_cast<TransformTrack *>(tracks[track]);
DVector<float> values = p_value;
int vcount = values.size();
#if 0 // old compatibility hack
if ((vcount%11) == 0) {
DVector<float>::Read r = values.read();
tt->transforms.resize(vcount/11);
for(int i=0;i<(vcount/11);i++) {
TKey<TransformKey> &tk=tt->transforms[i];
const float *ofs=&r[i*11];
tk.time=ofs[0];
tk.value.loc.x=ofs[1];
tk.value.loc.y=ofs[2];
tk.value.loc.z=ofs[3];
tk.value.rot.x=ofs[4];
tk.value.rot.y=ofs[5];
tk.value.rot.z=ofs[6];
tk.value.rot.w=ofs[7];
tk.value.scale.x=ofs[8];
tk.value.scale.y=ofs[9];
tk.value.scale.z=ofs[10];
}
return true;
}
#endif
ERR_FAIL_COND_V(vcount % 12, false); // shuld be multiple of 11
DVector<float>::Read r = values.read();
tt->transforms.resize(vcount / 12);
for (int i = 0; i < (vcount / 12); i++) {
TKey<TransformKey> &tk = tt->transforms[i];
const float *ofs = &r[i * 12];
tk.time = ofs[0];
tk.transition = ofs[1];
tk.value.loc.x = ofs[2];
tk.value.loc.y = ofs[3];
tk.value.loc.z = ofs[4];
tk.value.rot.x = ofs[5];
tk.value.rot.y = ofs[6];
tk.value.rot.z = ofs[7];
tk.value.rot.w = ofs[8];
tk.value.scale.x = ofs[9];
tk.value.scale.y = ofs[10];
tk.value.scale.z = ofs[11];
}
} else if (track_get_type(track) == TYPE_VALUE) {
ValueTrack *vt = static_cast<ValueTrack *>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("values"), false);
if (d.has("cont")) {
bool v = d["cont"];
vt->update_mode = v ? UPDATE_CONTINUOUS : UPDATE_DISCRETE;
}
if (d.has("update")) {
int um = d["update"];
if (um < 0)
um = 0;
else if (um > 2)
um = 2;
vt->update_mode = UpdateMode(um);
}
DVector<float> times = d["times"];
Array values = d["values"];
ERR_FAIL_COND_V(times.size() != values.size(), false);
if (times.size()) {
int valcount = times.size();
DVector<float>::Read rt = times.read();
vt->values.resize(valcount);
for (int i = 0; i < valcount; i++) {
vt->values[i].time = rt[i];
vt->values[i].value = values[i];
}
if (d.has("transitions")) {
DVector<float> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size() != valcount, false);
DVector<float>::Read rtr = transitions.read();
for (int i = 0; i < valcount; i++) {
vt->values[i].transition = rtr[i];
}
}
}
return true;
} else {
while (track_get_key_count(track))
track_remove_key(track, 0); //well shouldn't be set anyway
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"), false);
ERR_FAIL_COND_V(!d.has("values"), false);
DVector<float> times = d["times"];
Array values = d["values"];
ERR_FAIL_COND_V(times.size() != values.size(), false);
if (times.size()) {
int valcount = times.size();
DVector<float>::Read rt = times.read();
for (int i = 0; i < valcount; i++) {
track_insert_key(track, rt[i], values[i]);
}
if (d.has("transitions")) {
DVector<float> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size() != valcount, false);
DVector<float>::Read rtr = transitions.read();
for (int i = 0; i < valcount; i++) {
track_set_key_transition(track, i, rtr[i]);
}
}
}
}
} else
return false;
} else
return false;
return true;
}
bool Animation::_get(const StringName &p_name, Variant &r_ret) const {
String name = p_name;
if (name == "length")
r_ret = length;
else if (name == "loop")
r_ret = loop;
else if (name == "step")
r_ret = step;
else if (name.begins_with("tracks/")) {
int track = name.get_slicec('/', 1).to_int();
String what = name.get_slicec('/', 2);
ERR_FAIL_INDEX_V(track, tracks.size(), false);
if (what == "type") {
switch (track_get_type(track)) {
case TYPE_TRANSFORM: r_ret = "transform"; break;
case TYPE_VALUE: r_ret = "value"; break;
case TYPE_METHOD: r_ret = "method"; break;
}
return true;
} else if (what == "path")
r_ret = track_get_path(track);
else if (what == "interp")
r_ret = track_get_interpolation_type(track);
else if (what == "imported")
r_ret = track_is_imported(track);
else if (what == "keys") {
if (track_get_type(track) == TYPE_TRANSFORM) {
DVector<real_t> keys;
int kk = track_get_key_count(track);
keys.resize(kk * 12);
DVector<real_t>::Write w = keys.write();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
Vector3 loc;
Quat rot;
Vector3 scale;
transform_track_get_key(track, i, &loc, &rot, &scale);
w[idx++] = track_get_key_time(track, i);
w[idx++] = track_get_key_transition(track, i);
w[idx++] = loc.x;
w[idx++] = loc.y;
w[idx++] = loc.z;
w[idx++] = rot.x;
w[idx++] = rot.y;
w[idx++] = rot.z;
w[idx++] = rot.w;
w[idx++] = scale.x;
w[idx++] = scale.y;
w[idx++] = scale.z;
}
w = DVector<real_t>::Write();
r_ret = keys;
return true;
} else if (track_get_type(track) == TYPE_VALUE) {
const ValueTrack *vt = static_cast<const ValueTrack *>(tracks[track]);
Dictionary d;
DVector<float> key_times;
DVector<float> key_transitions;
Array key_values;
int kk = vt->values.size();
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
DVector<float>::Write wti = key_times.write();
DVector<float>::Write wtr = key_transitions.write();
int idx = 0;
const TKey<Variant> *vls = vt->values.ptr();
for (int i = 0; i < kk; i++) {
wti[idx] = vls[i].time;
wtr[idx] = vls[i].transition;
key_values[idx] = vls[i].value;
idx++;
}
wti = DVector<float>::Write();
wtr = DVector<float>::Write();
d["times"] = key_times;
d["transitions"] = key_transitions;
d["values"] = key_values;
if (track_get_type(track) == TYPE_VALUE) {
d["update"] = value_track_get_update_mode(track);
}
r_ret = d;
return true;
} else {
Dictionary d;
DVector<float> key_times;
DVector<float> key_transitions;
Array key_values;
int kk = track_get_key_count(track);
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
DVector<float>::Write wti = key_times.write();
DVector<float>::Write wtr = key_transitions.write();
int idx = 0;
for (int i = 0; i < track_get_key_count(track); i++) {
wti[idx] = track_get_key_time(track, i);
wtr[idx] = track_get_key_transition(track, i);
key_values[idx] = track_get_key_value(track, i);
idx++;
}
wti = DVector<float>::Write();
wtr = DVector<float>::Write();
d["times"] = key_times;
d["transitions"] = key_transitions;
d["values"] = key_values;
if (track_get_type(track) == TYPE_VALUE) {
d["update"] = value_track_get_update_mode(track);
}
r_ret = d;
return true;
}
} else
return false;
} else
return false;
return true;
}
void Animation::_get_property_list(List<PropertyInfo> *p_list) const {
p_list->push_back(PropertyInfo(Variant::REAL, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001"));
p_list->push_back(PropertyInfo(Variant::BOOL, "loop"));
p_list->push_back(PropertyInfo(Variant::REAL, "step", PROPERTY_HINT_RANGE, "0,4096,0.001"));
for (int i = 0; i < tracks.size(); i++) {
p_list->push_back(PropertyInfo(Variant::STRING, "tracks/" + itos(i) + "/type", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR));
p_list->push_back(PropertyInfo(Variant::NODE_PATH, "tracks/" + itos(i) + "/path", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR));
p_list->push_back(PropertyInfo(Variant::INT, "tracks/" + itos(i) + "/interp", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR));
p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/imported", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR));
p_list->push_back(PropertyInfo(Variant::ARRAY, "tracks/" + itos(i) + "/keys", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR));
}
}
int Animation::add_track(TrackType p_type, int p_at_pos) {
if (p_at_pos < 0 || p_at_pos >= tracks.size())
p_at_pos = tracks.size();
switch (p_type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = memnew(TransformTrack);
tracks.insert(p_at_pos, tt);
} break;
case TYPE_VALUE: {
tracks.insert(p_at_pos, memnew(ValueTrack));
} break;
case TYPE_METHOD: {
tracks.insert(p_at_pos, memnew(MethodTrack));
} break;
default: {
ERR_PRINT("Unknown track type");
}
}
emit_changed();
return p_at_pos;
}
void Animation::remove_track(int p_track) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
_clear(tt->transforms);
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
_clear(vt->values);
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
_clear(mt->methods);
} break;
}
memdelete(t);
tracks.remove(p_track);
emit_changed();
}
int Animation::get_track_count() const {
return tracks.size();
}
Animation::TrackType Animation::track_get_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_TRANSFORM);
return tracks[p_track]->type;
}
void Animation::track_set_path(int p_track, const NodePath &p_path) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->path = p_path;
emit_changed();
}
NodePath Animation::track_get_path(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), NodePath());
return tracks[p_track]->path;
}
int Animation::find_track(const NodePath &p_path) const {
for (int i = 0; i < tracks.size(); i++) {
if (tracks[i]->path == p_path)
return i;
};
return -1;
};
void Animation::track_set_interpolation_type(int p_track, InterpolationType p_interp) {
ERR_FAIL_INDEX(p_track, tracks.size());
ERR_FAIL_INDEX(p_interp, 3);
tracks[p_track]->interpolation = p_interp;
emit_changed();
}
Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST);
return tracks[p_track]->interpolation;
}
// transform
/*
template<class T>
int Animation::_insert_pos(float p_time, T& p_keys) {
// simple, linear time inset that should be fast enough in reality.
int idx=p_keys.size();
while(true) {
if (idx==0 || p_keys[idx-1].time < p_time) {
//condition for insertion.
p_keys.insert(idx,T());
return idx;
} else if (p_keys[idx-1].time == p_time) {
// condition for replacing.
return idx-1;
}
idx--;
}
}
*/
template <class T, class V>
int Animation::_insert(float p_time, T &p_keys, const V &p_value) {
int idx = p_keys.size();
while (true) {
if (idx == 0 || p_keys[idx - 1].time < p_time) {
//condition for insertion.
p_keys.insert(idx, p_value);
return idx;
} else if (p_keys[idx - 1].time == p_time) {
// condition for replacing.
p_keys[idx - 1] = p_value;
return idx - 1;
}
idx--;
}
return -1;
}
template <class T>
void Animation::_clear(T &p_keys) {
p_keys.clear();
}
Error Animation::transform_track_get_key(int p_track, int p_key, Vector3 *r_loc, Quat *r_rot, Vector3 *r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_COND_V(t->type != TYPE_TRANSFORM, ERR_INVALID_PARAMETER);
ERR_FAIL_INDEX_V(p_key, tt->transforms.size(), ERR_INVALID_PARAMETER);
if (r_loc)
*r_loc = tt->transforms[p_key].value.loc;
if (r_rot)
*r_rot = tt->transforms[p_key].value.rot;
if (r_scale)
*r_scale = tt->transforms[p_key].value.scale;
return OK;
}
int Animation::transform_track_insert_key(int p_track, float p_time, const Vector3 p_loc, const Quat &p_rot, const Vector3 &p_scale) {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_TRANSFORM, -1);
TransformTrack *tt = static_cast<TransformTrack *>(t);
TKey<TransformKey> tkey;
tkey.time = p_time;
tkey.value.loc = p_loc;
tkey.value.rot = p_rot;
tkey.value.scale = p_scale;
int ret = _insert(p_time, tt->transforms, tkey);
emit_changed();
return ret;
}
void Animation::track_remove_key_at_pos(int p_track, float p_pos) {
int idx = track_find_key(p_track, p_pos, true);
ERR_FAIL_COND(idx < 0);
track_remove_key(p_track, idx);
}
void Animation::track_remove_key(int p_track, int p_idx) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_INDEX(p_idx, tt->transforms.size());
tt->transforms.remove(p_idx);
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_idx, vt->values.size());
vt->values.remove(p_idx);
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_idx, mt->methods.size());
mt->methods.remove(p_idx);
} break;
}
emit_changed();
}
int Animation::track_find_key(int p_track, float p_time, bool p_exact) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
int k = _find(tt->transforms, p_time);
if (k < 0 || k >= tt->transforms.size())
return -1;
if (tt->transforms[k].time != p_time && p_exact)
return -1;
return k;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
int k = _find(vt->values, p_time);
if (k < 0 || k >= vt->values.size())
return -1;
if (vt->values[k].time != p_time && p_exact)
return -1;
return k;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
int k = _find(mt->methods, p_time);
if (k < 0 || k >= mt->methods.size())
return -1;
if (mt->methods[k].time != p_time && p_exact)
return -1;
return k;
} break;
}
return -1;
}
void Animation::track_insert_key(int p_track, float p_time, const Variant &p_value, float p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
Dictionary d = p_value;
Vector3 loc;
if (d.has("loc"))
loc = d["loc"];
Quat rot;
if (d.has("rot"))
rot = d["rot"];
Vector3 scale;
if (d.has("scale"))
scale = d["scale"];
int idx = transform_track_insert_key(p_track, p_time, loc, rot, scale);
track_set_key_transition(p_track, idx, p_transition);
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
TKey<Variant> k;
k.time = p_time;
k.transition = p_transition;
k.value = p_value;
_insert(p_time, vt->values, k);
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_COND(p_value.get_type() != Variant::DICTIONARY);
Dictionary d = p_value;
ERR_FAIL_COND(!d.has("method") || d["method"].get_type() != Variant::STRING);
ERR_FAIL_COND(!d.has("args") || !d["args"].is_array());
MethodKey k;
k.time = p_time;
k.transition = p_transition;
k.method = d["method"];
k.params = d["args"];
_insert(p_time, mt->methods, k);
} break;
}
emit_changed();
}
int Animation::track_get_key_count(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
return tt->transforms.size();
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
return vt->values.size();
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
return mt->methods.size();
} break;
}
ERR_FAIL_V(-1);
}
Variant Animation::track_get_key_value(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, tt->transforms.size(), Variant());
Dictionary d;
d["loc"] = tt->transforms[p_key_idx].value.loc;
d["rot"] = tt->transforms[p_key_idx].value.rot;
d["scale"] = tt->transforms[p_key_idx].value.scale;
return d;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), Variant());
return vt->values[p_key_idx].value;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), Variant());
Dictionary d;
d["method"] = mt->methods[p_key_idx].method;
d["args"] = mt->methods[p_key_idx].params;
return d;
} break;
}
ERR_FAIL_V(Variant());
}
float Animation::track_get_key_time(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, tt->transforms.size(), -1);
return tt->transforms[p_key_idx].time;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1);
return vt->values[p_key_idx].time;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1);
return mt->methods[p_key_idx].time;
} break;
}
ERR_FAIL_V(-1);
}
float Animation::track_get_key_transition(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, tt->transforms.size(), -1);
return tt->transforms[p_key_idx].transition;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1);
return vt->values[p_key_idx].transition;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1);
return mt->methods[p_key_idx].transition;
} break;
}
ERR_FAIL_V(0);
}
void Animation::track_set_key_value(int p_track, int p_key_idx, const Variant &p_value) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, tt->transforms.size());
Dictionary d = p_value;
if (d.has("loc"))
tt->transforms[p_key_idx].value.loc = d["loc"];
if (d.has("rot"))
tt->transforms[p_key_idx].value.rot = d["rot"];
if (d.has("scale"))
tt->transforms[p_key_idx].value.scale = d["scale"];
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, vt->values.size());
vt->values[p_key_idx].value = p_value;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, mt->methods.size());
Dictionary d = p_value;
if (d.has("method"))
mt->methods[p_key_idx].method = d["method"];
if (d.has("args"))
mt->methods[p_key_idx].params = d["args"];
} break;
}
}
void Animation::track_set_key_transition(int p_track, int p_key_idx, float p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
switch (t->type) {
case TYPE_TRANSFORM: {
TransformTrack *tt = static_cast<TransformTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, tt->transforms.size());
tt->transforms[p_key_idx].transition = p_transition;
} break;
case TYPE_VALUE: {
ValueTrack *vt = static_cast<ValueTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, vt->values.size());
vt->values[p_key_idx].transition = p_transition;
} break;
case TYPE_METHOD: {
MethodTrack *mt = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX(p_key_idx, mt->methods.size());
mt->methods[p_key_idx].transition = p_transition;
} break;
}
}
template <class K>
int Animation::_find(const Vector<K> &p_keys, float p_time) const {
int len = p_keys.size();
if (len == 0)
return -2;
int low = 0;
int high = len - 1;
int middle;
const K *keys = &p_keys[0];
while (low <= high) {
middle = (low + high) / 2;
if (p_time == keys[middle].time) { //match
return middle;
} else if (p_time < keys[middle].time)
high = middle - 1; //search low end of array
else
low = middle + 1; //search high end of array
}
if (keys[middle].time > p_time)
middle--;
return middle;
}
Animation::TransformKey Animation::_interpolate(const Animation::TransformKey &p_a, const Animation::TransformKey &p_b, float p_c) const {
TransformKey ret;
ret.loc = _interpolate(p_a.loc, p_b.loc, p_c);
ret.rot = _interpolate(p_a.rot, p_b.rot, p_c);
ret.scale = _interpolate(p_a.scale, p_b.scale, p_c);
return ret;
}
Vector3 Animation::_interpolate(const Vector3 &p_a, const Vector3 &p_b, float p_c) const {
return p_a.linear_interpolate(p_b, p_c);
}
Quat Animation::_interpolate(const Quat &p_a, const Quat &p_b, float p_c) const {
return p_a.slerp(p_b, p_c);
}
Variant Animation::_interpolate(const Variant &p_a, const Variant &p_b, float p_c) const {
Variant dst;
Variant::interpolate(p_a, p_b, p_c, dst);
return dst;
}
float Animation::_interpolate(const float &p_a, const float &p_b, float p_c) const {
return p_a * (1.0 - p_c) + p_b * p_c;
}
Animation::TransformKey Animation::_cubic_interpolate(const Animation::TransformKey &p_pre_a, const Animation::TransformKey &p_a, const Animation::TransformKey &p_b, const Animation::TransformKey &p_post_b, float p_c) const {
Animation::TransformKey tk;
tk.loc = p_a.loc.cubic_interpolate(p_b.loc, p_pre_a.loc, p_post_b.loc, p_c);
tk.scale = p_a.scale.cubic_interpolate(p_b.scale, p_pre_a.scale, p_post_b.scale, p_c);
tk.rot = p_a.rot.cubic_slerp(p_b.rot, p_pre_a.rot, p_post_b.rot, p_c);
return tk;
}
Vector3 Animation::_cubic_interpolate(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, float p_c) const {
return p_a.cubic_interpolate(p_b, p_pre_a, p_post_b, p_c);
}
Quat Animation::_cubic_interpolate(const Quat &p_pre_a, const Quat &p_a, const Quat &p_b, const Quat &p_post_b, float p_c) const {
return p_a.cubic_slerp(p_b, p_pre_a, p_post_b, p_c);
}
Variant Animation::_cubic_interpolate(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, float p_c) const {
Variant::Type type_a = p_a.get_type();
Variant::Type type_b = p_b.get_type();
Variant::Type type_pa = p_pre_a.get_type();
Variant::Type type_pb = p_post_b.get_type();
//make int and real play along
uint32_t vformat = 1 << type_a;
vformat |= 1 << type_b;
vformat |= 1 << type_pa;
vformat |= 1 << type_pb;
if (vformat == ((1 << Variant::INT) | (1 << Variant::REAL)) || vformat == (1 << Variant::REAL)) {
//mix of real and int
real_t p0 = p_pre_a;
real_t p1 = p_a;
real_t p2 = p_b;
real_t p3 = p_post_b;
float t = p_c;
float t2 = t * t;
float t3 = t2 * t;
return 0.5f * ((p1 * 2.0f) +
(-p0 + p2) * t +
(2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
} else if ((vformat & (vformat - 1))) {
return p_a; //can't interpolate, mix of types
}
switch (type_a) {
case Variant::VECTOR2: {
Vector2 a = p_a;
Vector2 b = p_b;
Vector2 pa = p_pre_a;
Vector2 pb = p_post_b;
return a.cubic_interpolate(b, pa, pb, p_c);
} break;
case Variant::RECT2: {
Rect2 a = p_a;
Rect2 b = p_b;
Rect2 pa = p_pre_a;
Rect2 pb = p_post_b;
return Rect2(
a.pos.cubic_interpolate(b.pos, pa.pos, pb.pos, p_c),
a.size.cubic_interpolate(b.size, pa.size, pb.size, p_c));
} break;
case Variant::VECTOR3: {
Vector3 a = p_a;
Vector3 b = p_b;
Vector3 pa = p_pre_a;
Vector3 pb = p_post_b;
return a.cubic_interpolate(b, pa, pb, p_c);
} break;
case Variant::QUAT: {
Quat a = p_a;
Quat b = p_b;
Quat pa = p_pre_a;
Quat pb = p_post_b;
return a.cubic_slerp(b, pa, pb, p_c);
} break;
case Variant::_AABB: {
AABB a = p_a;
AABB b = p_b;
AABB pa = p_pre_a;
AABB pb = p_post_b;
return AABB(
a.pos.cubic_interpolate(b.pos, pa.pos, pb.pos, p_c),
a.size.cubic_interpolate(b.size, pa.size, pb.size, p_c));
} break;
default: {
return _interpolate(p_a, p_b, p_c);
}
}
return Variant();
}
float Animation::_cubic_interpolate(const float &p_pre_a, const float &p_a, const float &p_b, const float &p_post_b, float p_c) const {
return _interpolate(p_a, p_b, p_c);
}
template <class T>
T Animation::_interpolate(const Vector<TKey<T> > &p_keys, float p_time, InterpolationType p_interp, bool *p_ok) const {
int len = _find(p_keys, length) + 1; // try to find last key (there may be more past the end)
if (len <= 0) {
// (-1 or -2 returned originally) (plus one above)
// meaning no keys, or only key time is larger than length
if (p_ok)
*p_ok = false;
return T();
} else if (len == 1) { // one key found (0+1), return it
if (p_ok)
*p_ok = true;
return p_keys[0].value;
}
int idx = _find(p_keys, p_time);
ERR_FAIL_COND_V(idx == -2, T());
if (p_ok)
*p_ok = true;
int next = 0;
float c = 0;
// prepare for all cases of interpolation
if (loop) {
// loop
if (idx >= 0) {
if ((idx + 1) < len) {
next = idx + 1;
float delta = p_keys[next].time - p_keys[idx].time;
float from = p_time - p_keys[idx].time;
if (Math::absf(delta) > CMP_EPSILON)
c = from / delta;
else
c = 0;
} else {
next = 0;
float delta = (length - p_keys[idx].time) + p_keys[next].time;
float from = p_time - p_keys[idx].time;
if (Math::absf(delta) > CMP_EPSILON)
c = from / delta;
else
c = 0;
}
} else {
// on loop, behind first key
idx = len - 1;
next = 0;
float endtime = (length - p_keys[idx].time);
if (endtime < 0) // may be keys past the end
endtime = 0;
float delta = endtime + p_keys[next].time;
float from = endtime + p_time;
if (Math::absf(delta) > CMP_EPSILON)
c = from / delta;
else
c = 0;
}
} else { // no loop
if (idx >= 0) {
if ((idx + 1) < len) {
next = idx + 1;
float delta = p_keys[next].time - p_keys[idx].time;
float from = p_time - p_keys[idx].time;
if (Math::absf(delta) > CMP_EPSILON)
c = from / delta;
else
c = 0;
} else {
next = idx;
}
} else if (idx < 0) {
idx = next = 0;
}
}
float tr = p_keys[idx].transition;
if (tr == 0 || idx == next) {
// don't interpolate if not needed
return p_keys[idx].value;
}
if (tr != 1.0) {
c = Math::ease(c, tr);
}
switch (p_interp) {
case INTERPOLATION_NEAREST: {
return p_keys[idx].value;
} break;
case INTERPOLATION_LINEAR: {
return _interpolate(p_keys[idx].value, p_keys[next].value, c);
} break;
case INTERPOLATION_CUBIC: {
int pre = idx - 1;
if (pre < 0)
pre = 0;
int post = next + 1;
if (post >= len)
post = next;
return _cubic_interpolate(p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c);
} break;
default: return p_keys[idx].value;
}
// do a barrel roll
}
Error Animation::transform_track_interpolate(int p_track, float p_time, Vector3 *r_loc, Quat *r_rot, Vector3 *r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_TRANSFORM, ERR_INVALID_PARAMETER);
TransformTrack *tt = static_cast<TransformTrack *>(t);
bool ok;
TransformKey tk = _interpolate(tt->transforms, p_time, tt->interpolation, &ok);
if (!ok) // ??
return ERR_UNAVAILABLE;
if (r_loc)
*r_loc = tk.loc;
if (r_rot)
*r_rot = tk.rot;
if (r_scale)
*r_scale = tk.scale;
return OK;
}
Variant Animation::value_track_interpolate(int p_track, float p_time) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), 0);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_VALUE, Variant());
ValueTrack *vt = static_cast<ValueTrack *>(t);
bool ok;
Variant res = _interpolate(vt->values, p_time, vt->update_mode == UPDATE_CONTINUOUS ? vt->interpolation : INTERPOLATION_NEAREST, &ok);
if (ok) {
return res;
}
return Variant();
}
void Animation::_value_track_get_key_indices_in_range(const ValueTrack *vt, float from_time, float to_time, List<int> *p_indices) const {
if (from_time != length && to_time == length)
to_time = length * 1.01; //include a little more if at the end
int to = _find(vt->values, to_time);
// can't really send the events == time, will be sent in the next frame.
// if event>=len then it will probably never be requested by the anim player.
if (to >= 0 && vt->values[to].time >= to_time)
to--;
if (to < 0)
return; // not bother
int from = _find(vt->values, from_time);
// position in the right first event.+
if (from < 0 || vt->values[from].time < from_time)
from++;
int max = vt->values.size();
for (int i = from; i <= to; i++) {
ERR_CONTINUE(i < 0 || i >= max); // shouldn't happen
p_indices->push_back(i);
}
}
void Animation::value_track_get_key_indices(int p_track, float p_time, float p_delta, List<int> *p_indices) const {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_VALUE);
ValueTrack *vt = static_cast<ValueTrack *>(t);
float from_time = p_time - p_delta;
float to_time = p_time;
if (from_time > to_time)
SWAP(from_time, to_time);
if (loop) {
from_time = Math::fposmod(from_time, length);
to_time = Math::fposmod(to_time, length);
if (from_time > to_time) {
// handle loop by splitting
_value_track_get_key_indices_in_range(vt, length - from_time, length, p_indices);
_value_track_get_key_indices_in_range(vt, 0, to_time, p_indices);
return;
}
} else {
if (from_time < 0)
from_time = 0;
if (from_time > length)
from_time = length;
if (to_time < 0)
to_time = 0;
if (to_time > length)
to_time = length;
}
_value_track_get_key_indices_in_range(vt, from_time, to_time, p_indices);
}
void Animation::value_track_set_update_mode(int p_track, UpdateMode p_mode) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_VALUE);
ERR_FAIL_INDEX(p_mode, 3);
ValueTrack *vt = static_cast<ValueTrack *>(t);
vt->update_mode = p_mode;
}
Animation::UpdateMode Animation::value_track_get_update_mode(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), UPDATE_CONTINUOUS);
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_VALUE, UPDATE_CONTINUOUS);
ValueTrack *vt = static_cast<ValueTrack *>(t);
return vt->update_mode;
}
void Animation::_method_track_get_key_indices_in_range(const MethodTrack *mt, float from_time, float to_time, List<int> *p_indices) const {
if (from_time != length && to_time == length)
to_time = length * 1.01; //include a little more if at the end
int to = _find(mt->methods, to_time);
// can't really send the events == time, will be sent in the next frame.
// if event>=len then it will probably never be requested by the anim player.
if (to >= 0 && mt->methods[to].time >= to_time)
to--;
if (to < 0)
return; // not bother
int from = _find(mt->methods, from_time);
// position in the right first event.+
if (from < 0 || mt->methods[from].time < from_time)
from++;
int max = mt->methods.size();
for (int i = from; i <= to; i++) {
ERR_CONTINUE(i < 0 || i >= max); // shouldn't happen
p_indices->push_back(i);
}
}
void Animation::method_track_get_key_indices(int p_track, float p_time, float p_delta, List<int> *p_indices) const {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t = tracks[p_track];
ERR_FAIL_COND(t->type != TYPE_METHOD);
MethodTrack *mt = static_cast<MethodTrack *>(t);
float from_time = p_time - p_delta;
float to_time = p_time;
if (from_time > to_time)
SWAP(from_time, to_time);
if (loop) {
if (from_time > length || from_time < 0)
from_time = Math::fposmod(from_time, length);
if (to_time > length || to_time < 0)
to_time = Math::fposmod(to_time, length);
if (from_time > to_time) {
// handle loop by splitting
_method_track_get_key_indices_in_range(mt, from_time, length, p_indices);
_method_track_get_key_indices_in_range(mt, 0, to_time, p_indices);
return;
}
} else {
if (from_time < 0)
from_time = 0;
if (from_time > length)
from_time = length;
if (to_time < 0)
to_time = 0;
if (to_time > length)
to_time = length;
}
_method_track_get_key_indices_in_range(mt, from_time, to_time, p_indices);
}
Vector<Variant> Animation::method_track_get_params(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector<Variant>());
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_METHOD, Vector<Variant>());
MethodTrack *pm = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), Vector<Variant>());
const MethodKey &mk = pm->methods[p_key_idx];
return mk.params;
}
StringName Animation::method_track_get_name(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), StringName());
Track *t = tracks[p_track];
ERR_FAIL_COND_V(t->type != TYPE_METHOD, StringName());
MethodTrack *pm = static_cast<MethodTrack *>(t);
ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), StringName());
return pm->methods[p_key_idx].method;
}
void Animation::set_length(float p_length) {
ERR_FAIL_COND(length < 0);
length = p_length;
emit_changed();
}
float Animation::get_length() const {
return length;
}
void Animation::set_loop(bool p_enabled) {
loop = p_enabled;
emit_changed();
}
bool Animation::has_loop() const {
return loop;
}
void Animation::track_move_up(int p_track) {
if (p_track >= 0 && p_track < (tracks.size() - 1)) {
SWAP(tracks[p_track], tracks[p_track + 1]);
}
emit_changed();
}
void Animation::track_set_imported(int p_track, bool p_imported) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->imported = p_imported;
}
bool Animation::track_is_imported(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), false);
return tracks[p_track]->imported;
}
void Animation::track_move_down(int p_track) {
if (p_track > 0 && p_track < tracks.size()) {
SWAP(tracks[p_track], tracks[p_track - 1]);
}
emit_changed();
}
void Animation::set_step(float p_step) {
step = p_step;
emit_changed();
}
float Animation::get_step() const {
return step;
}
void Animation::_bind_methods() {
ObjectTypeDB::bind_method(_MD("add_track", "type", "at_pos"), &Animation::add_track, DEFVAL(-1));
ObjectTypeDB::bind_method(_MD("remove_track", "idx"), &Animation::remove_track);
ObjectTypeDB::bind_method(_MD("get_track_count"), &Animation::get_track_count);
ObjectTypeDB::bind_method(_MD("track_get_type", "idx"), &Animation::track_get_type);
ObjectTypeDB::bind_method(_MD("track_get_path", "idx"), &Animation::track_get_path);
ObjectTypeDB::bind_method(_MD("track_set_path", "idx", "path"), &Animation::track_set_path);
ObjectTypeDB::bind_method(_MD("find_track", "path"), &Animation::find_track);
ObjectTypeDB::bind_method(_MD("track_move_up", "idx"), &Animation::track_move_up);
ObjectTypeDB::bind_method(_MD("track_move_down", "idx"), &Animation::track_move_down);
ObjectTypeDB::bind_method(_MD("track_set_imported", "idx", "imported"), &Animation::track_set_imported);
ObjectTypeDB::bind_method(_MD("track_is_imported", "idx"), &Animation::track_is_imported);
ObjectTypeDB::bind_method(_MD("transform_track_insert_key", "idx", "time", "loc", "rot", "scale"), &Animation::transform_track_insert_key);
ObjectTypeDB::bind_method(_MD("track_insert_key", "idx", "time", "key", "transition"), &Animation::track_insert_key, DEFVAL(1));
ObjectTypeDB::bind_method(_MD("track_remove_key", "idx", "key_idx"), &Animation::track_remove_key);
ObjectTypeDB::bind_method(_MD("track_remove_key_at_pos", "idx", "pos"), &Animation::track_remove_key_at_pos);
ObjectTypeDB::bind_method(_MD("track_set_key_value", "idx", "key", "value"), &Animation::track_set_key_value);
ObjectTypeDB::bind_method(_MD("track_set_key_transition", "idx", "key_idx", "transition"), &Animation::track_set_key_transition);
ObjectTypeDB::bind_method(_MD("track_get_key_transition", "idx", "key_idx"), &Animation::track_get_key_transition);
ObjectTypeDB::bind_method(_MD("track_get_key_count", "idx"), &Animation::track_get_key_count);
ObjectTypeDB::bind_method(_MD("track_get_key_value", "idx", "key_idx"), &Animation::track_get_key_value);
ObjectTypeDB::bind_method(_MD("track_get_key_time", "idx", "key_idx"), &Animation::track_get_key_time);
ObjectTypeDB::bind_method(_MD("track_find_key", "idx", "time", "exact"), &Animation::track_find_key, DEFVAL(false));
ObjectTypeDB::bind_method(_MD("track_set_interpolation_type", "idx", "interpolation"), &Animation::track_set_interpolation_type);
ObjectTypeDB::bind_method(_MD("track_get_interpolation_type", "idx"), &Animation::track_get_interpolation_type);
ObjectTypeDB::bind_method(_MD("transform_track_interpolate", "idx", "time_sec"), &Animation::_transform_track_interpolate);
ObjectTypeDB::bind_method(_MD("value_track_set_update_mode", "idx", "mode"), &Animation::value_track_set_update_mode);
ObjectTypeDB::bind_method(_MD("value_track_get_update_mode", "idx"), &Animation::value_track_get_update_mode);
ObjectTypeDB::bind_method(_MD("value_track_get_key_indices", "idx", "time_sec", "delta"), &Animation::_value_track_get_key_indices);
ObjectTypeDB::bind_method(_MD("method_track_get_key_indices", "idx", "time_sec", "delta"), &Animation::_method_track_get_key_indices);
ObjectTypeDB::bind_method(_MD("method_track_get_name", "idx", "key_idx"), &Animation::method_track_get_name);
ObjectTypeDB::bind_method(_MD("method_track_get_params", "idx", "key_idx"), &Animation::method_track_get_params);
ObjectTypeDB::bind_method(_MD("set_length", "time_sec"), &Animation::set_length);
ObjectTypeDB::bind_method(_MD("get_length"), &Animation::get_length);
ObjectTypeDB::bind_method(_MD("set_loop", "enabled"), &Animation::set_loop);
ObjectTypeDB::bind_method(_MD("has_loop"), &Animation::has_loop);
ObjectTypeDB::bind_method(_MD("set_step", "size_sec"), &Animation::set_step);
ObjectTypeDB::bind_method(_MD("get_step"), &Animation::get_step);
ObjectTypeDB::bind_method(_MD("clear"), &Animation::clear);
BIND_CONSTANT(TYPE_VALUE);
BIND_CONSTANT(TYPE_TRANSFORM);
BIND_CONSTANT(TYPE_METHOD);
BIND_CONSTANT(INTERPOLATION_NEAREST);
BIND_CONSTANT(INTERPOLATION_LINEAR);
BIND_CONSTANT(INTERPOLATION_CUBIC);
BIND_CONSTANT(UPDATE_CONTINUOUS);
BIND_CONSTANT(UPDATE_DISCRETE);
BIND_CONSTANT(UPDATE_TRIGGER);
}
void Animation::clear() {
for (int i = 0; i < tracks.size(); i++)
memdelete(tracks[i]);
tracks.clear();
loop = false;
length = 1;
}
bool Animation::_transform_track_optimize_key(const TKey<TransformKey> &t0, const TKey<TransformKey> &t1, const TKey<TransformKey> &t2, float p_alowed_linear_err, float p_alowed_angular_err, float p_max_optimizable_angle, const Vector3 &p_norm) {
real_t c = (t1.time - t0.time) / (t2.time - t0.time);
real_t t[3] = { -1, -1, -1 };
{ //translation
const Vector3 &v0 = t0.value.loc;
const Vector3 &v1 = t1.value.loc;
const Vector3 &v2 = t2.value.loc;
if (v0.distance_to(v2) < CMP_EPSILON) {
//0 and 2 are close, let's see if 1 is close
if (v0.distance_to(v1) > CMP_EPSILON) {
//not close, not optimizable
return false;
}
} else {
Vector3 pd = (v2 - v0);
float d0 = pd.dot(v0);
float d1 = pd.dot(v1);
float d2 = pd.dot(v2);
if (d1 < d0 || d1 > d2) {
return false;
}
Vector3 s[2] = { v0, v2 };
real_t d = Geometry::get_closest_point_to_segment(v1, s).distance_to(v1);
if (d > pd.length() * p_alowed_linear_err) {
return false; //beyond allowed error for colinearity
}
if (p_norm != Vector3() && Math::acos(pd.normalized().dot(p_norm)) > p_alowed_angular_err)
return false;
t[0] = (d1 - d0) / (d2 - d0);
}
}
{ //rotation
const Quat &q0 = t0.value.rot;
const Quat &q1 = t1.value.rot;
const Quat &q2 = t2.value.rot;
//localize both to rotation from q0
if ((q0 - q2).length() < CMP_EPSILON) {
if ((q0 - q1).length() > CMP_EPSILON)
return false;
} else {
Quat r02 = (q0.inverse() * q2).normalized();
Quat r01 = (q0.inverse() * q1).normalized();
Vector3 v02, v01;
real_t a02, a01;
r02.get_axis_and_angle(v02, a02);
r01.get_axis_and_angle(v01, a01);
if (Math::abs(a02) > p_max_optimizable_angle)
return false;
if (v01.dot(v02) < 0) {
//make sure both rotations go the same way to compare
v02 = -v02;
a02 = -a02;
}
real_t err_01 = Math::acos(v01.normalized().dot(v02.normalized())) / Math_PI;
if (err_01 > p_alowed_angular_err) {
//not rotating in the same axis
return false;
}
if (a01 * a02 < 0) {
//not rotating in the same direction
return false;
}
real_t tr = a01 / a02;
if (tr < 0 || tr > 1)
return false; //rotating too much or too less
t[1] = tr;
}
}
{ //scale
const Vector3 &v0 = t0.value.scale;
const Vector3 &v1 = t1.value.scale;
const Vector3 &v2 = t2.value.scale;
if (v0.distance_to(v2) < CMP_EPSILON) {
//0 and 2 are close, let's see if 1 is close
if (v0.distance_to(v1) > CMP_EPSILON) {
//not close, not optimizable
return false;
}
} else {
Vector3 pd = (v2 - v0);
float d0 = pd.dot(v0);
float d1 = pd.dot(v1);
float d2 = pd.dot(v2);
if (d1 < d0 || d1 > d2) {
return false; //beyond segment range
}
Vector3 s[2] = { v0, v2 };
real_t d = Geometry::get_closest_point_to_segment(v1, s).distance_to(v1);
if (d > pd.length() * p_alowed_linear_err) {
return false; //beyond allowed error for colinearity
}
t[2] = (d1 - d0) / (d2 - d0);
}
}
bool erase = false;
if (t[0] == -1 && t[1] == -1 && t[2] == -1) {
erase = true;
} else {
erase = true;
real_t lt = -1;
for (int j = 0; j < 3; j++) {
//search for t on first, one must be it
if (t[j] != -1) {
lt = t[j]; //official t
//validate rest
for (int k = j + 1; k < 3; k++) {
if (t[k] == -1)
continue;
if (Math::abs(lt - t[k]) > p_alowed_linear_err) {
erase = false;
break;
}
}
break;
}
}
ERR_FAIL_COND_V(lt == -1, false);
if (erase) {
if (Math::abs(lt - c) > p_alowed_linear_err) {
//todo, evaluate changing the transition if this fails?
//this could be done as a second pass and would be
//able to optimize more
erase = false;
} else {
//print_line(itos(i)+"because of interp");
}
}
}
return erase;
}
void Animation::_transform_track_optimize(int p_idx, float p_alowed_linear_err, float p_alowed_angular_err, float p_max_optimizable_angle) {
ERR_FAIL_INDEX(p_idx, tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_TRANSFORM);
TransformTrack *tt = static_cast<TransformTrack *>(tracks[p_idx]);
bool prev_erased = false;
TKey<TransformKey> first_erased;
Vector3 norm;
for (int i = 1; i < tt->transforms.size() - 1; i++) {
TKey<TransformKey> &t0 = tt->transforms[i - 1];
TKey<TransformKey> &t1 = tt->transforms[i];
TKey<TransformKey> &t2 = tt->transforms[i + 1];
bool erase = _transform_track_optimize_key(t0, t1, t2, p_alowed_linear_err, p_alowed_angular_err, p_max_optimizable_angle, norm);
if (erase && !prev_erased) {
norm = (t2.value.loc - t1.value.loc).normalized();
}
if (prev_erased && !_transform_track_optimize_key(t0, first_erased, t2, p_alowed_linear_err, p_alowed_angular_err, p_max_optimizable_angle, norm)) {
//avoid error to go beyond first erased key
erase = false;
}
if (erase) {
if (!prev_erased) {
first_erased = t1;
prev_erased = true;
}
tt->transforms.remove(i);
i--;
} else {
prev_erased = false;
norm = Vector3();
}
// print_line(itos(i)+" could be eliminated: "+rtos(tr));
//}
}
}
void Animation::optimize(float p_allowed_linear_err, float p_allowed_angular_err, float p_angle_max) {
for (int i = 0; i < tracks.size(); i++) {
if (tracks[i]->type == TYPE_TRANSFORM)
_transform_track_optimize(i, p_allowed_linear_err, p_allowed_angular_err, p_angle_max);
}
}
Animation::Animation() {
step = 0.1;
loop = false;
length = 1;
}
Animation::~Animation() {
for (int i = 0; i < tracks.size(); i++)
memdelete(tracks[i]);
}