741 lines
25 KiB
C++
741 lines
25 KiB
C++
/*************************************************************************/
|
|
/* nav_map.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "nav_map.h"
|
|
|
|
#include "nav_region.h"
|
|
#include "rvo_agent.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
|
|
|
|
void NavMap::set_up(Vector3 p_up) {
|
|
up = p_up;
|
|
regenerate_polygons = true;
|
|
}
|
|
|
|
void NavMap::set_cell_size(float p_cell_size) {
|
|
cell_size = p_cell_size;
|
|
regenerate_polygons = true;
|
|
}
|
|
|
|
void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
|
|
edge_connection_margin = p_edge_connection_margin;
|
|
regenerate_links = true;
|
|
}
|
|
|
|
gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
|
|
const int x = int(Math::floor(p_pos.x / cell_size));
|
|
const int y = int(Math::floor(p_pos.y / cell_size));
|
|
const int z = int(Math::floor(p_pos.z / cell_size));
|
|
|
|
gd::PointKey p;
|
|
p.key = 0;
|
|
p.x = x;
|
|
p.y = y;
|
|
p.z = z;
|
|
return p;
|
|
}
|
|
|
|
Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers) const {
|
|
// Find the start poly and the end poly on this map.
|
|
const gd::Polygon *begin_poly = nullptr;
|
|
const gd::Polygon *end_poly = nullptr;
|
|
Vector3 begin_point;
|
|
Vector3 end_point;
|
|
float begin_d = 1e20;
|
|
float end_d = 1e20;
|
|
// Find the initial poly and the end poly on this map.
|
|
for (size_t i(0); i < polygons.size(); i++) {
|
|
const gd::Polygon &p = polygons[i];
|
|
|
|
// Only consider the polygon if it in a region with compatible layers.
|
|
if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
|
|
continue;
|
|
}
|
|
|
|
// For each face check the distance between the origin/destination
|
|
for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
|
|
const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
|
|
|
|
Vector3 point = face.get_closest_point_to(p_origin);
|
|
float distance_to_point = point.distance_to(p_origin);
|
|
if (distance_to_point < begin_d) {
|
|
begin_d = distance_to_point;
|
|
begin_poly = &p;
|
|
begin_point = point;
|
|
}
|
|
|
|
point = face.get_closest_point_to(p_destination);
|
|
distance_to_point = point.distance_to(p_destination);
|
|
if (distance_to_point < end_d) {
|
|
end_d = distance_to_point;
|
|
end_poly = &p;
|
|
end_point = point;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for trivial cases
|
|
if (!begin_poly || !end_poly) {
|
|
return Vector<Vector3>();
|
|
}
|
|
if (begin_poly == end_poly) {
|
|
Vector<Vector3> path;
|
|
path.resize(2);
|
|
path.write[0] = begin_point;
|
|
path.write[1] = end_point;
|
|
return path;
|
|
}
|
|
|
|
// List of all reachable navigation polys.
|
|
std::vector<gd::NavigationPoly> navigation_polys;
|
|
navigation_polys.reserve(polygons.size() * 0.75);
|
|
|
|
// Add the start polygon to the reachable navigation polygons.
|
|
gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
|
|
begin_navigation_poly.self_id = 0;
|
|
begin_navigation_poly.entry = begin_point;
|
|
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
|
|
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
|
|
navigation_polys.push_back(begin_navigation_poly);
|
|
|
|
// List of polygon IDs to visit.
|
|
List<uint32_t> to_visit;
|
|
to_visit.push_back(0);
|
|
|
|
// This is an implementation of the A* algorithm.
|
|
int least_cost_id = 0;
|
|
bool found_route = false;
|
|
|
|
const gd::Polygon *reachable_end = nullptr;
|
|
float reachable_d = 1e30;
|
|
bool is_reachable = true;
|
|
|
|
gd::NavigationPoly *prev_least_cost_poly = nullptr;
|
|
|
|
while (true) {
|
|
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
|
|
for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) {
|
|
gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id];
|
|
|
|
const gd::Edge &edge = least_cost_poly->poly->edges[i];
|
|
|
|
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
|
|
for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
|
|
const gd::Edge::Connection &connection = edge.connections[connection_index];
|
|
|
|
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
|
|
if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
|
|
continue;
|
|
}
|
|
|
|
float region_enter_cost = 0.0;
|
|
float region_travel_cost = least_cost_poly->poly->owner->get_travel_cost();
|
|
|
|
if (prev_least_cost_poly != nullptr && !(prev_least_cost_poly->poly->owner->get_self() == least_cost_poly->poly->owner->get_self())) {
|
|
region_enter_cost = least_cost_poly->poly->owner->get_enter_cost();
|
|
}
|
|
prev_least_cost_poly = least_cost_poly;
|
|
|
|
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
|
|
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly->entry, pathway);
|
|
const float new_distance = (least_cost_poly->entry.distance_to(new_entry) * region_travel_cost) + region_enter_cost + least_cost_poly->traveled_distance;
|
|
|
|
const std::vector<gd::NavigationPoly>::iterator it = std::find(
|
|
navigation_polys.begin(),
|
|
navigation_polys.end(),
|
|
gd::NavigationPoly(connection.polygon));
|
|
|
|
if (it != navigation_polys.end()) {
|
|
// Polygon already visited, check if we can reduce the travel cost.
|
|
if (new_distance < it->traveled_distance) {
|
|
it->back_navigation_poly_id = least_cost_id;
|
|
it->back_navigation_edge = connection.edge;
|
|
it->back_navigation_edge_pathway_start = connection.pathway_start;
|
|
it->back_navigation_edge_pathway_end = connection.pathway_end;
|
|
it->traveled_distance = new_distance;
|
|
it->entry = new_entry;
|
|
}
|
|
} else {
|
|
// Add the neighbour polygon to the reachable ones.
|
|
gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
|
|
new_navigation_poly.self_id = navigation_polys.size();
|
|
new_navigation_poly.back_navigation_poly_id = least_cost_id;
|
|
new_navigation_poly.back_navigation_edge = connection.edge;
|
|
new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
|
|
new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
|
|
new_navigation_poly.traveled_distance = new_distance;
|
|
new_navigation_poly.entry = new_entry;
|
|
navigation_polys.push_back(new_navigation_poly);
|
|
|
|
// Add the neighbour polygon to the polygons to visit.
|
|
to_visit.push_back(navigation_polys.size() - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Removes the least cost polygon from the list of polygons to visit so we can advance.
|
|
to_visit.erase(least_cost_id);
|
|
|
|
// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
|
|
if (to_visit.size() == 0) {
|
|
// Thus use the further reachable polygon
|
|
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
|
|
is_reachable = false;
|
|
if (reachable_end == nullptr) {
|
|
// The path is not found and there is not a way out.
|
|
break;
|
|
}
|
|
|
|
// Set as end point the furthest reachable point.
|
|
end_poly = reachable_end;
|
|
end_d = 1e20;
|
|
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
|
|
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
|
|
Vector3 spoint = f.get_closest_point_to(p_destination);
|
|
float dpoint = spoint.distance_to(p_destination);
|
|
if (dpoint < end_d) {
|
|
end_point = spoint;
|
|
end_d = dpoint;
|
|
}
|
|
}
|
|
|
|
// Reset open and navigation_polys
|
|
gd::NavigationPoly np = navigation_polys[0];
|
|
navigation_polys.clear();
|
|
navigation_polys.push_back(np);
|
|
to_visit.clear();
|
|
to_visit.push_back(0);
|
|
least_cost_id = 0;
|
|
|
|
reachable_end = nullptr;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Find the polygon with the minimum cost from the list of polygons to visit.
|
|
least_cost_id = -1;
|
|
float least_cost = 1e30;
|
|
for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
|
|
gd::NavigationPoly *np = &navigation_polys[element->get()];
|
|
float cost = np->traveled_distance;
|
|
cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost());
|
|
if (cost < least_cost) {
|
|
least_cost_id = np->self_id;
|
|
least_cost = cost;
|
|
}
|
|
}
|
|
|
|
ERR_BREAK(least_cost_id == -1);
|
|
|
|
// Stores the further reachable end polygon, in case our goal is not reachable.
|
|
if (is_reachable) {
|
|
float d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost();
|
|
if (reachable_d > d) {
|
|
reachable_d = d;
|
|
reachable_end = navigation_polys[least_cost_id].poly;
|
|
}
|
|
}
|
|
|
|
// Check if we reached the end
|
|
if (navigation_polys[least_cost_id].poly == end_poly) {
|
|
found_route = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we did not find a route, return an empty path.
|
|
if (!found_route) {
|
|
return Vector<Vector3>();
|
|
}
|
|
|
|
Vector<Vector3> path;
|
|
// Optimize the path.
|
|
if (p_optimize) {
|
|
// Set the apex poly/point to the end point
|
|
gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
|
|
Vector3 apex_point = end_point;
|
|
|
|
gd::NavigationPoly *left_poly = apex_poly;
|
|
Vector3 left_portal = apex_point;
|
|
gd::NavigationPoly *right_poly = apex_poly;
|
|
Vector3 right_portal = apex_point;
|
|
|
|
gd::NavigationPoly *p = apex_poly;
|
|
|
|
path.push_back(end_point);
|
|
|
|
while (p) {
|
|
// Set left and right points of the pathway between polygons.
|
|
Vector3 left = p->back_navigation_edge_pathway_start;
|
|
Vector3 right = p->back_navigation_edge_pathway_end;
|
|
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
|
|
SWAP(left, right);
|
|
}
|
|
|
|
bool skip = false;
|
|
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
|
|
//process
|
|
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
|
|
left_poly = p;
|
|
left_portal = left;
|
|
} else {
|
|
clip_path(navigation_polys, path, apex_poly, right_portal, right_poly);
|
|
|
|
apex_point = right_portal;
|
|
p = right_poly;
|
|
left_poly = p;
|
|
apex_poly = p;
|
|
left_portal = apex_point;
|
|
right_portal = apex_point;
|
|
path.push_back(apex_point);
|
|
skip = true;
|
|
}
|
|
}
|
|
|
|
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
|
|
//process
|
|
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
|
|
right_poly = p;
|
|
right_portal = right;
|
|
} else {
|
|
clip_path(navigation_polys, path, apex_poly, left_portal, left_poly);
|
|
|
|
apex_point = left_portal;
|
|
p = left_poly;
|
|
right_poly = p;
|
|
apex_poly = p;
|
|
right_portal = apex_point;
|
|
left_portal = apex_point;
|
|
path.push_back(apex_point);
|
|
}
|
|
}
|
|
|
|
// Go to the previous polygon.
|
|
if (p->back_navigation_poly_id != -1) {
|
|
p = &navigation_polys[p->back_navigation_poly_id];
|
|
} else {
|
|
// The end
|
|
p = nullptr;
|
|
}
|
|
}
|
|
|
|
// If the last point is not the begin point, add it to the list.
|
|
if (path[path.size() - 1] != begin_point) {
|
|
path.push_back(begin_point);
|
|
}
|
|
|
|
path.reverse();
|
|
|
|
} else {
|
|
path.push_back(end_point);
|
|
|
|
// Add mid points
|
|
int np_id = least_cost_id;
|
|
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
|
|
int prev = navigation_polys[np_id].back_navigation_edge;
|
|
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
|
|
Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
|
|
path.push_back(point);
|
|
np_id = navigation_polys[np_id].back_navigation_poly_id;
|
|
}
|
|
|
|
path.push_back(begin_point);
|
|
path.reverse();
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
|
|
bool use_collision = p_use_collision;
|
|
Vector3 closest_point;
|
|
real_t closest_point_d = 1e20;
|
|
|
|
for (size_t i(0); i < polygons.size(); i++) {
|
|
const gd::Polygon &p = polygons[i];
|
|
|
|
// For each face check the distance to the segment
|
|
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
|
|
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
|
|
Vector3 inters;
|
|
if (f.intersects_segment(p_from, p_to, &inters)) {
|
|
const real_t d = closest_point_d = p_from.distance_to(inters);
|
|
if (use_collision == false) {
|
|
closest_point = inters;
|
|
use_collision = true;
|
|
closest_point_d = d;
|
|
} else if (closest_point_d > d) {
|
|
closest_point = inters;
|
|
closest_point_d = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (use_collision == false) {
|
|
for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
|
|
Vector3 a, b;
|
|
|
|
Geometry3D::get_closest_points_between_segments(
|
|
p_from,
|
|
p_to,
|
|
p.points[point_id].pos,
|
|
p.points[(point_id + 1) % p.points.size()].pos,
|
|
a,
|
|
b);
|
|
|
|
const real_t d = a.distance_to(b);
|
|
if (d < closest_point_d) {
|
|
closest_point_d = d;
|
|
closest_point = b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return closest_point;
|
|
}
|
|
|
|
Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
|
|
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
|
|
return cp.point;
|
|
}
|
|
|
|
Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
|
|
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
|
|
return cp.normal;
|
|
}
|
|
|
|
RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
|
|
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
|
|
return cp.owner;
|
|
}
|
|
|
|
gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
|
|
gd::ClosestPointQueryResult result;
|
|
real_t closest_point_ds = 1e20;
|
|
|
|
for (size_t i(0); i < polygons.size(); i++) {
|
|
const gd::Polygon &p = polygons[i];
|
|
|
|
// For each face check the distance to the point
|
|
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
|
|
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
|
|
const Vector3 inters = f.get_closest_point_to(p_point);
|
|
const real_t ds = inters.distance_squared_to(p_point);
|
|
if (ds < closest_point_ds) {
|
|
result.point = inters;
|
|
result.normal = f.get_plane().normal;
|
|
result.owner = p.owner->get_self();
|
|
closest_point_ds = ds;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void NavMap::add_region(NavRegion *p_region) {
|
|
regions.push_back(p_region);
|
|
regenerate_links = true;
|
|
}
|
|
|
|
void NavMap::remove_region(NavRegion *p_region) {
|
|
const std::vector<NavRegion *>::iterator it = std::find(regions.begin(), regions.end(), p_region);
|
|
if (it != regions.end()) {
|
|
regions.erase(it);
|
|
regenerate_links = true;
|
|
}
|
|
}
|
|
|
|
bool NavMap::has_agent(RvoAgent *agent) const {
|
|
return std::find(agents.begin(), agents.end(), agent) != agents.end();
|
|
}
|
|
|
|
void NavMap::add_agent(RvoAgent *agent) {
|
|
if (!has_agent(agent)) {
|
|
agents.push_back(agent);
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
|
|
void NavMap::remove_agent(RvoAgent *agent) {
|
|
remove_agent_as_controlled(agent);
|
|
const std::vector<RvoAgent *>::iterator it = std::find(agents.begin(), agents.end(), agent);
|
|
if (it != agents.end()) {
|
|
agents.erase(it);
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
|
|
void NavMap::set_agent_as_controlled(RvoAgent *agent) {
|
|
const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end();
|
|
if (!exist) {
|
|
ERR_FAIL_COND(!has_agent(agent));
|
|
controlled_agents.push_back(agent);
|
|
}
|
|
}
|
|
|
|
void NavMap::remove_agent_as_controlled(RvoAgent *agent) {
|
|
const std::vector<RvoAgent *>::iterator it = std::find(controlled_agents.begin(), controlled_agents.end(), agent);
|
|
if (it != controlled_agents.end()) {
|
|
controlled_agents.erase(it);
|
|
}
|
|
}
|
|
|
|
void NavMap::sync() {
|
|
// Check if we need to update the links.
|
|
if (regenerate_polygons) {
|
|
for (size_t r(0); r < regions.size(); r++) {
|
|
regions[r]->scratch_polygons();
|
|
}
|
|
regenerate_links = true;
|
|
}
|
|
|
|
for (size_t r(0); r < regions.size(); r++) {
|
|
if (regions[r]->sync()) {
|
|
regenerate_links = true;
|
|
}
|
|
}
|
|
|
|
if (regenerate_links) {
|
|
// Remove regions connections.
|
|
for (size_t r(0); r < regions.size(); r++) {
|
|
regions[r]->get_connections().clear();
|
|
}
|
|
|
|
// Resize the polygon count.
|
|
int count = 0;
|
|
for (size_t r(0); r < regions.size(); r++) {
|
|
count += regions[r]->get_polygons().size();
|
|
}
|
|
polygons.resize(count);
|
|
|
|
// Copy all region polygons in the map.
|
|
count = 0;
|
|
for (size_t r(0); r < regions.size(); r++) {
|
|
std::copy(
|
|
regions[r]->get_polygons().data(),
|
|
regions[r]->get_polygons().data() + regions[r]->get_polygons().size(),
|
|
polygons.begin() + count);
|
|
count += regions[r]->get_polygons().size();
|
|
}
|
|
|
|
// Group all edges per key.
|
|
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections;
|
|
for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) {
|
|
gd::Polygon &poly(polygons[poly_id]);
|
|
|
|
for (size_t p(0); p < poly.points.size(); p++) {
|
|
int next_point = (p + 1) % poly.points.size();
|
|
gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
|
|
|
|
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey>::Iterator connection = connections.find(ek);
|
|
if (!connection) {
|
|
connections[ek] = Vector<gd::Edge::Connection>();
|
|
}
|
|
if (connections[ek].size() <= 1) {
|
|
// Add the polygon/edge tuple to this key.
|
|
gd::Edge::Connection new_connection;
|
|
new_connection.polygon = &poly;
|
|
new_connection.edge = p;
|
|
new_connection.pathway_start = poly.points[p].pos;
|
|
new_connection.pathway_end = poly.points[next_point].pos;
|
|
connections[ek].push_back(new_connection);
|
|
} else {
|
|
// The edge is already connected with another edge, skip.
|
|
ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem.");
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector<gd::Edge::Connection> free_edges;
|
|
for (KeyValue<gd::EdgeKey, Vector<gd::Edge::Connection>> &E : connections) {
|
|
if (E.value.size() == 2) {
|
|
// Connect edge that are shared in different polygons.
|
|
gd::Edge::Connection &c1 = E.value.write[0];
|
|
gd::Edge::Connection &c2 = E.value.write[1];
|
|
c1.polygon->edges[c1.edge].connections.push_back(c2);
|
|
c2.polygon->edges[c2.edge].connections.push_back(c1);
|
|
// Note: The pathway_start/end are full for those connection and do not need to be modified.
|
|
} else {
|
|
CRASH_COND_MSG(E.value.size() != 1, vformat("Number of connection != 1. Found: %d", E.value.size()));
|
|
free_edges.push_back(E.value[0]);
|
|
}
|
|
}
|
|
|
|
// Find the compatible near edges.
|
|
//
|
|
// Note:
|
|
// Considering that the edges must be compatible (for obvious reasons)
|
|
// to be connected, create new polygons to remove that small gap is
|
|
// not really useful and would result in wasteful computation during
|
|
// connection, integration and path finding.
|
|
for (int i = 0; i < free_edges.size(); i++) {
|
|
const gd::Edge::Connection &free_edge = free_edges[i];
|
|
Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
|
|
Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
|
|
|
|
for (int j = 0; j < free_edges.size(); j++) {
|
|
const gd::Edge::Connection &other_edge = free_edges[j];
|
|
if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
|
|
continue;
|
|
}
|
|
|
|
Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
|
|
Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
|
|
|
|
// Compute the projection of the opposite edge on the current one
|
|
Vector3 edge_vector = edge_p2 - edge_p1;
|
|
float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
|
|
float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
|
|
if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
|
|
continue;
|
|
}
|
|
|
|
// Check if the two edges are close to each other enough and compute a pathway between the two regions.
|
|
Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
|
|
Vector3 other1;
|
|
if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
|
|
other1 = other_edge_p1;
|
|
} else {
|
|
other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
|
|
}
|
|
if (other1.distance_to(self1) > edge_connection_margin) {
|
|
continue;
|
|
}
|
|
|
|
Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
|
|
Vector3 other2;
|
|
if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
|
|
other2 = other_edge_p2;
|
|
} else {
|
|
other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
|
|
}
|
|
if (other2.distance_to(self2) > edge_connection_margin) {
|
|
continue;
|
|
}
|
|
|
|
// The edges can now be connected.
|
|
gd::Edge::Connection new_connection = other_edge;
|
|
new_connection.pathway_start = (self1 + other1) / 2.0;
|
|
new_connection.pathway_end = (self2 + other2) / 2.0;
|
|
free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
|
|
|
|
// Add the connection to the region_connection map.
|
|
free_edge.polygon->owner->get_connections().push_back(new_connection);
|
|
}
|
|
}
|
|
|
|
// Update the update ID.
|
|
map_update_id = (map_update_id + 1) % 9999999;
|
|
}
|
|
|
|
// Update agents tree.
|
|
if (agents_dirty) {
|
|
std::vector<RVO::Agent *> raw_agents;
|
|
raw_agents.reserve(agents.size());
|
|
for (size_t i(0); i < agents.size(); i++) {
|
|
raw_agents.push_back(agents[i]->get_agent());
|
|
}
|
|
rvo.buildAgentTree(raw_agents);
|
|
}
|
|
|
|
regenerate_polygons = false;
|
|
regenerate_links = false;
|
|
agents_dirty = false;
|
|
}
|
|
|
|
void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) {
|
|
(*(agent + index))->get_agent()->computeNeighbors(&rvo);
|
|
(*(agent + index))->get_agent()->computeNewVelocity(deltatime);
|
|
}
|
|
|
|
void NavMap::step(real_t p_deltatime) {
|
|
deltatime = p_deltatime;
|
|
if (controlled_agents.size() > 0) {
|
|
if (step_work_pool.get_thread_count() == 0) {
|
|
step_work_pool.init();
|
|
}
|
|
step_work_pool.do_work(
|
|
controlled_agents.size(),
|
|
this,
|
|
&NavMap::compute_single_step,
|
|
controlled_agents.data());
|
|
}
|
|
}
|
|
|
|
void NavMap::dispatch_callbacks() {
|
|
for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
|
|
controlled_agents[i]->dispatch_callback();
|
|
}
|
|
}
|
|
|
|
void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const {
|
|
Vector3 from = path[path.size() - 1];
|
|
|
|
if (from.is_equal_approx(p_to_point)) {
|
|
return;
|
|
}
|
|
Plane cut_plane;
|
|
cut_plane.normal = (from - p_to_point).cross(up);
|
|
if (cut_plane.normal == Vector3()) {
|
|
return;
|
|
}
|
|
cut_plane.normal.normalize();
|
|
cut_plane.d = cut_plane.normal.dot(from);
|
|
|
|
while (from_poly != p_to_poly) {
|
|
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
|
|
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
|
|
|
|
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
|
|
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
|
|
|
|
if (!pathway_start.is_equal_approx(pathway_end)) {
|
|
Vector3 inters;
|
|
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
|
|
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
|
|
path.push_back(inters);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
NavMap::NavMap() {
|
|
}
|
|
|
|
NavMap::~NavMap() {
|
|
step_work_pool.finish();
|
|
}
|