godot/core/image.cpp

2253 lines
51 KiB
C++

/*************************************************************************/
/* image.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "image.h"
#include "hash_map.h"
#include "core/io/image_loader.h"
#include "core/os/copymem.h"
#include "hq2x.h"
#include "print_string.h"
#include <stdio.h>
const char* Image::format_names[Image::FORMAT_MAX]={
"Lum8", //luminance
"LumAlpha8", //luminance-alpha
"Red8",
"RedGreen",
"RGB8",
"RGBA8",
"RGB565", //16 bit
"RGBA4444",
"RGBA5551",
"RFloat", //float
"RGFloat",
"RGBFloat",
"RGBAFloat",
"RHalf", //half float
"RGHalf",
"RGBHalf",
"RGBAHalf",
"DXT1", //s3tc
"DXT3",
"DXT5",
"ATI1",
"ATI2",
"BPTC_RGBA",
"BPTC_RGBF",
"BPTC_RGBFU",
"PVRTC2", //pvrtc
"PVRTC2A",
"PVRTC4",
"PVRTC4A",
"ETC", //etc1
"ETC2_R11", //etc2
"ETC2_R11S", //signed", NOT srgb.
"ETC2_RG11",
"ETC2_RG11S",
"ETC2_RGB8",
"ETC2_RGBA8",
"ETC2_RGB8A1",
};
SavePNGFunc Image::save_png_func = NULL;
void Image::_put_pixelb(int p_x,int p_y, uint32_t p_pixelsize,uint8_t *p_dst,const uint8_t *p_src) {
uint32_t ofs=(p_y*width+p_x)*p_pixelsize;
for(uint32_t i=0;i<p_pixelsize;i++) {
p_dst[ofs+i]=p_src[i];
}
}
void Image::_get_pixelb(int p_x,int p_y, uint32_t p_pixelsize,const uint8_t *p_src,uint8_t *p_dst) {
uint32_t ofs=(p_y*width+p_x)*p_pixelsize;
for(uint32_t i=0;i<p_pixelsize;i++) {
p_dst[ofs]=p_src[ofs+i];
}
}
int Image::get_format_pixel_size(Format p_format) {
switch(p_format) {
case FORMAT_L8: return 1; //luminance
case FORMAT_LA8: return 2; //luminance-alpha
case FORMAT_R8: return 1;
case FORMAT_RG8: return 2;
case FORMAT_RGB8: return 3;
case FORMAT_RGBA8: return 4;
case FORMAT_RGB565: return 2; //16 bit
case FORMAT_RGBA4444: return 2;
case FORMAT_RGBA5551: return 2;
case FORMAT_RF: return 4; //float
case FORMAT_RGF: return 8;
case FORMAT_RGBF: return 12;
case FORMAT_RGBAF: return 16;
case FORMAT_RH: return 2; //half float
case FORMAT_RGH: return 4;
case FORMAT_RGBH: return 8;
case FORMAT_RGBAH: return 12;
case FORMAT_DXT1: return 1; //s3tc bc1
case FORMAT_DXT3: return 1; //bc2
case FORMAT_DXT5: return 1; //bc3
case FORMAT_ATI1: return 1; //bc4
case FORMAT_ATI2: return 1; //bc5
case FORMAT_BPTC_RGBA: return 1; //btpc bc6h
case FORMAT_BPTC_RGBF: return 1; //float /
case FORMAT_BPTC_RGBFU: return 1; //unsigned float
case FORMAT_PVRTC2: return 1; //pvrtc
case FORMAT_PVRTC2A: return 1;
case FORMAT_PVRTC4: return 1;
case FORMAT_PVRTC4A: return 1;
case FORMAT_ETC: return 1; //etc1
case FORMAT_ETC2_R11: return 1; //etc2
case FORMAT_ETC2_R11S: return 1; //signed: return 1; NOT srgb.
case FORMAT_ETC2_RG11: return 1;
case FORMAT_ETC2_RG11S: return 1;
case FORMAT_ETC2_RGB8: return 1;
case FORMAT_ETC2_RGBA8: return 1;
case FORMAT_ETC2_RGB8A1: return 1;
case FORMAT_MAX: {}
}
return 0;
}
void Image::get_format_min_pixel_size(Format p_format,int &r_w, int &r_h) {
switch(p_format) {
case FORMAT_DXT1: //s3tc bc1
case FORMAT_DXT3: //bc2
case FORMAT_DXT5: //bc3
case FORMAT_ATI1: //bc4
case FORMAT_ATI2: { //bc5 case case FORMAT_DXT1:
r_w=4;
r_h=4;
} break;
case FORMAT_PVRTC2:
case FORMAT_PVRTC2A: {
r_w=16;
r_h=8;
} break;
case FORMAT_PVRTC4A:
case FORMAT_PVRTC4: {
r_w=8;
r_h=8;
} break;
case FORMAT_ETC: {
r_w=4;
r_h=4;
} break;
case FORMAT_BPTC_RGBA:
case FORMAT_BPTC_RGBF:
case FORMAT_BPTC_RGBFU: {
r_w=4;
r_h=4;
} break;
case FORMAT_ETC2_R11: //etc2
case FORMAT_ETC2_R11S: //signed: NOT srgb.
case FORMAT_ETC2_RG11:
case FORMAT_ETC2_RG11S:
case FORMAT_ETC2_RGB8:
case FORMAT_ETC2_RGBA8:
case FORMAT_ETC2_RGB8A1: {
r_w=4;
r_h=4;
} break;
default: {
r_w=1;
r_h=1;
} break;
}
}
int Image::get_format_pixel_rshift(Format p_format) {
if (p_format==FORMAT_DXT1 || p_format==FORMAT_ATI1 || p_format==FORMAT_PVRTC4 || p_format==FORMAT_PVRTC4A || p_format==FORMAT_ETC || p_format==FORMAT_ETC2_R11 || p_format==FORMAT_ETC2_R11S || p_format==FORMAT_ETC2_RGB8 || p_format==FORMAT_ETC2_RGB8A1)
return 1;
else if (p_format==FORMAT_PVRTC2 || p_format==FORMAT_PVRTC2A)
return 2;
else
return 0;
}
void Image::_get_mipmap_offset_and_size(int p_mipmap,int &r_offset, int &r_width,int &r_height) const {
int w=width;
int h=height;
int ofs=0;
int pixel_size = get_format_pixel_size(format);
int pixel_rshift = get_format_pixel_rshift(format);
int minw,minh;
get_format_min_pixel_size(format,minw,minh);
for(int i=0;i<p_mipmap;i++) {
int s = w*h;
s*=pixel_size;
s>>=pixel_rshift;
ofs+=s;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
r_offset=ofs;
r_width=w;
r_height=h;
}
int Image::get_mipmap_offset(int p_mipmap) const {
ERR_FAIL_INDEX_V(p_mipmap,get_mipmap_count()+1,-1);
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
return ofs;
}
void Image::get_mipmap_offset_and_size(int p_mipmap,int &r_ofs, int &r_size) const {
int ofs,w,h;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
int ofs2;
_get_mipmap_offset_and_size(p_mipmap+1,ofs2,w,h);
r_ofs=ofs;
r_size=ofs2-ofs;
}
void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap,int &r_ofs, int &r_size,int &w, int& h) const {
int ofs;
_get_mipmap_offset_and_size(p_mipmap,ofs,w,h);
int ofs2,w2,h2;
_get_mipmap_offset_and_size(p_mipmap+1,ofs2,w2,h2);
r_ofs=ofs;
r_size=ofs2-ofs;
}
int Image::get_width() const {
return width;
}
int Image::get_height() const{
return height;
}
bool Image::has_mipmaps() const {
return mipmaps;
}
int Image::get_mipmap_count() const {
if (mipmaps)
return get_image_required_mipmaps(width,height,format);
else
return 0;
}
//using template generates perfectly optimized code due to constant expression reduction and unused variable removal present in all compilers
template<uint32_t read_bytes,bool read_alpha,uint32_t write_bytes,bool write_alpha,bool read_gray,bool write_gray>
static void _convert( int p_width,int p_height,const uint8_t* p_src,uint8_t* p_dst ){
for(int y=0;y<p_height;y++) {
for(int x=0;x<p_width;x++) {
const uint8_t *rofs = &p_src[((y*p_width)+x)*(read_bytes+(read_alpha?1:0))];
uint8_t *wofs = &p_dst[((y*p_width)+x)*(write_bytes+(write_alpha?1:0))];
uint8_t rgba[4];
if (read_gray) {
rgba[0]=rofs[0];
rgba[1]=rofs[0];
rgba[2]=rofs[0];
} else {
for(uint32_t i=0;i<MAX(read_bytes,write_bytes);i++) {
rgba[i]=(i<read_bytes)?rofs[i]:0;
}
}
if (read_alpha || write_alpha) {
rgba[3]=read_alpha?rofs[read_bytes]:255;
}
if (write_gray) {
//TODO: not correct grayscale, should use fixed point version of actual weights
wofs[0]=uint8_t((uint16_t(rofs[0])+uint16_t(rofs[1])+uint16_t(rofs[2]))/3);
} else {
for(uint32_t i=0;i<write_bytes;i++) {
wofs[i]=rgba[i];
}
}
if (write_alpha) {
wofs[write_bytes]=rgba[3];
}
}
}
}
void Image::convert( Format p_new_format ){
if (data.size()==0)
return;
if (p_new_format==format)
return;
if (format>=FORMAT_RGB565 || p_new_format>=FORMAT_RGB565) {
ERR_EXPLAIN("Cannot convert to <-> from non byte formats.");
ERR_FAIL();
}
Image new_img(width,height,0,p_new_format);
//int len=data.size();
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Write w = new_img.data.write();
const uint8_t *rptr = r.ptr();
uint8_t *wptr = w.ptr();
int conversion_type = format | p_new_format<<8;
switch(conversion_type) {
case FORMAT_L8|(FORMAT_LA8<<8): _convert<1,false,1,true,true,true>( width, height,rptr, wptr ); break;
case FORMAT_L8|(FORMAT_R8<<8): _convert<1,false,1,false,true,false>( width, height,rptr, wptr ); break;
case FORMAT_L8|(FORMAT_RG8<<8): _convert<1,false,2,false,true,false>( width, height,rptr, wptr ); break;
case FORMAT_L8|(FORMAT_RGB8<<8): _convert<1,false,3,false,true,false>( width, height,rptr, wptr ); break;
case FORMAT_L8|(FORMAT_RGBA8<<8): _convert<1,false,3,true,true,false>( width, height,rptr, wptr ); break;
case FORMAT_LA8|(FORMAT_L8<<8): _convert<1,true,1,false,true,true>( width, height,rptr, wptr ); break;
case FORMAT_LA8|(FORMAT_R8<<8): _convert<1,true,1,false,true,false>( width, height,rptr, wptr ); break;
case FORMAT_LA8|(FORMAT_RG8<<8): _convert<1,true,2,false,true,false>( width, height,rptr, wptr ); break;
case FORMAT_LA8|(FORMAT_RGB8<<8): _convert<1,true,3,false,true,false>( width, height,rptr, wptr ); break;
case FORMAT_LA8|(FORMAT_RGBA8<<8): _convert<1,true,3,true,true,false>( width, height,rptr, wptr ); break;
case FORMAT_R8|(FORMAT_L8<<8): _convert<1,false,1,false,false,true>( width, height,rptr, wptr ); break;
case FORMAT_R8|(FORMAT_LA8<<8): _convert<1,false,1,true,false,true>( width, height,rptr, wptr ); break;
case FORMAT_R8|(FORMAT_RG8<<8): _convert<1,false,2,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_R8|(FORMAT_RGB8<<8): _convert<1,false,3,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_R8|(FORMAT_RGBA8<<8): _convert<1,false,3,true,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RG8|(FORMAT_L8<<8): _convert<2,false,1,false,false,true>( width, height,rptr, wptr ); break;
case FORMAT_RG8|(FORMAT_LA8<<8): _convert<2,false,1,true,false,true>( width, height,rptr, wptr ); break;
case FORMAT_RG8|(FORMAT_R8<<8): _convert<2,false,1,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RG8|(FORMAT_RGB8<<8): _convert<2,false,3,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RG8|(FORMAT_RGBA8<<8): _convert<2,false,3,true,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RGB8|(FORMAT_L8<<8): _convert<3,false,1,false,false,true>( width, height,rptr, wptr ); break;
case FORMAT_RGB8|(FORMAT_LA8<<8): _convert<3,false,1,true,false,true>( width, height,rptr, wptr ); break;
case FORMAT_RGB8|(FORMAT_R8<<8): _convert<3,false,1,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RGB8|(FORMAT_RG8<<8): _convert<3,false,2,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RGB8|(FORMAT_RGBA8<<8): _convert<3,false,3,true,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RGBA8|(FORMAT_L8<<8): _convert<3,true,1,false,false,true>( width, height,rptr, wptr ); break;
case FORMAT_RGBA8|(FORMAT_LA8<<8): _convert<3,true,1,true,false,true>( width, height,rptr, wptr ); break;
case FORMAT_RGBA8|(FORMAT_R8<<8): _convert<3,true,1,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RGBA8|(FORMAT_RG8<<8): _convert<3,true,2,false,false,false>( width, height,rptr, wptr ); break;
case FORMAT_RGBA8|(FORMAT_RGB8<<8): _convert<3,true,3,false,false,false>( width, height,rptr, wptr ); break;
}
r = PoolVector<uint8_t>::Read();
w = PoolVector<uint8_t>::Write();
bool gen_mipmaps=mipmaps;
//mipmaps=false;
*this=new_img;
if (gen_mipmaps)
generate_mipmaps();
}
Image::Format Image::get_format() const{
return format;
}
static double _bicubic_interp_kernel( double x ) {
x = ABS(x);
double bc = 0;
if ( x <= 1 )
bc = ( 1.5 * x - 2.5 ) * x * x + 1;
else if ( x < 2 )
bc = ( ( -0.5 * x + 2.5 ) * x - 4 ) * x + 2;
return bc;
}
template<int CC>
static void _scale_cubic(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
// get source image size
int width = p_src_width;
int height = p_src_height;
double xfac = (double) width / p_dst_width;
double yfac = (double) height / p_dst_height;
// coordinates of source points and cooefficiens
double ox, oy, dx, dy, k1, k2;
int ox1, oy1, ox2, oy2;
// destination pixel values
// width and height decreased by 1
int ymax = height - 1;
int xmax = width - 1;
// temporary pointer
for ( uint32_t y = 0; y < p_dst_height; y++ ) {
// Y coordinates
oy = (double) y * yfac - 0.5f;
oy1 = (int) oy;
dy = oy - (double) oy1;
for ( uint32_t x = 0; x < p_dst_width; x++ ) {
// X coordinates
ox = (double) x * xfac - 0.5f;
ox1 = (int) ox;
dx = ox - (double) ox1;
// initial pixel value
uint8_t *dst=p_dst + (y*p_dst_width+x)*CC;
double color[CC];
for(int i=0;i<CC;i++) {
color[i]=0;
}
for ( int n = -1; n < 3; n++ ) {
// get Y cooefficient
k1 = _bicubic_interp_kernel( dy - (double) n );
oy2 = oy1 + n;
if ( oy2 < 0 )
oy2 = 0;
if ( oy2 > ymax )
oy2 = ymax;
for ( int m = -1; m < 3; m++ ) {
// get X cooefficient
k2 = k1 * _bicubic_interp_kernel( (double) m - dx );
ox2 = ox1 + m;
if ( ox2 < 0 )
ox2 = 0;
if ( ox2 > xmax )
ox2 = xmax;
// get pixel of original image
const uint8_t *p = p_src + (oy2 * p_src_width + ox2)*CC;
for(int i=0;i<CC;i++) {
color[i]+=p[i]*k2;
}
}
}
for(int i=0;i<CC;i++) {
dst[i]=CLAMP(Math::fast_ftoi(color[i]),0,255);
}
}
}
}
template<int CC>
static void _scale_bilinear(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
enum {
FRAC_BITS=8,
FRAC_LEN=(1<<FRAC_BITS),
FRAC_MASK=FRAC_LEN-1
};
for(uint32_t i=0;i<p_dst_height;i++) {
uint32_t src_yofs_up_fp = (i*p_src_height*FRAC_LEN/p_dst_height);
uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK;
uint32_t src_yofs_up = src_yofs_up_fp >> FRAC_BITS;
uint32_t src_yofs_down = (i+1)*p_src_height/p_dst_height;
if (src_yofs_down>=p_src_height)
src_yofs_down=p_src_height-1;
//src_yofs_up*=CC;
//src_yofs_down*=CC;
uint32_t y_ofs_up = src_yofs_up * p_src_width * CC;
uint32_t y_ofs_down = src_yofs_down * p_src_width * CC;
for(uint32_t j=0;j<p_dst_width;j++) {
uint32_t src_xofs_left_fp = (j*p_src_width*FRAC_LEN/p_dst_width);
uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK;
uint32_t src_xofs_left = src_xofs_left_fp >> FRAC_BITS;
uint32_t src_xofs_right = (j+1)*p_src_width/p_dst_width;
if (src_xofs_right>=p_src_width)
src_xofs_right=p_src_width-1;
src_xofs_left*=CC;
src_xofs_right*=CC;
for(uint32_t l=0;l<CC;l++) {
uint32_t p00=p_src[y_ofs_up+src_xofs_left+l]<<FRAC_BITS;
uint32_t p10=p_src[y_ofs_up+src_xofs_right+l]<<FRAC_BITS;
uint32_t p01=p_src[y_ofs_down+src_xofs_left+l]<<FRAC_BITS;
uint32_t p11=p_src[y_ofs_down+src_xofs_right+l]<<FRAC_BITS;
uint32_t interp_up = p00+(((p10-p00)*src_xofs_frac)>>FRAC_BITS);
uint32_t interp_down = p01+(((p11-p01)*src_xofs_frac)>>FRAC_BITS);
uint32_t interp = interp_up+(((interp_down-interp_up)*src_yofs_frac)>>FRAC_BITS);
interp>>=FRAC_BITS;
p_dst[i*p_dst_width*CC+j*CC+l]=interp;
}
}
}
}
template<int CC>
static void _scale_nearest(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) {
for(uint32_t i=0;i<p_dst_height;i++) {
uint32_t src_yofs = i*p_src_height/p_dst_height;
uint32_t y_ofs = src_yofs * p_src_width * CC;
for(uint32_t j=0;j<p_dst_width;j++) {
uint32_t src_xofs = j*p_src_width/p_dst_width;
src_xofs*=CC;
for(uint32_t l=0;l<CC;l++) {
uint32_t p=p_src[y_ofs+src_xofs+l];
p_dst[i*p_dst_width*CC+j*CC+l]=p;
}
}
}
}
void Image::resize_to_po2(bool p_square) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
ERR_FAIL();
}
int w = nearest_power_of_2(width);
int h = nearest_power_of_2(height);
if (w==width && h==height) {
if (!p_square || w==h)
return; //nothing to do
}
resize(w,h);
}
Image Image::resized( int p_width, int p_height, int p_interpolation ) {
Image ret = *this;
ret.resize(p_width, p_height, (Interpolation)p_interpolation);
return ret;
};
void Image::resize( int p_width, int p_height, Interpolation p_interpolation ) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND(p_width<=0);
ERR_FAIL_COND(p_height<=0);
ERR_FAIL_COND(p_width>MAX_WIDTH);
ERR_FAIL_COND(p_height>MAX_HEIGHT);
if (p_width==width && p_height==height)
return;
Image dst( p_width, p_height, 0, format );
PoolVector<uint8_t>::Read r = data.read();
const unsigned char*r_ptr=r.ptr();
PoolVector<uint8_t>::Write w = dst.data.write();
unsigned char*w_ptr=w.ptr();
switch(p_interpolation) {
case INTERPOLATE_NEAREST: {
switch(get_format_pixel_size(format)) {
case 1: _scale_nearest<1>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 2: _scale_nearest<2>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 3: _scale_nearest<3>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 4: _scale_nearest<4>(r_ptr,w_ptr,width,height,p_width,p_height); break;
}
} break;
case INTERPOLATE_BILINEAR: {
switch(get_format_pixel_size(format)) {
case 1: _scale_bilinear<1>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 2: _scale_bilinear<2>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 3: _scale_bilinear<3>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 4: _scale_bilinear<4>(r_ptr,w_ptr,width,height,p_width,p_height); break;
}
} break;
case INTERPOLATE_CUBIC: {
switch(get_format_pixel_size(format)) {
case 1: _scale_cubic<1>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 2: _scale_cubic<2>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 3: _scale_cubic<3>(r_ptr,w_ptr,width,height,p_width,p_height); break;
case 4: _scale_cubic<4>(r_ptr,w_ptr,width,height,p_width,p_height); break;
}
} break;
}
r = PoolVector<uint8_t>::Read();
w = PoolVector<uint8_t>::Write();
if (mipmaps>0)
dst.generate_mipmaps();
*this=dst;
}
void Image::crop( int p_width, int p_height ) {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats.");
ERR_FAIL();
}
ERR_FAIL_COND(p_width<=0);
ERR_FAIL_COND(p_height<=0);
ERR_FAIL_COND(p_width>MAX_WIDTH);
ERR_FAIL_COND(p_height>MAX_HEIGHT);
/* to save memory, cropping should be done in-place, however, since this function
will most likely either not be used much, or in critical areas, for now it wont, because
it's a waste of time. */
if (p_width==width && p_height==height)
return;
uint8_t pdata[16]; //largest is 16
uint32_t pixel_size = get_format_pixel_size(format);
Image dst( p_width, p_height,0, format );
{
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Write w = dst.data.write();
for (int y=0;y<p_height;y++) {
for (int x=0;x<p_width;x++) {
if ((x>=width || y>=height)) {
for(uint32_t i=0;i<pixel_size;i++)
pdata[i]=0;
} else {
_get_pixelb(x,y,pixel_size,r.ptr(),pdata);
}
dst._put_pixelb(x,y,pixel_size,w.ptr(),pdata);
}
}
}
if (mipmaps>0)
dst.generate_mipmaps();
*this=dst;
}
void Image::flip_y() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot flip_y in indexed, compressed or custom image formats.");
ERR_FAIL();
}
bool gm=mipmaps;
if (gm)
clear_mipmaps();
{
PoolVector<uint8_t>::Write w = data.write();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y=0;y<height;y++) {
for (int x=0;x<width;x++) {
_get_pixelb(x,y,pixel_size,w.ptr(),up);
_get_pixelb(x,height-y-1,pixel_size,w.ptr(),down);
_put_pixelb(x,height-y-1,pixel_size,w.ptr(),up);
_put_pixelb(x,y,pixel_size,w.ptr(),down);
}
}
}
if (gm)
generate_mipmaps();
}
void Image::flip_x() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot flip_x in indexed, compressed or custom image formats.");
ERR_FAIL();
}
bool gm=mipmaps;
if (gm)
clear_mipmaps();
{
PoolVector<uint8_t>::Write w = data.write();
uint8_t up[16];
uint8_t down[16];
uint32_t pixel_size = get_format_pixel_size(format);
for (int y=0;y<height;y++) {
for (int x=0;x<width;x++) {
_get_pixelb(x,y,pixel_size,w.ptr(),up);
_get_pixelb(width-x-1,y,pixel_size,w.ptr(),down);
_put_pixelb(width-x-1,y,pixel_size,w.ptr(),up);
_put_pixelb(x,y,pixel_size,w.ptr(),down);
}
}
}
if (gm)
generate_mipmaps();
}
int Image::_get_dst_image_size(int p_width, int p_height, Format p_format,int &r_mipmaps,int p_mipmaps) {
int size=0;
int w=p_width;
int h=p_height;
int mm=0;
int pixsize=get_format_pixel_size(p_format);
int pixshift=get_format_pixel_rshift(p_format);
int minw,minh;
get_format_min_pixel_size(p_format,minw,minh);
while(true) {
int s = w*h;
s*=pixsize;
s>>=pixshift;
size+=s;
if (p_mipmaps>=0 && mm==p_mipmaps)
break;
if (p_mipmaps>=0) {
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
} else {
if (w==minw && h==minh)
break;
w=MAX(minw,w>>1);
h=MAX(minh,h>>1);
}
mm++;
};
r_mipmaps=mm;
return size;
}
bool Image::_can_modify(Format p_format) const {
return p_format<FORMAT_RGB565;
}
template<int CC>
static void _generate_po2_mipmap(const uint8_t* p_src, uint8_t* p_dst, uint32_t p_width, uint32_t p_height) {
//fast power of 2 mipmap generation
uint32_t dst_w = p_width >> 1;
uint32_t dst_h = p_height >> 1;
for(uint32_t i=0;i<dst_h;i++) {
const uint8_t *rup_ptr = &p_src[i*2*p_width*CC];
const uint8_t *rdown_ptr = rup_ptr + p_width * CC;
uint8_t *dst_ptr = &p_dst[i*dst_w*CC];
uint32_t count=dst_w;
while(count--) {
for(int j=0;j<CC;j++) {
uint16_t val=0;
val+=rup_ptr[j];
val+=rup_ptr[j+CC];
val+=rdown_ptr[j];
val+=rdown_ptr[j+CC];
dst_ptr[j]=val>>2;
}
dst_ptr+=CC;
rup_ptr+=CC*2;
rdown_ptr+=CC*2;
}
}
}
void Image::expand_x2_hq2x() {
ERR_FAIL_COND(!_can_modify(format));
Format current = format;
bool mm=has_mipmaps();
if (mm) {
clear_mipmaps();
}
if (current!=FORMAT_RGBA8)
convert(FORMAT_RGBA8);
PoolVector<uint8_t> dest;
dest.resize(width*2*height*2*4);
{
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Write w = dest.write();
hq2x_resize((const uint32_t*)r.ptr(),width,height,(uint32_t*)w.ptr());
}
width*=2;
height*=2;
data=dest;
if (current!=FORMAT_RGBA8)
convert(current);
if (mipmaps) {
generate_mipmaps();
}
}
void Image::shrink_x2() {
ERR_FAIL_COND( data.size()==0 );
if (mipmaps) {
//just use the lower mipmap as base and copy all
PoolVector<uint8_t> new_img;
int ofs = get_mipmap_offset(1);
int new_size = data.size()-ofs;
new_img.resize(new_size);
{
PoolVector<uint8_t>::Write w=new_img.write();
PoolVector<uint8_t>::Read r=data.read();
copymem(w.ptr(),&r[ofs],new_size);
}
width/=2;
height/=2;
data=new_img;
} else {
PoolVector<uint8_t> new_img;
ERR_FAIL_COND( !_can_modify(format) );
int ps = get_format_pixel_size(format);
new_img.resize((width/2)*(height/2)*ps);
{
PoolVector<uint8_t>::Write w=new_img.write();
PoolVector<uint8_t>::Read r=data.read();
switch(format) {
case FORMAT_L8:
case FORMAT_R8: _generate_po2_mipmap<1>(r.ptr(), w.ptr(), width,height); break;
case FORMAT_LA8: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width,height); break;
case FORMAT_RG8: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width,height); break;
case FORMAT_RGB8: _generate_po2_mipmap<3>(r.ptr(), w.ptr(), width,height); break;
case FORMAT_RGBA8: _generate_po2_mipmap<4>(r.ptr(), w.ptr(), width,height); break;
default: {}
}
}
width/=2;
height/=2;
data=new_img;
}
}
Error Image::generate_mipmaps() {
if (!_can_modify(format)) {
ERR_EXPLAIN("Cannot generate mipmaps in indexed, compressed or custom image formats.");
ERR_FAIL_V(ERR_UNAVAILABLE);
}
ERR_FAIL_COND_V(width==0 || height==0,ERR_UNCONFIGURED);
int mmcount;
int size = _get_dst_image_size(width,height,format,mmcount);
data.resize(size);
print_line("to gen mipmaps w "+itos(width)+" h "+itos(height) +" format "+get_format_name(format)+" mipmaps " +itos(mmcount)+" new size is: "+itos(size));
PoolVector<uint8_t>::Write wp=data.write();
if (nearest_power_of_2(width)==uint32_t(width) && nearest_power_of_2(height)==uint32_t(height)) {
//use fast code for powers of 2
int prev_ofs=0;
int prev_h=height;
int prev_w=width;
for(int i=1;i<mmcount;i++) {
int ofs,w,h;
_get_mipmap_offset_and_size(i,ofs, w,h);
switch(format) {
case FORMAT_L8:
case FORMAT_R8: _generate_po2_mipmap<1>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
case FORMAT_LA8:
case FORMAT_RG8: _generate_po2_mipmap<2>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
case FORMAT_RGB8: _generate_po2_mipmap<3>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
case FORMAT_RGBA8: _generate_po2_mipmap<4>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h); break;
default: {}
}
prev_ofs=ofs;
prev_w=w;
prev_h=h;
}
} else {
//use slow code..
//use bilinear filtered code for non powers of 2
int prev_ofs=0;
int prev_h=height;
int prev_w=width;
for(int i=1;i<mmcount;i++) {
int ofs,w,h;
_get_mipmap_offset_and_size(i,ofs, w,h);
switch(format) {
case FORMAT_L8:
case FORMAT_R8: _scale_bilinear<1>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
case FORMAT_LA8:
case FORMAT_RG8: _scale_bilinear<2>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
case FORMAT_RGB8:_scale_bilinear<3>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
case FORMAT_RGBA8: _scale_bilinear<4>(&wp[prev_ofs], &wp[ofs], prev_w,prev_h,w,h); break;
default: {}
}
prev_ofs=ofs;
prev_w=w;
prev_h=h;
}
}
mipmaps=true;
return OK;
}
void Image::clear_mipmaps() {
if (!mipmaps)
return;
if (empty())
return;
int ofs,w,h;
_get_mipmap_offset_and_size(1,ofs,w,h);
data.resize(ofs);
mipmaps=false;
}
bool Image::empty() const {
return (data.size()==0);
}
PoolVector<uint8_t> Image::get_data() const {
return data;
}
void Image::create(int p_width, int p_height, bool p_use_mipmaps,Format p_format) {
int mm=0;
int size = _get_dst_image_size(p_width,p_height,p_format,mm,p_use_mipmaps?-1:0);
data.resize( size );
{
PoolVector<uint8_t>::Write w= data.write();
zeromem(w.ptr(),size);
}
width=p_width;
height=p_height;
mipmaps=p_use_mipmaps;
format=p_format;
}
void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format, const PoolVector<uint8_t>& p_data) {
ERR_FAIL_INDEX(p_width-1,MAX_WIDTH);
ERR_FAIL_INDEX(p_height-1,MAX_HEIGHT);
int mm;
int size = _get_dst_image_size(p_width,p_height,p_format,mm,p_use_mipmaps?-1:0);
if (size!=p_data.size()) {
ERR_EXPLAIN("Expected data size of "+itos(size)+" in Image::create()");
ERR_FAIL_COND(p_data.size()!=size);
}
height=p_height;
width=p_width;
format=p_format;
data=p_data;
mipmaps=p_use_mipmaps;
}
void Image::create( const char ** p_xpm ) {
int size_width,size_height;
int pixelchars=0;
mipmaps=false;
bool has_alpha=false;
enum Status {
READING_HEADER,
READING_COLORS,
READING_PIXELS,
DONE
};
Status status = READING_HEADER;
int line=0;
HashMap<String,Color> colormap;
int colormap_size;
uint32_t pixel_size;
PoolVector<uint8_t>::Write w;
while (status!=DONE) {
const char * line_ptr = p_xpm[line];
switch (status) {
case READING_HEADER: {
String line_str=line_ptr;
line_str.replace("\t"," ");
size_width=line_str.get_slicec(' ',0).to_int();
size_height=line_str.get_slicec(' ',1).to_int();
colormap_size=line_str.get_slicec(' ',2).to_int();
pixelchars=line_str.get_slicec(' ',3).to_int();
ERR_FAIL_COND(colormap_size > 32766);
ERR_FAIL_COND(pixelchars > 5);
ERR_FAIL_COND(size_width > 32767);
ERR_FAIL_COND(size_height > 32767);
status=READING_COLORS;
} break;
case READING_COLORS: {
String colorstring;
for (int i=0;i<pixelchars;i++) {
colorstring+=*line_ptr;
line_ptr++;
}
//skip spaces
while (*line_ptr==' ' || *line_ptr=='\t' || *line_ptr==0) {
if (*line_ptr==0)
break;
line_ptr++;
}
if (*line_ptr=='c') {
line_ptr++;
while (*line_ptr==' ' || *line_ptr=='\t' || *line_ptr==0) {
if (*line_ptr==0)
break;
line_ptr++;
}
if (*line_ptr=='#') {
line_ptr++;
uint8_t col_r;
uint8_t col_g;
uint8_t col_b;
//uint8_t col_a=255;
for (int i=0;i<6;i++) {
char v = line_ptr[i];
if (v>='0' && v<='9')
v-='0';
else if (v>='A' && v<='F')
v=(v-'A')+10;
else if (v>='a' && v<='f')
v=(v-'a')+10;
else
break;
switch(i) {
case 0: col_r=v<<4; break;
case 1: col_r|=v; break;
case 2: col_g=v<<4; break;
case 3: col_g|=v; break;
case 4: col_b=v<<4; break;
case 5: col_b|=v; break;
};
}
// magenta mask
if (col_r==255 && col_g==0 && col_b==255) {
colormap[colorstring]=Color(0,0,0,0);
has_alpha=true;
} else {
colormap[colorstring]=Color(col_r/255.0,col_g/255.0,col_b/255.0,1.0);
}
}
}
if (line==colormap_size) {
status=READING_PIXELS;
create(size_width,size_height,0,has_alpha?FORMAT_RGBA8:FORMAT_RGB8);
w=data.write();
pixel_size=has_alpha?4:3;
}
} break;
case READING_PIXELS: {
int y=line-colormap_size-1;
for (int x=0;x<size_width;x++) {
char pixelstr[6]={0,0,0,0,0,0};
for (int i=0;i<pixelchars;i++)
pixelstr[i]=line_ptr[x*pixelchars+i];
Color *colorptr = colormap.getptr(pixelstr);
ERR_FAIL_COND(!colorptr);
uint8_t pixel[4];
for(uint32_t i=0;i<pixel_size;i++) {
pixel[i]=CLAMP((*colorptr)[i]*255,0,255);
}
_put_pixelb(x,y,pixel_size,w.ptr(),pixel);
}
if (y==(size_height-1))
status=DONE;
} break;
default:{}
}
line++;
}
}
#define DETECT_ALPHA_MAX_TRESHOLD 254
#define DETECT_ALPHA_MIN_TRESHOLD 2
#define DETECT_ALPHA( m_value )\
{ \
uint8_t value=m_value;\
if (value<DETECT_ALPHA_MIN_TRESHOLD)\
bit=true;\
else if (value<DETECT_ALPHA_MAX_TRESHOLD) {\
\
detected=true;\
break;\
}\
}
#define DETECT_NON_ALPHA( m_value )\
{ \
uint8_t value=m_value;\
if (value>0) {\
\
detected=true;\
break;\
}\
}
bool Image::is_invisible() const {
if (format==FORMAT_L8 ||
format==FORMAT_RGB8 || format==FORMAT_RG8)
return false;
int len = data.size();
if (len==0)
return true;
int w,h;
_get_mipmap_offset_and_size(1,len,w,h);
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *data_ptr=r.ptr();
bool detected=false;
switch(format) {
case FORMAT_LA8: {
for(int i=0;i<(len>>1);i++) {
DETECT_NON_ALPHA(data_ptr[(i<<1)+1]);
}
} break;
case FORMAT_RGBA8: {
for(int i=0;i<(len>>2);i++) {
DETECT_NON_ALPHA(data_ptr[(i<<2)+3])
}
} break;
case FORMAT_PVRTC2A:
case FORMAT_PVRTC4A:
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected=true;
} break;
default: {}
}
return !detected;
}
Image::AlphaMode Image::detect_alpha() const {
int len = data.size();
if (len==0)
return ALPHA_NONE;
int w,h;
_get_mipmap_offset_and_size(1,len,w,h);
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *data_ptr=r.ptr();
bool bit=false;
bool detected=false;
switch(format) {
case FORMAT_LA8: {
for(int i=0;i<(len>>1);i++) {
DETECT_ALPHA(data_ptr[(i<<1)+1]);
}
} break;
case FORMAT_RGBA8: {
for(int i=0;i<(len>>2);i++) {
DETECT_ALPHA(data_ptr[(i<<2)+3])
}
} break;
case FORMAT_PVRTC2A:
case FORMAT_PVRTC4A:
case FORMAT_DXT3:
case FORMAT_DXT5: {
detected=true;
} break;
default: {}
}
if (detected)
return ALPHA_BLEND;
else if (bit)
return ALPHA_BIT;
else
return ALPHA_NONE;
}
Error Image::load(const String& p_path) {
return ImageLoader::load_image(p_path, this);
}
Error Image::save_png(const String& p_path) {
if (save_png_func == NULL)
return ERR_UNAVAILABLE;
return save_png_func(p_path, *this);
}
bool Image::operator==(const Image& p_image) const {
if (data.size() == 0 && p_image.data.size() == 0)
return true;
PoolVector<uint8_t>::Read r = data.read();
PoolVector<uint8_t>::Read pr = p_image.data.read();
return r.ptr() == pr.ptr();
}
int Image::get_image_data_size(int p_width, int p_height, Format p_format,int p_mipmaps) {
int mm;
return _get_dst_image_size(p_width,p_height,p_format,mm,p_mipmaps);
}
int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) {
int mm;
_get_dst_image_size(p_width,p_height,p_format,mm,-1);
return mm;
}
Error Image::_decompress_bc() {
int wd=width,ht=height;
if (wd%4!=0) {
wd+=4-(wd%4);
}
if (ht%4!=0) {
ht+=4-(ht%4);
}
int mm;
int size = _get_dst_image_size(wd,ht,FORMAT_RGBA8,mm);
PoolVector<uint8_t> newdata;
newdata.resize(size);
PoolVector<uint8_t>::Write w = newdata.write();
PoolVector<uint8_t>::Read r = data.read();
int rofs=0;
int wofs=0;
//print_line("width: "+itos(wd)+" height: "+itos(ht));
for(int i=0;i<=mm;i++) {
switch(format) {
case FORMAT_DXT1: {
int len = (wd*ht)/16;
uint8_t* dst=&w[wofs];
uint32_t ofs_table[16];
for(int x=0;x<4;x++) {
for(int y=0;y<4;y++) {
ofs_table[15-(y*4+(3-x))]=(x+y*wd)*4;
}
}
for(int j=0;j<len;j++) {
const uint8_t* src=&r[rofs+j*8];
uint16_t col_a=src[1];
col_a<<=8;
col_a|=src[0];
uint16_t col_b=src[3];
col_b<<=8;
col_b|=src[2];
uint8_t table[4][4]={
{ uint8_t((col_a>>11)<<3), uint8_t(((col_a>>5)&0x3f)<<2),uint8_t(((col_a)&0x1f)<<3), 255 },
{ uint8_t((col_b>>11)<<3), uint8_t(((col_b>>5)&0x3f)<<2),uint8_t(((col_b)&0x1f)<<3), 255 },
{0,0,0,255},
{0,0,0,255}
};
if (col_a<col_b) {
//punchrough
table[2][0]=(int(table[0][0])+int(table[1][0]))>>1;
table[2][1]=(int(table[0][1])+int(table[1][1]))>>1;
table[2][2]=(int(table[0][2])+int(table[1][2]))>>1;
table[3][3]=0; //premul alpha black
} else {
//gradient
table[2][0]=(int(table[0][0])*2+int(table[1][0]))/3;
table[2][1]=(int(table[0][1])*2+int(table[1][1]))/3;
table[2][2]=(int(table[0][2])*2+int(table[1][2]))/3;
table[3][0]=(int(table[0][0])+int(table[1][0])*2)/3;
table[3][1]=(int(table[0][1])+int(table[1][1])*2)/3;
table[3][2]=(int(table[0][2])+int(table[1][2])*2)/3;
}
uint32_t block=src[4];
block<<=8;
block|=src[5];
block<<=8;
block|=src[6];
block<<=8;
block|=src[7];
int y = (j/(wd/4))*4;
int x = (j%(wd/4))*4;
int pixofs = (y*wd+x)*4;
for(int k=0;k<16;k++) {
int idx = pixofs+ofs_table[k];
dst[idx+0]=table[block&0x3][0];
dst[idx+1]=table[block&0x3][1];
dst[idx+2]=table[block&0x3][2];
dst[idx+3]=table[block&0x3][3];
block>>=2;
}
}
rofs+=len*8;
wofs+=wd*ht*4;
wd/=2;
ht/=2;
} break;
case FORMAT_DXT3: {
int len = (wd*ht)/16;
uint8_t* dst=&w[wofs];
uint32_t ofs_table[16];
for(int x=0;x<4;x++) {
for(int y=0;y<4;y++) {
ofs_table[15-(y*4+(3-x))]=(x+y*wd)*4;
}
}
for(int j=0;j<len;j++) {
const uint8_t* src=&r[rofs+j*16];
uint64_t ablock=src[1];
ablock<<=8;
ablock|=src[0];
ablock<<=8;
ablock|=src[3];
ablock<<=8;
ablock|=src[2];
ablock<<=8;
ablock|=src[5];
ablock<<=8;
ablock|=src[4];
ablock<<=8;
ablock|=src[7];
ablock<<=8;
ablock|=src[6];
uint16_t col_a=src[8+1];
col_a<<=8;
col_a|=src[8+0];
uint16_t col_b=src[8+3];
col_b<<=8;
col_b|=src[8+2];
uint8_t table[4][4]={
{ uint8_t((col_a>>11)<<3), uint8_t(((col_a>>5)&0x3f)<<2),uint8_t(((col_a)&0x1f)<<3), 255 },
{ uint8_t((col_b>>11)<<3), uint8_t(((col_b>>5)&0x3f)<<2),uint8_t(((col_b)&0x1f)<<3), 255 },
{0,0,0,255},
{0,0,0,255}
};
//always gradient
table[2][0]=(int(table[0][0])*2+int(table[1][0]))/3;
table[2][1]=(int(table[0][1])*2+int(table[1][1]))/3;
table[2][2]=(int(table[0][2])*2+int(table[1][2]))/3;
table[3][0]=(int(table[0][0])+int(table[1][0])*2)/3;
table[3][1]=(int(table[0][1])+int(table[1][1])*2)/3;
table[3][2]=(int(table[0][2])+int(table[1][2])*2)/3;
uint32_t block=src[4+8];
block<<=8;
block|=src[5+8];
block<<=8;
block|=src[6+8];
block<<=8;
block|=src[7+8];
int y = (j/(wd/4))*4;
int x = (j%(wd/4))*4;
int pixofs = (y*wd+x)*4;
for(int k=0;k<16;k++) {
uint8_t alpha = ablock&0xf;
alpha=int(alpha)*255/15; //right way for alpha
int idx = pixofs+ofs_table[k];
dst[idx+0]=table[block&0x3][0];
dst[idx+1]=table[block&0x3][1];
dst[idx+2]=table[block&0x3][2];
dst[idx+3]=alpha;
block>>=2;
ablock>>=4;
}
}
rofs+=len*16;
wofs+=wd*ht*4;
wd/=2;
ht/=2;
} break;
case FORMAT_DXT5: {
int len = (wd*ht)/16;
uint8_t* dst=&w[wofs];
uint32_t ofs_table[16];
for(int x=0;x<4;x++) {
for(int y=0;y<4;y++) {
ofs_table[15-(y*4+(3-x))]=(x+y*wd)*4;
}
}
for(int j=0;j<len;j++) {
const uint8_t* src=&r[rofs+j*16];
uint8_t a_start=src[1];
uint8_t a_end=src[0];
uint64_t ablock=src[3];
ablock<<=8;
ablock|=src[2];
ablock<<=8;
ablock|=src[5];
ablock<<=8;
ablock|=src[4];
ablock<<=8;
ablock|=src[7];
ablock<<=8;
ablock|=src[6];
uint8_t atable[8];
if (a_start>a_end) {
atable[0]=(int(a_start)*7+int(a_end)*0)/7;
atable[1]=(int(a_start)*6+int(a_end)*1)/7;
atable[2]=(int(a_start)*5+int(a_end)*2)/7;
atable[3]=(int(a_start)*4+int(a_end)*3)/7;
atable[4]=(int(a_start)*3+int(a_end)*4)/7;
atable[5]=(int(a_start)*2+int(a_end)*5)/7;
atable[6]=(int(a_start)*1+int(a_end)*6)/7;
atable[7]=(int(a_start)*0+int(a_end)*7)/7;
} else {
atable[0]=(int(a_start)*5+int(a_end)*0)/5;
atable[1]=(int(a_start)*4+int(a_end)*1)/5;
atable[2]=(int(a_start)*3+int(a_end)*2)/5;
atable[3]=(int(a_start)*2+int(a_end)*3)/5;
atable[4]=(int(a_start)*1+int(a_end)*4)/5;
atable[5]=(int(a_start)*0+int(a_end)*5)/5;
atable[6]=0;
atable[7]=255;
}
uint16_t col_a=src[8+1];
col_a<<=8;
col_a|=src[8+0];
uint16_t col_b=src[8+3];
col_b<<=8;
col_b|=src[8+2];
uint8_t table[4][4]={
{ uint8_t((col_a>>11)<<3), uint8_t(((col_a>>5)&0x3f)<<2),uint8_t(((col_a)&0x1f)<<3), 255 },
{ uint8_t((col_b>>11)<<3), uint8_t(((col_b>>5)&0x3f)<<2),uint8_t(((col_b)&0x1f)<<3), 255 },
{0,0,0,255},
{0,0,0,255}
};
//always gradient
table[2][0]=(int(table[0][0])*2+int(table[1][0]))/3;
table[2][1]=(int(table[0][1])*2+int(table[1][1]))/3;
table[2][2]=(int(table[0][2])*2+int(table[1][2]))/3;
table[3][0]=(int(table[0][0])+int(table[1][0])*2)/3;
table[3][1]=(int(table[0][1])+int(table[1][1])*2)/3;
table[3][2]=(int(table[0][2])+int(table[1][2])*2)/3;
uint32_t block=src[4+8];
block<<=8;
block|=src[5+8];
block<<=8;
block|=src[6+8];
block<<=8;
block|=src[7+8];
int y = (j/(wd/4))*4;
int x = (j%(wd/4))*4;
int pixofs = (y*wd+x)*4;
for(int k=0;k<16;k++) {
uint8_t alpha = ablock&0x7;
int idx = pixofs+ofs_table[k];
dst[idx+0]=table[block&0x3][0];
dst[idx+1]=table[block&0x3][1];
dst[idx+2]=table[block&0x3][2];
dst[idx+3]=atable[alpha];
block>>=2;
ablock>>=3;
}
}
rofs+=len*16;
wofs+=wd*ht*4;
wd/=2;
ht/=2;
} break;
default: {}
}
}
w=PoolVector<uint8_t>::Write();
r=PoolVector<uint8_t>::Read();
data=newdata;
format=FORMAT_RGBA8;
if (wd!=width || ht!=height) {
SWAP(width,wd);
SWAP(height,ht);
crop(wd,ht);
}
return OK;
}
bool Image::is_compressed() const {
return format>=FORMAT_RGB565;
}
Image Image::decompressed() const {
Image img=*this;
img.decompress();
return img;
}
Error Image::decompress() {
if (format>=FORMAT_DXT1 && format<=FORMAT_ATI2 )
_decompress_bc();//_image_decompress_bc(this);
else if (format>=FORMAT_PVRTC2 && format<=FORMAT_PVRTC4A&& _image_decompress_pvrtc)
_image_decompress_pvrtc(this);
else if (format==FORMAT_ETC && _image_decompress_etc)
_image_decompress_etc(this);
else if (format>=FORMAT_ETC2_R11 && format<=FORMAT_ETC2_RGB8A1 && _image_decompress_etc)
_image_decompress_etc2(this);
else
return ERR_UNAVAILABLE;
return OK;
}
Error Image::compress(CompressMode p_mode) {
switch(p_mode) {
case COMPRESS_16BIT: {
//ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
//_image_compress_bc_func(this);
} break;
case COMPRESS_S3TC: {
ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE);
_image_compress_bc_func(this);
} break;
case COMPRESS_PVRTC2: {
ERR_FAIL_COND_V(!_image_compress_pvrtc2_func, ERR_UNAVAILABLE);
_image_compress_pvrtc2_func(this);
} break;
case COMPRESS_PVRTC4: {
ERR_FAIL_COND_V(!_image_compress_pvrtc4_func, ERR_UNAVAILABLE);
_image_compress_pvrtc4_func(this);
} break;
case COMPRESS_ETC: {
ERR_FAIL_COND_V(!_image_compress_etc_func, ERR_UNAVAILABLE);
_image_compress_etc_func(this);
} break;
case COMPRESS_ETC2: {
ERR_FAIL_COND_V(!_image_compress_etc_func, ERR_UNAVAILABLE);
_image_compress_etc_func(this);
} break;
}
return OK;
}
Image Image::compressed(int p_mode) {
Image ret = *this;
ret.compress((Image::CompressMode)p_mode);
return ret;
}
Image::Image(const char **p_xpm) {
width=0;
height=0;
mipmaps=false;
format=FORMAT_L8;
create(p_xpm);
}
Image::Image(int p_width, int p_height,bool p_use_mipmaps, Format p_format) {
width=0;
height=0;
mipmaps=p_use_mipmaps;
format=FORMAT_L8;
create(p_width,p_height,p_use_mipmaps,p_format);
}
Image::Image(int p_width, int p_height, bool p_mipmaps, Format p_format, const PoolVector<uint8_t>& p_data) {
width=0;
height=0;
mipmaps=p_mipmaps;
format=FORMAT_L8;
create(p_width,p_height,p_mipmaps,p_format,p_data);
}
Rect2 Image::get_used_rect() const {
if (format!=FORMAT_LA8 && format!=FORMAT_RGBA8)
return Rect2(Point2(),Size2(width,height));
int len = data.size();
if (len==0)
return Rect2();
//int data_size = len;
PoolVector<uint8_t>::Read r = data.read();
const unsigned char *rptr=r.ptr();
int ps = format==FORMAT_LA8?2:4;
int minx=0xFFFFFF,miny=0xFFFFFFF;
int maxx=-1,maxy=-1;
for(int j=0;j<height;j++) {
for(int i=0;i<width;i++) {
bool opaque = rptr[(j*width+i)*ps+(ps-1)]>2;
if (!opaque)
continue;
if (i>maxx)
maxx=i;
if (j>maxy)
maxy=j;
if (i<minx)
minx=i;
if (j<miny)
miny=j;
}
}
if (maxx==-1)
return Rect2();
else
return Rect2(minx,miny,maxx-minx+1,maxy-miny+1);
}
Image Image::get_rect(const Rect2& p_area) const {
Image img(p_area.size.x, p_area.size.y, mipmaps, format);
img.blit_rect(*this, p_area, Point2(0, 0));
return img;
}
void Image::blit_rect(const Image& p_src, const Rect2& p_src_rect,const Point2& p_dest) {
int dsize=data.size();
int srcdsize=p_src.data.size();
ERR_FAIL_COND( dsize==0 );
ERR_FAIL_COND( srcdsize==0 );
ERR_FAIL_COND( format!=p_src.format );
Rect2i local_src_rect = Rect2i(0,0,width,height).clip( Rect2i(p_dest+p_src_rect.pos,p_src_rect.size) );
if (local_src_rect.size.x<=0 || local_src_rect.size.y<=0)
return;
Rect2i src_rect( p_src_rect.pos + ( local_src_rect.pos - p_dest), local_src_rect.size );
PoolVector<uint8_t>::Write wp = data.write();
uint8_t *dst_data_ptr=wp.ptr();
PoolVector<uint8_t>::Read rp = p_src.data.read();
const uint8_t *src_data_ptr=rp.ptr();
int pixel_size=get_format_pixel_size(format);
for(int i=0;i<src_rect.size.y;i++) {
for(int j=0;j<src_rect.size.x;j++) {
int src_x = src_rect.pos.x+j;
int src_y = src_rect.pos.y+i;
int dst_x = local_src_rect.pos.x+j;
int dst_y = local_src_rect.pos.y+i;
const uint8_t *src = &src_data_ptr[ (src_y*p_src.width+src_x)*pixel_size];
uint8_t *dst = &dst_data_ptr[ (dst_y*width+dst_x)*pixel_size];
for(int k=0;k<pixel_size;k++) {
dst[k]=src[k];
}
}
}
}
Image (*Image::_png_mem_loader_func)(const uint8_t*,int)=NULL;
Image (*Image::_jpg_mem_loader_func)(const uint8_t*,int)=NULL;
void (*Image::_image_compress_bc_func)(Image *)=NULL;
void (*Image::_image_compress_pvrtc2_func)(Image *)=NULL;
void (*Image::_image_compress_pvrtc4_func)(Image *)=NULL;
void (*Image::_image_compress_etc_func)(Image *)=NULL;
void (*Image::_image_compress_etc2_func)(Image *)=NULL;
void (*Image::_image_decompress_pvrtc)(Image *)=NULL;
void (*Image::_image_decompress_bc)(Image *)=NULL;
void (*Image::_image_decompress_etc)(Image *)=NULL;
void (*Image::_image_decompress_etc2)(Image *)=NULL;
PoolVector<uint8_t> (*Image::lossy_packer)(const Image& ,float )=NULL;
Image (*Image::lossy_unpacker)(const PoolVector<uint8_t>& )=NULL;
PoolVector<uint8_t> (*Image::lossless_packer)(const Image& )=NULL;
Image (*Image::lossless_unpacker)(const PoolVector<uint8_t>& )=NULL;
void Image::set_compress_bc_func(void (*p_compress_func)(Image *)) {
_image_compress_bc_func=p_compress_func;
}
void Image::normalmap_to_xy() {
convert(Image::FORMAT_RGBA8);
{
int len = data.size()/4;
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<len;i++) {
data_ptr[(i<<2)+3]=data_ptr[(i<<2)+0]; //x to w
data_ptr[(i<<2)+0]=data_ptr[(i<<2)+1]; //y to xz
data_ptr[(i<<2)+2]=data_ptr[(i<<2)+1];
}
}
convert(Image::FORMAT_LA8);
}
void Image::srgb_to_linear() {
if (data.size()==0)
return;
static const uint8_t srgb2lin[256]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252};
ERR_FAIL_COND( format!=FORMAT_RGB8 && format!=FORMAT_RGBA8 );
if (format==FORMAT_RGBA8) {
int len = data.size()/4;
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<len;i++) {
data_ptr[(i<<2)+0]=srgb2lin[ data_ptr[(i<<2)+0] ];
data_ptr[(i<<2)+1]=srgb2lin[ data_ptr[(i<<2)+1] ];
data_ptr[(i<<2)+2]=srgb2lin[ data_ptr[(i<<2)+2] ];
}
} else if (format==FORMAT_RGB8) {
int len = data.size()/3;
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<len;i++) {
data_ptr[(i*3)+0]=srgb2lin[ data_ptr[(i*3)+0] ];
data_ptr[(i*3)+1]=srgb2lin[ data_ptr[(i*3)+1] ];
data_ptr[(i*3)+2]=srgb2lin[ data_ptr[(i*3)+2] ];
}
}
}
void Image::premultiply_alpha() {
if (data.size()==0)
return;
if (format!=FORMAT_RGBA8)
return; //not needed
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
for(int i=0;i<height;i++) {
for(int j=0;j<width;j++) {
uint8_t *ptr = &data_ptr[(i*width+j)*4];
ptr[0]=(uint16_t(ptr[0])*uint16_t(ptr[3]))>>8;
ptr[1]=(uint16_t(ptr[1])*uint16_t(ptr[3]))>>8;
ptr[2]=(uint16_t(ptr[2])*uint16_t(ptr[3]))>>8;
}
}
}
void Image::fix_alpha_edges() {
if (data.size()==0)
return;
if (format!=FORMAT_RGBA8)
return; //not needed
PoolVector<uint8_t> dcopy = data;
PoolVector<uint8_t>::Read rp = dcopy.read();
const uint8_t *srcptr=rp.ptr();
PoolVector<uint8_t>::Write wp = data.write();
unsigned char *data_ptr=wp.ptr();
const int max_radius=4;
const int alpha_treshold=20;
const int max_dist=0x7FFFFFFF;
for(int i=0;i<height;i++) {
for(int j=0;j<width;j++) {
const uint8_t *rptr = &srcptr[(i*width+j)*4];
uint8_t *wptr = &data_ptr[(i*width+j)*4];
if (rptr[3]>=alpha_treshold)
continue;
int closest_dist=max_dist;
uint8_t closest_color[3];
int from_x = MAX(0,j-max_radius);
int to_x = MIN(width-1,j+max_radius);
int from_y = MAX(0,i-max_radius);
int to_y = MIN(height-1,i+max_radius);
for(int k=from_y;k<=to_y;k++) {
for(int l=from_x;l<=to_x;l++) {
int dy = i-k;
int dx = j-l;
int dist = dy*dy+dx*dx;
if (dist>=closest_dist)
continue;
const uint8_t * rp = &srcptr[(k*width+l)<<2];
if (rp[3]<alpha_treshold)
continue;
closest_color[0]=rp[0];
closest_color[1]=rp[1];
closest_color[2]=rp[2];
}
}
if (closest_dist!=max_dist) {
wptr[0]=closest_color[0];
wptr[1]=closest_color[1];
wptr[2]=closest_color[2];
}
}
}
}
String Image::get_format_name(Format p_format) {
ERR_FAIL_INDEX_V(p_format,FORMAT_MAX,String());
return format_names[p_format];
}
Image::Image(const uint8_t* p_mem_png_jpg, int p_len) {
width=0;
height=0;
mipmaps=false;
format=FORMAT_L8;
if (_png_mem_loader_func) {
*this = _png_mem_loader_func(p_mem_png_jpg,p_len);
}
if (empty() && _jpg_mem_loader_func) {
*this = _jpg_mem_loader_func(p_mem_png_jpg,p_len);
}
}
Image::Image() {
width=0;
height=0;
mipmaps=false;
format = FORMAT_L8;
}
Image::~Image() {
}