godot/modules/gdnavigation/navigation_mesh_generator.cpp

575 lines
19 KiB
C++

/*************************************************************************/
/* navigation_mesh_generator.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef _3D_DISABLED
#include "navigation_mesh_generator.h"
#include "core/math/quick_hull.h"
#include "core/os/thread.h"
#include "scene/3d/collision_shape.h"
#include "scene/3d/mesh_instance.h"
#include "scene/3d/physics_body.h"
#include "scene/resources/box_shape.h"
#include "scene/resources/capsule_shape.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "scene/resources/cylinder_shape.h"
#include "scene/resources/primitive_meshes.h"
#include "scene/resources/shape.h"
#include "scene/resources/sphere_shape.h"
#include "scene/resources/world_margin_shape.h"
#include "modules/modules_enabled.gen.h"
#ifdef TOOLS_ENABLED
#include "editor/editor_node.h"
#include "editor/editor_settings.h"
#endif
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
#ifdef MODULE_GRIDMAP_ENABLED
#include "modules/gridmap/grid_map.h"
#endif
NavigationMeshGenerator *NavigationMeshGenerator::singleton = NULL;
void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_verticies) {
p_verticies.push_back(p_vec3.x);
p_verticies.push_back(p_vec3.y);
p_verticies.push_back(p_vec3.z);
}
void NavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform &p_xform, Vector<float> &p_verticies, Vector<int> &p_indices) {
int current_vertex_count;
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
current_vertex_count = p_verticies.size() / 3;
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
continue;
int index_count = 0;
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
index_count = p_mesh->surface_get_array_index_len(i);
} else {
index_count = p_mesh->surface_get_array_len(i);
}
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
int face_count = index_count / 3;
Array a = p_mesh->surface_get_arrays(i);
Vector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
const Vector3 *vr = mesh_vertices.ptr();
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
const int *ir = mesh_indices.ptr();
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_verticies);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
} else {
face_count = mesh_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(vr[j * 3 + 0]), p_verticies);
_add_vertex(p_xform.xform(vr[j * 3 + 2]), p_verticies);
_add_vertex(p_xform.xform(vr[j * 3 + 1]), p_verticies);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
}
}
}
}
void NavigationMeshGenerator::_add_faces(const PackedVector3Array &p_faces, const Transform &p_xform, Vector<float> &p_verticies, Vector<int> &p_indices) {
int face_count = p_faces.size() / 3;
int current_vertex_count = p_verticies.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_verticies);
_add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_verticies);
_add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_verticies);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
}
}
void NavigationMeshGenerator::_parse_geometry(Transform p_accumulated_transform, Node *p_node, Vector<float> &p_verticies, Vector<int> &p_indices, int p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) {
if (Object::cast_to<MeshInstance>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(p_node);
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_add_mesh(mesh, p_accumulated_transform * mesh_instance->get_transform(), p_verticies, p_indices);
}
}
#ifdef MODULE_CSG_ENABLED
if (Object::cast_to<CSGShape>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
CSGShape *csg_shape = Object::cast_to<CSGShape>(p_node);
Array meshes = csg_shape->get_meshes();
if (!meshes.empty()) {
Ref<Mesh> mesh = meshes[1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_accumulated_transform * csg_shape->get_transform(), p_verticies, p_indices);
}
}
}
#endif
if (Object::cast_to<StaticBody>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) {
StaticBody *static_body = Object::cast_to<StaticBody>(p_node);
if (static_body->get_collision_layer() & p_collision_mask) {
for (int i = 0; i < p_node->get_child_count(); ++i) {
Node *child = p_node->get_child(i);
if (Object::cast_to<CollisionShape>(child)) {
CollisionShape *col_shape = Object::cast_to<CollisionShape>(child);
Transform transform = p_accumulated_transform * static_body->get_transform() * col_shape->get_transform();
Ref<Mesh> mesh;
Ref<Shape> s = col_shape->get_shape();
BoxShape *box = Object::cast_to<BoxShape>(*s);
if (box) {
Ref<CubeMesh> cube_mesh;
cube_mesh.instance();
cube_mesh->set_size(box->get_extents() * 2.0);
mesh = cube_mesh;
}
CapsuleShape *capsule = Object::cast_to<CapsuleShape>(*s);
if (capsule) {
Ref<CapsuleMesh> capsule_mesh;
capsule_mesh.instance();
capsule_mesh->set_radius(capsule->get_radius());
capsule_mesh->set_mid_height(capsule->get_height() / 2.0);
mesh = capsule_mesh;
}
CylinderShape *cylinder = Object::cast_to<CylinderShape>(*s);
if (cylinder) {
Ref<CylinderMesh> cylinder_mesh;
cylinder_mesh.instance();
cylinder_mesh->set_height(cylinder->get_height());
cylinder_mesh->set_bottom_radius(cylinder->get_radius());
cylinder_mesh->set_top_radius(cylinder->get_radius());
mesh = cylinder_mesh;
}
SphereShape *sphere = Object::cast_to<SphereShape>(*s);
if (sphere) {
Ref<SphereMesh> sphere_mesh;
sphere_mesh.instance();
sphere_mesh->set_radius(sphere->get_radius());
sphere_mesh->set_height(sphere->get_radius() * 2.0);
mesh = sphere_mesh;
}
ConcavePolygonShape *concave_polygon = Object::cast_to<ConcavePolygonShape>(*s);
if (concave_polygon) {
_add_faces(concave_polygon->get_faces(), transform, p_verticies, p_indices);
}
ConvexPolygonShape *convex_polygon = Object::cast_to<ConvexPolygonShape>(*s);
if (convex_polygon) {
Vector<Vector3> varr = Variant(convex_polygon->get_points());
Geometry::MeshData md;
Error err = QuickHull::build(varr, md);
if (err == OK) {
PackedVector3Array faces;
for (int j = 0; j < md.faces.size(); ++j) {
Geometry::MeshData::Face face = md.faces[j];
for (int k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, transform, p_verticies, p_indices);
}
}
if (mesh.is_valid()) {
_add_mesh(mesh, transform, p_verticies, p_indices);
}
}
}
}
}
#ifdef MODULE_GRIDMAP_ENABLED
if (Object::cast_to<GridMap>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
GridMap *gridmap_instance = Object::cast_to<GridMap>(p_node);
Array meshes = gridmap_instance->get_meshes();
Transform xform = gridmap_instance->get_transform();
for (int i = 0; i < meshes.size(); i += 2) {
Ref<Mesh> mesh = meshes[i + 1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_accumulated_transform * xform * meshes[i], p_verticies, p_indices);
}
}
}
#endif
if (Object::cast_to<Spatial>(p_node)) {
Spatial *spatial = Object::cast_to<Spatial>(p_node);
p_accumulated_transform = p_accumulated_transform * spatial->get_transform();
}
if (p_recurse_children) {
for (int i = 0; i < p_node->get_child_count(); i++) {
_parse_geometry(p_accumulated_transform, p_node->get_child(i), p_verticies, p_indices, p_generate_from, p_collision_mask, p_recurse_children);
}
}
}
void NavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref<NavigationMesh> p_nav_mesh) {
Vector<Vector3> nav_vertices;
for (int i = 0; i < p_detail_mesh->nverts; i++) {
const float *v = &p_detail_mesh->verts[i * 3];
nav_vertices.push_back(Vector3(v[0], v[1], v[2]));
}
p_nav_mesh->set_vertices(nav_vertices);
for (int i = 0; i < p_detail_mesh->nmeshes; i++) {
const unsigned int *m = &p_detail_mesh->meshes[i * 4];
const unsigned int bverts = m[0];
const unsigned int btris = m[2];
const unsigned int ntris = m[3];
const unsigned char *tris = &p_detail_mesh->tris[btris * 4];
for (unsigned int j = 0; j < ntris; j++) {
Vector<int> nav_indices;
nav_indices.resize(3);
// Polygon order in recast is opposite than godot's
nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0]));
nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 2]));
nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 1]));
p_nav_mesh->add_polygon(nav_indices);
}
}
}
void NavigationMeshGenerator::_build_recast_navigation_mesh(
Ref<NavigationMesh> p_nav_mesh,
#ifdef TOOLS_ENABLED
EditorProgress *ep,
#endif
rcHeightfield *hf,
rcCompactHeightfield *chf,
rcContourSet *cset,
rcPolyMesh *poly_mesh,
rcPolyMeshDetail *detail_mesh,
Vector<float> &vertices,
Vector<int> &indices) {
rcContext ctx;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Setting up Configuration..."), 1);
#endif
const float *verts = vertices.ptr();
const int nverts = vertices.size() / 3;
const int *tris = indices.ptr();
const int ntris = indices.size() / 3;
float bmin[3], bmax[3];
rcCalcBounds(verts, nverts, bmin, bmax);
rcConfig cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.cs = p_nav_mesh->get_cell_size();
cfg.ch = p_nav_mesh->get_cell_height();
cfg.walkableSlopeAngle = p_nav_mesh->get_agent_max_slope();
cfg.walkableHeight = (int)Math::ceil(p_nav_mesh->get_agent_height() / cfg.ch);
cfg.walkableClimb = (int)Math::floor(p_nav_mesh->get_agent_max_climb() / cfg.ch);
cfg.walkableRadius = (int)Math::ceil(p_nav_mesh->get_agent_radius() / cfg.cs);
cfg.maxEdgeLen = (int)(p_nav_mesh->get_edge_max_length() / p_nav_mesh->get_cell_size());
cfg.maxSimplificationError = p_nav_mesh->get_edge_max_error();
cfg.minRegionArea = (int)(p_nav_mesh->get_region_min_size() * p_nav_mesh->get_region_min_size());
cfg.mergeRegionArea = (int)(p_nav_mesh->get_region_merge_size() * p_nav_mesh->get_region_merge_size());
cfg.maxVertsPerPoly = (int)p_nav_mesh->get_verts_per_poly();
cfg.detailSampleDist = p_nav_mesh->get_detail_sample_distance() < 0.9f ? 0 : p_nav_mesh->get_cell_size() * p_nav_mesh->get_detail_sample_distance();
cfg.detailSampleMaxError = p_nav_mesh->get_cell_height() * p_nav_mesh->get_detail_sample_max_error();
cfg.bmin[0] = bmin[0];
cfg.bmin[1] = bmin[1];
cfg.bmin[2] = bmin[2];
cfg.bmax[0] = bmax[0];
cfg.bmax[1] = bmax[1];
cfg.bmax[2] = bmax[2];
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Calculating grid size..."), 2);
#endif
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating heightfield..."), 3);
#endif
hf = rcAllocHeightfield();
ERR_FAIL_COND(!hf);
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Marking walkable triangles..."), 4);
#endif
{
Vector<unsigned char> tri_areas;
tri_areas.resize(ntris);
ERR_FAIL_COND(tri_areas.size() == 0);
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
}
if (p_nav_mesh->get_filter_low_hanging_obstacles())
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
if (p_nav_mesh->get_filter_ledge_spans())
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
if (p_nav_mesh->get_filter_walkable_low_height_spans())
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Constructing compact heightfield..."), 5);
#endif
chf = rcAllocCompactHeightfield();
ERR_FAIL_COND(!chf);
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
rcFreeHeightField(hf);
hf = 0;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Eroding walkable area..."), 6);
#endif
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Partitioning..."), 7);
#endif
if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else {
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating contours..."), 8);
#endif
cset = rcAllocContourSet();
ERR_FAIL_COND(!cset);
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating polymesh..."), 9);
#endif
poly_mesh = rcAllocPolyMesh();
ERR_FAIL_COND(!poly_mesh);
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
detail_mesh = rcAllocPolyMeshDetail();
ERR_FAIL_COND(!detail_mesh);
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Converting to native navigation mesh..."), 10);
#endif
_convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_nav_mesh);
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
NavigationMeshGenerator *NavigationMeshGenerator::get_singleton() {
return singleton;
}
NavigationMeshGenerator::NavigationMeshGenerator() {
singleton = this;
}
NavigationMeshGenerator::~NavigationMeshGenerator() {
}
void NavigationMeshGenerator::bake(Ref<NavigationMesh> p_nav_mesh, Node *p_node) {
ERR_FAIL_COND(!p_nav_mesh.is_valid());
#ifdef TOOLS_ENABLED
EditorProgress *ep(NULL);
if (Engine::get_singleton()->is_editor_hint()) {
ep = memnew(EditorProgress("bake", TTR("Navigation Mesh Generator Setup:"), 11));
}
if (ep)
ep->step(TTR("Parsing Geometry..."), 0);
#endif
Vector<float> vertices;
Vector<int> indices;
List<Node *> parse_nodes;
if (p_nav_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_NAVMESH_CHILDREN) {
parse_nodes.push_back(p_node);
} else {
p_node->get_tree()->get_nodes_in_group(p_nav_mesh->get_source_group_name(), &parse_nodes);
}
Transform navmesh_xform = Object::cast_to<Spatial>(p_node)->get_transform().affine_inverse();
for (const List<Node *>::Element *E = parse_nodes.front(); E; E = E->next()) {
int geometry_type = p_nav_mesh->get_parsed_geometry_type();
uint32_t collision_mask = p_nav_mesh->get_collision_mask();
bool recurse_children = p_nav_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
_parse_geometry(navmesh_xform, E->get(), vertices, indices, geometry_type, collision_mask, recurse_children);
}
if (vertices.size() > 0 && indices.size() > 0) {
rcHeightfield *hf = NULL;
rcCompactHeightfield *chf = NULL;
rcContourSet *cset = NULL;
rcPolyMesh *poly_mesh = NULL;
rcPolyMeshDetail *detail_mesh = NULL;
_build_recast_navigation_mesh(
p_nav_mesh,
#ifdef TOOLS_ENABLED
ep,
#endif
hf,
chf,
cset,
poly_mesh,
detail_mesh,
vertices,
indices);
rcFreeHeightField(hf);
hf = 0;
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Done!"), 11);
if (ep)
memdelete(ep);
#endif
}
void NavigationMeshGenerator::clear(Ref<NavigationMesh> p_nav_mesh) {
if (p_nav_mesh.is_valid()) {
p_nav_mesh->clear_polygons();
p_nav_mesh->set_vertices(Vector<Vector3>());
}
}
void NavigationMeshGenerator::_bind_methods() {
ClassDB::bind_method(D_METHOD("bake", "nav_mesh", "root_node"), &NavigationMeshGenerator::bake);
ClassDB::bind_method(D_METHOD("clear", "nav_mesh"), &NavigationMeshGenerator::clear);
}
#endif