godot/core/io/marshalls.cpp

1422 lines
26 KiB
C++

/*************************************************************************/
/* marshalls.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "marshalls.h"
#include "print_string.h"
#include "os/keyboard.h"
#include <stdio.h>
Error decode_variant(Variant& r_variant,const uint8_t *p_buffer, int p_len,int *r_len) {
const uint8_t * buf=p_buffer;
int len=p_len;
if (len<4) {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
}
uint32_t type=decode_uint32(buf);
ERR_FAIL_COND_V(type>=Variant::VARIANT_MAX,ERR_INVALID_DATA);
buf+=4;
len-=4;
if (r_len)
*r_len=4;
switch(type) {
case Variant::NIL: {
r_variant=Variant();
} break;
case Variant::BOOL: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
bool val = decode_uint32(buf);
r_variant=val;
if (r_len)
(*r_len)+=4;
} break;
case Variant::INT: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
int val = decode_uint32(buf);
r_variant=val;
if (r_len)
(*r_len)+=4;
} break;
case Variant::REAL: {
ERR_FAIL_COND_V(len<(int)4,ERR_INVALID_DATA);
float val = decode_float(buf);
r_variant=val;
if (r_len)
(*r_len)+=4;
} break;
case Variant::STRING: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t strlen = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA);
String str;
str.parse_utf8((const char*)buf,strlen);
r_variant=str;
if (r_len) {
if (strlen%4)
(*r_len)+=4-strlen%4;
(*r_len)+=4+strlen;
}
} break;
// math types
case Variant::VECTOR2: {
ERR_FAIL_COND_V(len<(int)4*2,ERR_INVALID_DATA);
Vector2 val;
val.x=decode_float(&buf[0]);
val.y=decode_float(&buf[4]);
r_variant=val;
if (r_len)
(*r_len)+=4*2;
} break; // 5
case Variant::RECT2: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Rect2 val;
val.pos.x=decode_float(&buf[0]);
val.pos.y=decode_float(&buf[4]);
val.size.x=decode_float(&buf[8]);
val.size.y=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::VECTOR3: {
ERR_FAIL_COND_V(len<(int)4*3,ERR_INVALID_DATA);
Vector3 val;
val.x=decode_float(&buf[0]);
val.y=decode_float(&buf[4]);
val.z=decode_float(&buf[8]);
r_variant=val;
if (r_len)
(*r_len)+=4*3;
} break;
case Variant::MATRIX32: {
ERR_FAIL_COND_V(len<(int)4*6,ERR_INVALID_DATA);
Matrix32 val;
for(int i=0;i<3;i++) {
for(int j=0;j<2;j++) {
val.elements[i][j]=decode_float(&buf[(i*2+j)*4]);
}
}
r_variant=val;
if (r_len)
(*r_len)+=4*6;
} break;
case Variant::PLANE: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Plane val;
val.normal.x=decode_float(&buf[0]);
val.normal.y=decode_float(&buf[4]);
val.normal.z=decode_float(&buf[8]);
val.d=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::QUAT: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Quat val;
val.x=decode_float(&buf[0]);
val.y=decode_float(&buf[4]);
val.z=decode_float(&buf[8]);
val.w=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::_AABB: {
ERR_FAIL_COND_V(len<(int)4*6,ERR_INVALID_DATA);
AABB val;
val.pos.x=decode_float(&buf[0]);
val.pos.y=decode_float(&buf[4]);
val.pos.z=decode_float(&buf[8]);
val.size.x=decode_float(&buf[12]);
val.size.y=decode_float(&buf[16]);
val.size.z=decode_float(&buf[20]);
r_variant=val;
if (r_len)
(*r_len)+=4*6;
} break;
case Variant::MATRIX3: {
ERR_FAIL_COND_V(len<(int)4*9,ERR_INVALID_DATA);
Matrix3 val;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
val.elements[i][j]=decode_float(&buf[(i*3+j)*4]);
}
}
r_variant=val;
if (r_len)
(*r_len)+=4*9;
} break;
case Variant::TRANSFORM: {
ERR_FAIL_COND_V(len<(int)4*12,ERR_INVALID_DATA);
Transform val;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
val.basis.elements[i][j]=decode_float(&buf[(i*3+j)*4]);
}
}
val.origin[0]=decode_float(&buf[36]);
val.origin[1]=decode_float(&buf[40]);
val.origin[2]=decode_float(&buf[44]);
r_variant=val;
if (r_len)
(*r_len)+=4*12;
} break;
// misc types
case Variant::COLOR: {
ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA);
Color val;
val.r=decode_float(&buf[0]);
val.g=decode_float(&buf[4]);
val.b=decode_float(&buf[8]);
val.a=decode_float(&buf[12]);
r_variant=val;
if (r_len)
(*r_len)+=4*4;
} break;
case Variant::IMAGE: {
ERR_FAIL_COND_V(len<(int)5*4,ERR_INVALID_DATA);
Image::Format fmt = (Image::Format)decode_uint32(&buf[0]);
ERR_FAIL_INDEX_V( fmt, Image::FORMAT_MAX, ERR_INVALID_DATA);
uint32_t mipmaps = decode_uint32(&buf[4]);
uint32_t w = decode_uint32(&buf[8]);
uint32_t h = decode_uint32(&buf[12]);
uint32_t datalen = decode_uint32(&buf[16]);
Image img;
if (datalen>0) {
len-=5*4;
ERR_FAIL_COND_V( len < datalen, ERR_INVALID_DATA );
DVector<uint8_t> data;
data.resize(datalen);
DVector<uint8_t>::Write wr = data.write();
copymem(&wr[0],&buf[20],datalen);
wr = DVector<uint8_t>::Write();
img=Image(w,h,mipmaps,fmt,data);
}
r_variant=img;
if (r_len) {
if (datalen%4)
(*r_len)+=4-datalen%4;
(*r_len)+=4*5+datalen;
}
} break;
case Variant::NODE_PATH: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t strlen = decode_uint32(buf);
if (strlen&0x80000000) {
//new format
ERR_FAIL_COND_V(len<12,ERR_INVALID_DATA);
Vector<StringName> names;
Vector<StringName> subnames;
StringName prop;
uint32_t namecount=strlen&=0x7FFFFFFF;
uint32_t subnamecount = decode_uint32(buf+4);
uint32_t flags = decode_uint32(buf+8);
len-=12;
buf+=12;
int total=namecount+subnamecount;
if (flags&2)
total++;
if (r_len)
(*r_len)+=12;
for(int i=0;i<total;i++) {
ERR_FAIL_COND_V((int)len<4,ERR_INVALID_DATA);
strlen = decode_uint32(buf);
int pad=0;
if (strlen%4)
pad+=4-strlen%4;
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen+pad>len,ERR_INVALID_DATA);
String str;
str.parse_utf8((const char*)buf,strlen);
if (i<namecount)
names.push_back(str);
else if (i<namecount+subnamecount)
subnames.push_back(str);
else
prop=str;
buf+=strlen+pad;
len-=strlen+pad;
if (r_len)
(*r_len)+=4+strlen+pad;
}
r_variant=NodePath(names,subnames,flags&1,prop);
} else {
//old format, just a string
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA);
String str;
str.parse_utf8((const char*)buf,strlen);
r_variant=NodePath(str);
if (r_len)
(*r_len)+=4+strlen;
}
} break;
/*case Variant::RESOURCE: {
ERR_EXPLAIN("Can't marshallize resources");
ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
} break;*/
case Variant::_RID: {
r_variant = RID();
} break;
case Variant::OBJECT: {
r_variant = (Object*)NULL;
} break;
case Variant::INPUT_EVENT: {
InputEvent ie;
ie.type=decode_uint32(&buf[0]);
ie.device=decode_uint32(&buf[4]);
if (r_len)
(*r_len)+=12;
switch(ie.type) {
case InputEvent::KEY: {
uint32_t mods=decode_uint32(&buf[12]);
if (mods&KEY_MASK_SHIFT)
ie.key.mod.shift=true;
if (mods&KEY_MASK_CTRL)
ie.key.mod.control=true;
if (mods&KEY_MASK_ALT)
ie.key.mod.alt=true;
if (mods&KEY_MASK_META)
ie.key.mod.meta=true;
ie.key.scancode=decode_uint32(&buf[16]);
if (r_len)
(*r_len)+=8;
} break;
case InputEvent::MOUSE_BUTTON: {
ie.mouse_button.button_index=decode_uint32(&buf[12]);
if (r_len)
(*r_len)+=4;
} break;
case InputEvent::JOYSTICK_BUTTON: {
ie.joy_button.button_index=decode_uint32(&buf[12]);
if (r_len)
(*r_len)+=4;
} break;
case InputEvent::SCREEN_TOUCH: {
ie.screen_touch.index=decode_uint32(&buf[12]);
if (r_len)
(*r_len)+=4;
} break;
case InputEvent::JOYSTICK_MOTION: {
ie.joy_motion.axis=decode_uint32(&buf[12]);
ie.joy_motion.axis_value=decode_float(&buf[16]);
if (r_len)
(*r_len)+=8;
} break;
}
r_variant = ie;
} break;
case Variant::DICTIONARY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
bool shared = count&0x80000000;
count&=0x7FFFFFFF;
buf+=4;
len-=4;
if (r_len) {
(*r_len)+=4;
}
Dictionary d(shared);
for(uint32_t i=0;i<count;i++) {
Variant key,value;
int used;
Error err = decode_variant(key,buf,len,&used);
ERR_FAIL_COND_V(err,err);
buf+=used;
len-=used;
if (r_len) {
(*r_len)+=used;
}
err = decode_variant(value,buf,len,&used);
ERR_FAIL_COND_V(err,err);
buf+=used;
len-=used;
if (r_len) {
(*r_len)+=used;
}
d[key]=value;
}
r_variant=d;
} break;
case Variant::ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
bool shared = count&0x80000000;
count&=0x7FFFFFFF;
buf+=4;
len-=4;
if (r_len) {
(*r_len)+=4;
}
Array varr(shared);
for(uint32_t i=0;i<count;i++) {
int used=0;
Variant v;
Error err = decode_variant(v,buf,len,&used);
ERR_FAIL_COND_V(err,err);
buf+=used;
len-=used;
varr.push_back(v);
if (r_len) {
(*r_len)+=used;
}
}
r_variant=varr;
} break;
// arrays
case Variant::RAW_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count>len,ERR_INVALID_DATA);
DVector<uint8_t> data;
if (count) {
data.resize(count);
DVector<uint8_t>::Write w = data.write();
for(int i=0;i<count;i++) {
w[i]=buf[i];
}
w = DVector<uint8_t>::Write();
}
r_variant=data;
if (r_len) {
if (count%4)
(*r_len)+=4-count%4;
(*r_len)+=4+count;
}
} break;
case Variant::INT_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4>len,ERR_INVALID_DATA);
DVector<int> data;
if (count) {
//const int*rbuf=(const int*)buf;
data.resize(count);
DVector<int>::Write w = data.write();
for(int i=0;i<count;i++) {
w[i]=decode_uint32(&buf[i*4]);
}
w = DVector<int>::Write();
}
r_variant=Variant(data);
if (r_len) {
(*r_len)+=4+count*sizeof(int);
}
} break;
case Variant::REAL_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4>len,ERR_INVALID_DATA);
DVector<float> data;
if (count) {
//const float*rbuf=(const float*)buf;
data.resize(count);
DVector<float>::Write w = data.write();
for(int i=0;i<count;i++) {
w[i]=decode_float(&buf[i*4]);
}
w = DVector<float>::Write();
}
r_variant=data;
if (r_len) {
(*r_len)+=4+count*sizeof(float);
}
} break;
case Variant::STRING_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
DVector<String> strings;
buf+=4;
len-=4;
if (r_len)
(*r_len)+=4;
//printf("string count: %i\n",count);
for(int i=0;i<(int)count;i++) {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t strlen = decode_uint32(buf);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA);
//printf("loaded string: %s\n",(const char*)buf);
String str;
str.parse_utf8((const char*)buf,strlen);
strings.push_back(str);
buf+=strlen;
len-=strlen;
if (r_len)
(*r_len)+=4+strlen;
if (strlen%4) {
int pad = 4-(strlen%4);
buf+=pad;
len-=pad;
if (r_len) {
(*r_len)+=pad;
}
}
}
r_variant=strings;
} break;
case Variant::VECTOR2_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4*2>len,ERR_INVALID_DATA);
DVector<Vector2> varray;
if (r_len) {
(*r_len)+=4;
}
if (count) {
varray.resize(count);
DVector<Vector2>::Write w = varray.write();
const float *r = (const float*)buf;
for(int i=0;i<(int)count;i++) {
w[i].x=decode_float(buf+i*4*2+4*0);
w[i].y=decode_float(buf+i*4*2+4*1);
}
int adv = 4*2*count;
if (r_len)
(*r_len)+=adv;
len-=adv;
buf+=adv;
}
r_variant=varray;
} break;
case Variant::VECTOR3_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4*3>len,ERR_INVALID_DATA);
DVector<Vector3> varray;
if (r_len) {
(*r_len)+=4;
}
if (count) {
varray.resize(count);
DVector<Vector3>::Write w = varray.write();
const float *r = (const float*)buf;
for(int i=0;i<(int)count;i++) {
w[i].x=decode_float(buf+i*4*3+4*0);
w[i].y=decode_float(buf+i*4*3+4*1);
w[i].z=decode_float(buf+i*4*3+4*2);
}
int adv = 4*3*count;
if (r_len)
(*r_len)+=adv;
len-=adv;
buf+=adv;
}
r_variant=varray;
} break;
case Variant::COLOR_ARRAY: {
ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA);
uint32_t count = decode_uint32(buf);
ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA);
buf+=4;
len-=4;
ERR_FAIL_COND_V((int)count*4*4>len,ERR_INVALID_DATA);
DVector<Color> carray;
if (r_len) {
(*r_len)+=4;
}
if (count) {
carray.resize(count);
DVector<Color>::Write w = carray.write();
const float *r = (const float*)buf;
for(int i=0;i<(int)count;i++) {
w[i].r=decode_float(buf+i*4*4+4*0);
w[i].g=decode_float(buf+i*4*4+4*1);
w[i].b=decode_float(buf+i*4*4+4*2);
w[i].a=decode_float(buf+i*4*4+4*3);
}
int adv = 4*4*count;
if (r_len)
(*r_len)+=adv;
len-=adv;
buf+=adv;
}
r_variant=carray;
} break;
default: { ERR_FAIL_V(ERR_BUG); }
}
return OK;
}
Error encode_variant(const Variant& p_variant, uint8_t *r_buffer, int &r_len) {
uint8_t * buf=r_buffer;
r_len=0;
if (buf) {
encode_uint32(p_variant.get_type(),buf);
buf+=4;
}
r_len+=4;
switch(p_variant.get_type()) {
case Variant::NIL: {
//nothing to do
} break;
case Variant::BOOL: {
if (buf) {
encode_uint32(p_variant.operator bool(),buf);
}
r_len+=4;
} break;
case Variant::INT: {
if (buf) {
encode_uint32(p_variant.operator int(),buf);
}
r_len+=4;
} break;
case Variant::REAL: {
if (buf) {
encode_float(p_variant.operator float(),buf);
}
r_len+=4;
} break;
case Variant::NODE_PATH: {
NodePath np=p_variant;
if (buf) {
encode_uint32(uint32_t(np.get_name_count())|0x80000000,buf); //for compatibility with the old format
encode_uint32(np.get_subname_count(),buf+4);
uint32_t flags=0;
if (np.is_absolute())
flags|=1;
if (np.get_property()!=StringName())
flags|=2;
encode_uint32(flags,buf+8);
buf+=12;
}
r_len+=12;
int total = np.get_name_count()+np.get_subname_count();
if (np.get_property()!=StringName())
total++;
for(int i=0;i<total;i++) {
String str;
if (i<np.get_name_count())
str=np.get_name(i);
else if (i<np.get_name_count()+np.get_subname_count())
str=np.get_subname(i-np.get_subname_count());
else
str=np.get_property();
CharString utf8 = str.utf8();
int pad = 0;
if (utf8.length()%4)
pad=4-utf8.length()%4;
if (buf) {
encode_uint32(utf8.length(),buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length());
buf+=pad+utf8.length();
}
r_len+=4+utf8.length()+pad;
}
} break;
case Variant::STRING: {
CharString utf8 = p_variant.operator String().utf8();
if (buf) {
encode_uint32(utf8.length(),buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length());
}
r_len+=4+utf8.length();
while (r_len%4)
r_len++; //pad
} break;
// math types
case Variant::VECTOR2: {
if (buf) {
Vector2 v2=p_variant;
encode_float(v2.x,&buf[0]);
encode_float(v2.y,&buf[4]);
}
r_len+=2*4;
} break; // 5
case Variant::RECT2: {
if (buf) {
Rect2 r2=p_variant;
encode_float(r2.pos.x,&buf[0]);
encode_float(r2.pos.y,&buf[4]);
encode_float(r2.size.x,&buf[8]);
encode_float(r2.size.y,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::VECTOR3: {
if (buf) {
Vector3 v3=p_variant;
encode_float(v3.x,&buf[0]);
encode_float(v3.y,&buf[4]);
encode_float(v3.z,&buf[8]);
}
r_len+=3*4;
} break;
case Variant::MATRIX32: {
if (buf) {
Matrix32 val=p_variant;
for(int i=0;i<3;i++) {
for(int j=0;j<2;j++) {
copymem(&buf[(i*2+j)*4],&val.elements[i][j],sizeof(float));
}
}
}
r_len+=6*4;
} break;
case Variant::PLANE: {
if (buf) {
Plane p=p_variant;
encode_float(p.normal.x,&buf[0]);
encode_float(p.normal.y,&buf[4]);
encode_float(p.normal.z,&buf[8]);
encode_float(p.d,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::QUAT: {
if (buf) {
Quat q=p_variant;
encode_float(q.x,&buf[0]);
encode_float(q.y,&buf[4]);
encode_float(q.z,&buf[8]);
encode_float(q.w,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::_AABB: {
if (buf) {
AABB aabb=p_variant;
encode_float(aabb.pos.x,&buf[0]);
encode_float(aabb.pos.y,&buf[4]);
encode_float(aabb.pos.z,&buf[8]);
encode_float(aabb.size.x,&buf[12]);
encode_float(aabb.size.y,&buf[16]);
encode_float(aabb.size.z,&buf[20]);
}
r_len+=6*4;
} break;
case Variant::MATRIX3: {
if (buf) {
Matrix3 val=p_variant;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
copymem(&buf[(i*3+j)*4],&val.elements[i][j],sizeof(float));
}
}
}
r_len+=9*4;
} break;
case Variant::TRANSFORM: {
if (buf) {
Transform val=p_variant;
for(int i=0;i<3;i++) {
for(int j=0;j<3;j++) {
copymem(&buf[(i*3+j)*4],&val.basis.elements[i][j],sizeof(float));
}
}
encode_float(val.origin.x,&buf[36]);
encode_float(val.origin.y,&buf[40]);
encode_float(val.origin.z,&buf[44]);
}
r_len+=12*4;
} break;
// misc types
case Variant::COLOR: {
if (buf) {
Color c=p_variant;
encode_float(c.r,&buf[0]);
encode_float(c.g,&buf[4]);
encode_float(c.b,&buf[8]);
encode_float(c.a,&buf[12]);
}
r_len+=4*4;
} break;
case Variant::IMAGE: {
Image image = p_variant;
DVector<uint8_t> data=image.get_data();
if (buf) {
encode_uint32(image.get_format(),&buf[0]);
encode_uint32(image.get_mipmaps(),&buf[4]);
encode_uint32(image.get_width(),&buf[8]);
encode_uint32(image.get_height(),&buf[12]);
int ds=data.size();
encode_uint32(ds,&buf[16]);
DVector<uint8_t>::Read r = data.read();
copymem(&buf[20],&r[0],ds);
}
int pad=0;
if (data.size()%4)
pad=4-data.size()%4;
r_len+=data.size()+5*4+pad;
} break;
/*case Variant::RESOURCE: {
ERR_EXPLAIN("Can't marshallize resources");
ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
} break;*/
case Variant::_RID:
case Variant::OBJECT: {
} break;
case Variant::INPUT_EVENT: {
InputEvent ie=p_variant;
if (buf) {
encode_uint32(ie.type,&buf[0]);
encode_uint32(ie.device,&buf[4]);
encode_uint32(0,&buf[8]);
}
int llen=12;
switch(ie.type) {
case InputEvent::KEY: {
if (buf) {
uint32_t mods=0;
if (ie.key.mod.shift)
mods|=KEY_MASK_SHIFT;
if (ie.key.mod.control)
mods|=KEY_MASK_CTRL;
if (ie.key.mod.alt)
mods|=KEY_MASK_ALT;
if (ie.key.mod.meta)
mods|=KEY_MASK_META;
encode_uint32(mods,&buf[llen]);
encode_uint32(ie.key.scancode,&buf[llen+4]);
}
llen+=8;
} break;
case InputEvent::MOUSE_BUTTON: {
if (buf) {
encode_uint32(ie.mouse_button.button_index,&buf[llen]);
}
llen+=4;
} break;
case InputEvent::JOYSTICK_BUTTON: {
if (buf) {
encode_uint32(ie.joy_button.button_index,&buf[llen]);
}
llen+=4;
} break;
case InputEvent::SCREEN_TOUCH: {
if (buf) {
encode_uint32(ie.screen_touch.index,&buf[llen]);
}
llen+=4;
} break;
case InputEvent::JOYSTICK_MOTION: {
if (buf) {
int axis = ie.joy_motion.axis;
encode_uint32(axis,&buf[llen]);
encode_float(ie.joy_motion.axis_value, &buf[llen+4]);
}
llen+=8;
} break;
}
if (buf)
encode_uint32(llen,&buf[8]);
r_len+=llen;
// not supported
} break;
case Variant::DICTIONARY: {
Dictionary d = p_variant;
if (buf) {
encode_uint32(uint32_t(d.size())|(d.is_shared()?0x80000000:0),buf);
buf+=4;
}
r_len+=4;
List<Variant> keys;
d.get_key_list(&keys);
for(List<Variant>::Element *E=keys.front();E;E=E->next()) {
/*
CharString utf8 = E->->utf8();
if (buf) {
encode_uint32(utf8.length()+1,buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length()+1);
}
r_len+=4+utf8.length()+1;
while (r_len%4)
r_len++; //pad
*/
int len;
encode_variant(E->get(),buf,len);
ERR_FAIL_COND_V(len%4,ERR_BUG);
r_len+=len;
if (buf)
buf += len;
encode_variant(d[E->get()],buf,len);
ERR_FAIL_COND_V(len%4,ERR_BUG);
r_len+=len;
if (buf)
buf += len;
}
} break;
case Variant::ARRAY: {
Array v = p_variant;
if (buf) {
encode_uint32(uint32_t(v.size())|(v.is_shared()?0x80000000:0),buf);
buf+=4;
}
r_len+=4;
for(int i=0;i<v.size();i++) {
int len;
encode_variant(v.get(i),buf,len);
ERR_FAIL_COND_V(len%4,ERR_BUG);
r_len+=len;
if (buf)
buf+=len;
}
} break;
// arrays
case Variant::RAW_ARRAY: {
DVector<uint8_t> data = p_variant;
int datalen=data.size();
int datasize=sizeof(uint8_t);
if (buf) {
encode_uint32(datalen,buf);
buf+=4;
DVector<uint8_t>::Read r = data.read();
copymem(buf,&r[0],datalen*datasize);
}
r_len+=4+datalen*datasize;
while(r_len%4)
r_len++;
} break;
case Variant::INT_ARRAY: {
DVector<int> data = p_variant;
int datalen=data.size();
int datasize=sizeof(int32_t);
if (buf) {
encode_uint32(datalen,buf);
buf+=4;
DVector<int>::Read r = data.read();
for(int i=0;i<datalen;i++)
encode_uint32(r[i],&buf[i*datasize]);
}
r_len+=4+datalen*datasize;
} break;
case Variant::REAL_ARRAY: {
DVector<real_t> data = p_variant;
int datalen=data.size();
int datasize=sizeof(real_t);
if (buf) {
encode_uint32(datalen,buf);
buf+=4;
DVector<real_t>::Read r = data.read();
for(int i=0;i<datalen;i++)
encode_float(r[i],&buf[i*datasize]);
}
r_len+=4+datalen*datasize;
} break;
case Variant::STRING_ARRAY: {
DVector<String> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
for(int i=0;i<len;i++) {
CharString utf8 = data.get(i).utf8();
if (buf) {
encode_uint32(utf8.length()+1,buf);
buf+=4;
copymem(buf,utf8.get_data(),utf8.length()+1);
buf+=utf8.length()+1;
}
r_len+=4+utf8.length()+1;
while (r_len%4) {
r_len++; //pad
if (buf)
buf++;
}
}
} break;
case Variant::VECTOR2_ARRAY: {
DVector<Vector2> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
if (buf) {
for(int i=0;i<len;i++) {
Vector2 v = data.get(i);
encode_float(v.x,&buf[0]);
encode_float(v.y,&buf[4]);
buf+=4*2;
}
}
r_len+=4*2*len;
} break;
case Variant::VECTOR3_ARRAY: {
DVector<Vector3> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
if (buf) {
for(int i=0;i<len;i++) {
Vector3 v = data.get(i);
encode_float(v.x,&buf[0]);
encode_float(v.y,&buf[4]);
encode_float(v.z,&buf[8]);
buf+=4*3;
}
}
r_len+=4*3*len;
} break;
case Variant::COLOR_ARRAY: {
DVector<Color> data = p_variant;
int len=data.size();
if (buf) {
encode_uint32(len,buf);
buf+=4;
}
r_len+=4;
if (buf) {
for(int i=0;i<len;i++) {
Color c = data.get(i);
encode_float(c.r,&buf[0]);
encode_float(c.g,&buf[4]);
encode_float(c.b,&buf[8]);
encode_float(c.a,&buf[12]);
buf+=4*4;
}
}
r_len+=4*4*len;
} break;
default: { ERR_FAIL_V(ERR_BUG); }
}
return OK;
}