godot/thirdparty/mbedtls/library/common.h

351 lines
14 KiB
C++

/**
* \file common.h
*
* \brief Utility macros for internal use in the library
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBEDTLS_LIBRARY_COMMON_H
#define MBEDTLS_LIBRARY_COMMON_H
#if defined(MBEDTLS_CONFIG_FILE)
#include MBEDTLS_CONFIG_FILE
#else
#include "mbedtls/config.h"
#endif
#include <stddef.h>
#include <stdint.h>
/* Define `inline` on some non-C99-compliant compilers. */
#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
!defined(inline) && !defined(__cplusplus)
#define inline __inline
#endif
/** Helper to define a function as static except when building invasive tests.
*
* If a function is only used inside its own source file and should be
* declared `static` to allow the compiler to optimize for code size,
* but that function has unit tests, define it with
* ```
* MBEDTLS_STATIC_TESTABLE int mbedtls_foo(...) { ... }
* ```
* and declare it in a header in the `library/` directory with
* ```
* #if defined(MBEDTLS_TEST_HOOKS)
* int mbedtls_foo(...);
* #endif
* ```
*/
#if defined(MBEDTLS_TEST_HOOKS)
#define MBEDTLS_STATIC_TESTABLE
#else
#define MBEDTLS_STATIC_TESTABLE static
#endif
/** Return an offset into a buffer.
*
* This is just the addition of an offset to a pointer, except that this
* function also accepts an offset of 0 into a buffer whose pointer is null.
* (`p + n` has undefined behavior when `p` is null, even when `n == 0`.
* A null pointer is a valid buffer pointer when the size is 0, for example
* as the result of `malloc(0)` on some platforms.)
*
* \param p Pointer to a buffer of at least n bytes.
* This may be \p NULL if \p n is zero.
* \param n An offset in bytes.
* \return Pointer to offset \p n in the buffer \p p.
* Note that this is only a valid pointer if the size of the
* buffer is at least \p n + 1.
*/
static inline unsigned char *mbedtls_buffer_offset(
unsigned char *p, size_t n )
{
return( p == NULL ? NULL : p + n );
}
/** Return an offset into a read-only buffer.
*
* Similar to mbedtls_buffer_offset(), but for const pointers.
*
* \param p Pointer to a buffer of at least n bytes.
* This may be \p NULL if \p n is zero.
* \param n An offset in bytes.
* \return Pointer to offset \p n in the buffer \p p.
* Note that this is only a valid pointer if the size of the
* buffer is at least \p n + 1.
*/
static inline const unsigned char *mbedtls_buffer_offset_const(
const unsigned char *p, size_t n )
{
return( p == NULL ? NULL : p + n );
}
/** Byte Reading Macros
*
* Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th
* byte from x, where byte 0 is the least significant byte.
*/
#define MBEDTLS_BYTE_0( x ) ( (uint8_t) ( ( x ) & 0xff ) )
#define MBEDTLS_BYTE_1( x ) ( (uint8_t) ( ( ( x ) >> 8 ) & 0xff ) )
#define MBEDTLS_BYTE_2( x ) ( (uint8_t) ( ( ( x ) >> 16 ) & 0xff ) )
#define MBEDTLS_BYTE_3( x ) ( (uint8_t) ( ( ( x ) >> 24 ) & 0xff ) )
#define MBEDTLS_BYTE_4( x ) ( (uint8_t) ( ( ( x ) >> 32 ) & 0xff ) )
#define MBEDTLS_BYTE_5( x ) ( (uint8_t) ( ( ( x ) >> 40 ) & 0xff ) )
#define MBEDTLS_BYTE_6( x ) ( (uint8_t) ( ( ( x ) >> 48 ) & 0xff ) )
#define MBEDTLS_BYTE_7( x ) ( (uint8_t) ( ( ( x ) >> 56 ) & 0xff ) )
/**
* Get the unsigned 32 bits integer corresponding to four bytes in
* big-endian order (MSB first).
*
* \param data Base address of the memory to get the four bytes from.
* \param offset Offset from \p base of the first and most significant
* byte of the four bytes to build the 32 bits unsigned
* integer from.
*/
#ifndef MBEDTLS_GET_UINT32_BE
#define MBEDTLS_GET_UINT32_BE( data , offset ) \
( \
( (uint32_t) ( data )[( offset ) ] << 24 ) \
| ( (uint32_t) ( data )[( offset ) + 1] << 16 ) \
| ( (uint32_t) ( data )[( offset ) + 2] << 8 ) \
| ( (uint32_t) ( data )[( offset ) + 3] ) \
)
#endif
/**
* Put in memory a 32 bits unsigned integer in big-endian order.
*
* \param n 32 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 32
* bits unsigned integer in.
* \param offset Offset from \p base where to put the most significant
* byte of the 32 bits unsigned integer \p n.
*/
#ifndef MBEDTLS_PUT_UINT32_BE
#define MBEDTLS_PUT_UINT32_BE( n, data, offset ) \
{ \
( data )[( offset ) ] = MBEDTLS_BYTE_3( n ); \
( data )[( offset ) + 1] = MBEDTLS_BYTE_2( n ); \
( data )[( offset ) + 2] = MBEDTLS_BYTE_1( n ); \
( data )[( offset ) + 3] = MBEDTLS_BYTE_0( n ); \
}
#endif
/**
* Get the unsigned 32 bits integer corresponding to four bytes in
* little-endian order (LSB first).
*
* \param data Base address of the memory to get the four bytes from.
* \param offset Offset from \p base of the first and least significant
* byte of the four bytes to build the 32 bits unsigned
* integer from.
*/
#ifndef MBEDTLS_GET_UINT32_LE
#define MBEDTLS_GET_UINT32_LE( data, offset ) \
( \
( (uint32_t) ( data )[( offset ) ] ) \
| ( (uint32_t) ( data )[( offset ) + 1] << 8 ) \
| ( (uint32_t) ( data )[( offset ) + 2] << 16 ) \
| ( (uint32_t) ( data )[( offset ) + 3] << 24 ) \
)
#endif
/**
* Put in memory a 32 bits unsigned integer in little-endian order.
*
* \param n 32 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 32
* bits unsigned integer in.
* \param offset Offset from \p base where to put the least significant
* byte of the 32 bits unsigned integer \p n.
*/
#ifndef MBEDTLS_PUT_UINT32_LE
#define MBEDTLS_PUT_UINT32_LE( n, data, offset ) \
{ \
( data )[( offset ) ] = MBEDTLS_BYTE_0( n ); \
( data )[( offset ) + 1] = MBEDTLS_BYTE_1( n ); \
( data )[( offset ) + 2] = MBEDTLS_BYTE_2( n ); \
( data )[( offset ) + 3] = MBEDTLS_BYTE_3( n ); \
}
#endif
/**
* Get the unsigned 16 bits integer corresponding to two bytes in
* little-endian order (LSB first).
*
* \param data Base address of the memory to get the two bytes from.
* \param offset Offset from \p base of the first and least significant
* byte of the two bytes to build the 16 bits unsigned
* integer from.
*/
#ifndef MBEDTLS_GET_UINT16_LE
#define MBEDTLS_GET_UINT16_LE( data, offset ) \
( \
( (uint16_t) ( data )[( offset ) ] ) \
| ( (uint16_t) ( data )[( offset ) + 1] << 8 ) \
)
#endif
/**
* Put in memory a 16 bits unsigned integer in little-endian order.
*
* \param n 16 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 16
* bits unsigned integer in.
* \param offset Offset from \p base where to put the least significant
* byte of the 16 bits unsigned integer \p n.
*/
#ifndef MBEDTLS_PUT_UINT16_LE
#define MBEDTLS_PUT_UINT16_LE( n, data, offset ) \
{ \
( data )[( offset ) ] = MBEDTLS_BYTE_0( n ); \
( data )[( offset ) + 1] = MBEDTLS_BYTE_1( n ); \
}
#endif
/**
* Get the unsigned 16 bits integer corresponding to two bytes in
* big-endian order (MSB first).
*
* \param data Base address of the memory to get the two bytes from.
* \param offset Offset from \p base of the first and most significant
* byte of the two bytes to build the 16 bits unsigned
* integer from.
*/
#ifndef MBEDTLS_GET_UINT16_BE
#define MBEDTLS_GET_UINT16_BE( data, offset ) \
( \
( (uint16_t) ( data )[( offset ) ] << 8 ) \
| ( (uint16_t) ( data )[( offset ) + 1] ) \
)
#endif
/**
* Put in memory a 16 bits unsigned integer in big-endian order.
*
* \param n 16 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 16
* bits unsigned integer in.
* \param offset Offset from \p base where to put the most significant
* byte of the 16 bits unsigned integer \p n.
*/
#ifndef MBEDTLS_PUT_UINT16_BE
#define MBEDTLS_PUT_UINT16_BE( n, data, offset ) \
{ \
( data )[( offset ) ] = MBEDTLS_BYTE_1( n ); \
( data )[( offset ) + 1] = MBEDTLS_BYTE_0( n ); \
}
#endif
/**
* Get the unsigned 64 bits integer corresponding to eight bytes in
* big-endian order (MSB first).
*
* \param data Base address of the memory to get the eight bytes from.
* \param offset Offset from \p base of the first and most significant
* byte of the eight bytes to build the 64 bits unsigned
* integer from.
*/
#ifndef MBEDTLS_GET_UINT64_BE
#define MBEDTLS_GET_UINT64_BE( data, offset ) \
( \
( (uint64_t) ( data )[( offset ) ] << 56 ) \
| ( (uint64_t) ( data )[( offset ) + 1] << 48 ) \
| ( (uint64_t) ( data )[( offset ) + 2] << 40 ) \
| ( (uint64_t) ( data )[( offset ) + 3] << 32 ) \
| ( (uint64_t) ( data )[( offset ) + 4] << 24 ) \
| ( (uint64_t) ( data )[( offset ) + 5] << 16 ) \
| ( (uint64_t) ( data )[( offset ) + 6] << 8 ) \
| ( (uint64_t) ( data )[( offset ) + 7] ) \
)
#endif
/**
* Put in memory a 64 bits unsigned integer in big-endian order.
*
* \param n 64 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 64
* bits unsigned integer in.
* \param offset Offset from \p base where to put the most significant
* byte of the 64 bits unsigned integer \p n.
*/
#ifndef MBEDTLS_PUT_UINT64_BE
#define MBEDTLS_PUT_UINT64_BE( n, data, offset ) \
{ \
( data )[( offset ) ] = MBEDTLS_BYTE_7( n ); \
( data )[( offset ) + 1] = MBEDTLS_BYTE_6( n ); \
( data )[( offset ) + 2] = MBEDTLS_BYTE_5( n ); \
( data )[( offset ) + 3] = MBEDTLS_BYTE_4( n ); \
( data )[( offset ) + 4] = MBEDTLS_BYTE_3( n ); \
( data )[( offset ) + 5] = MBEDTLS_BYTE_2( n ); \
( data )[( offset ) + 6] = MBEDTLS_BYTE_1( n ); \
( data )[( offset ) + 7] = MBEDTLS_BYTE_0( n ); \
}
#endif
/**
* Get the unsigned 64 bits integer corresponding to eight bytes in
* little-endian order (LSB first).
*
* \param data Base address of the memory to get the eight bytes from.
* \param offset Offset from \p base of the first and least significant
* byte of the eight bytes to build the 64 bits unsigned
* integer from.
*/
#ifndef MBEDTLS_GET_UINT64_LE
#define MBEDTLS_GET_UINT64_LE( data, offset ) \
( \
( (uint64_t) ( data )[( offset ) + 7] << 56 ) \
| ( (uint64_t) ( data )[( offset ) + 6] << 48 ) \
| ( (uint64_t) ( data )[( offset ) + 5] << 40 ) \
| ( (uint64_t) ( data )[( offset ) + 4] << 32 ) \
| ( (uint64_t) ( data )[( offset ) + 3] << 24 ) \
| ( (uint64_t) ( data )[( offset ) + 2] << 16 ) \
| ( (uint64_t) ( data )[( offset ) + 1] << 8 ) \
| ( (uint64_t) ( data )[( offset ) ] ) \
)
#endif
/**
* Put in memory a 64 bits unsigned integer in little-endian order.
*
* \param n 64 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 64
* bits unsigned integer in.
* \param offset Offset from \p base where to put the least significant
* byte of the 64 bits unsigned integer \p n.
*/
#ifndef MBEDTLS_PUT_UINT64_LE
#define MBEDTLS_PUT_UINT64_LE( n, data, offset ) \
{ \
( data )[( offset ) ] = MBEDTLS_BYTE_0( n ); \
( data )[( offset ) + 1] = MBEDTLS_BYTE_1( n ); \
( data )[( offset ) + 2] = MBEDTLS_BYTE_2( n ); \
( data )[( offset ) + 3] = MBEDTLS_BYTE_3( n ); \
( data )[( offset ) + 4] = MBEDTLS_BYTE_4( n ); \
( data )[( offset ) + 5] = MBEDTLS_BYTE_5( n ); \
( data )[( offset ) + 6] = MBEDTLS_BYTE_6( n ); \
( data )[( offset ) + 7] = MBEDTLS_BYTE_7( n ); \
}
#endif
#endif /* MBEDTLS_LIBRARY_COMMON_H */