godot/scene/resources/mesh.cpp
Rémi Verschelde 71066cd63b
Update copyright statements to 2022
Happy new year to the wonderful Godot community!

(cherry picked from commit a627cdafc5)
2022-01-13 16:00:37 +01:00

1456 lines
44 KiB
C++

/*************************************************************************/
/* mesh.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "mesh.h"
#include "core/crypto/crypto_core.h"
#include "core/local_vector.h"
#include "core/math/convex_hull.h"
#include "core/pair.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "surface_tool.h"
#include <stdlib.h>
Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr;
Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
if (triangle_mesh.is_valid()) {
return triangle_mesh;
}
int facecount = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
facecount += surface_get_array_index_len(i);
} else {
facecount += surface_get_array_len(i);
}
}
if (facecount == 0 || (facecount % 3) != 0) {
return triangle_mesh;
}
PoolVector<Vector3> faces;
faces.resize(facecount);
PoolVector<Vector3>::Write facesw = faces.write();
int widx = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<TriangleMesh>());
int vc = surface_get_array_len(i);
PoolVector<Vector3> vertices = a[ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = vertices.read();
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
int ic = surface_get_array_index_len(i);
PoolVector<int> indices = a[ARRAY_INDEX];
PoolVector<int>::Read ir = indices.read();
for (int j = 0; j < ic; j++) {
int index = ir[j];
facesw[widx++] = vr[index];
}
} else {
for (int j = 0; j < vc; j++) {
facesw[widx++] = vr[j];
}
}
}
facesw.release();
triangle_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
triangle_mesh->create(faces);
return triangle_mesh;
}
void Mesh::generate_debug_mesh_lines(Vector<Vector3> &r_lines) {
if (debug_lines.size() > 0) {
r_lines = debug_lines;
return;
}
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null()) {
return;
}
PoolVector<int> triangle_indices;
tm->get_indices(&triangle_indices);
const int triangles_num = tm->get_triangles().size();
PoolVector<Vector3> vertices = tm->get_vertices();
debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line
PoolVector<int>::Read ind_r = triangle_indices.read();
PoolVector<Vector3>::Read ver_r = vertices.read();
for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) {
// Triangle line 1
debug_lines.write[j + 0] = ver_r[ind_r[x + 0]];
debug_lines.write[j + 1] = ver_r[ind_r[x + 1]];
// Triangle line 2
debug_lines.write[j + 2] = ver_r[ind_r[x + 1]];
debug_lines.write[j + 3] = ver_r[ind_r[x + 2]];
// Triangle line 3
debug_lines.write[j + 4] = ver_r[ind_r[x + 2]];
debug_lines.write[j + 5] = ver_r[ind_r[x + 0]];
}
r_lines = debug_lines;
}
void Mesh::generate_debug_mesh_indices(Vector<Vector3> &r_points) {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null()) {
return;
}
PoolVector<Vector3> vertices = tm->get_vertices();
int vertices_size = vertices.size();
r_points.resize(vertices_size);
for (int i = 0; i < vertices_size; ++i) {
r_points.write[i] = vertices[i];
}
}
bool Mesh::surface_is_softbody_friendly(int p_idx) const {
const uint32_t surface_format = surface_get_format(p_idx);
return (surface_format & Mesh::ARRAY_FLAG_USE_DYNAMIC_UPDATE && (!(surface_format & Mesh::ARRAY_COMPRESS_VERTEX)) && (!(surface_format & Mesh::ARRAY_COMPRESS_NORMAL)));
}
PoolVector<Face3> Mesh::get_faces() const {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_valid()) {
return tm->get_faces();
}
return PoolVector<Face3>();
}
Ref<Shape> Mesh::create_convex_shape(bool p_clean, bool p_simplify) const {
if (p_simplify) {
Vector<Ref<Shape>> decomposed = convex_decompose(1);
if (decomposed.size() == 1) {
return decomposed[0];
} else {
ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
}
}
PoolVector<Vector3> vertices;
for (int i = 0; i < get_surface_count(); i++) {
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<ConvexPolygonShape>());
PoolVector<Vector3> v = a[ARRAY_VERTEX];
vertices.append_array(v);
}
Ref<ConvexPolygonShape> shape = memnew(ConvexPolygonShape);
if (p_clean) {
Geometry::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
int vertex_count = md.vertices.size();
vertices.resize(vertex_count);
{
PoolVector<Vector3>::Write w = vertices.write();
for (int idx = 0; idx < vertex_count; ++idx) {
w[idx] = md.vertices[idx];
}
}
} else {
ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
}
}
shape->set_points(vertices);
return shape;
}
Ref<Shape> Mesh::create_trimesh_shape() const {
PoolVector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<Shape>();
}
PoolVector<Vector3> face_points;
face_points.resize(faces.size() * 3);
for (int i = 0; i < face_points.size(); i += 3) {
Face3 f = faces.get(i / 3);
face_points.set(i, f.vertex[0]);
face_points.set(i + 1, f.vertex[1]);
face_points.set(i + 2, f.vertex[2]);
}
Ref<ConcavePolygonShape> shape = memnew(ConcavePolygonShape);
shape->set_faces(face_points);
return shape;
}
Ref<Mesh> Mesh::create_outline(float p_margin) const {
Array arrays;
int index_accum = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<ArrayMesh>());
if (i == 0) {
arrays = a;
PoolVector<Vector3> v = a[ARRAY_VERTEX];
index_accum += v.size();
} else {
int vcount = 0;
for (int j = 0; j < arrays.size(); j++) {
if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) {
//mismatch, do not use
arrays[j] = Variant();
continue;
}
switch (j) {
case ARRAY_VERTEX:
case ARRAY_NORMAL: {
PoolVector<Vector3> dst = arrays[j];
PoolVector<Vector3> src = a[j];
if (j == ARRAY_VERTEX) {
vcount = src.size();
}
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TANGENT:
case ARRAY_BONES:
case ARRAY_WEIGHTS: {
PoolVector<real_t> dst = arrays[j];
PoolVector<real_t> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_COLOR: {
PoolVector<Color> dst = arrays[j];
PoolVector<Color> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TEX_UV:
case ARRAY_TEX_UV2: {
PoolVector<Vector2> dst = arrays[j];
PoolVector<Vector2> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_INDEX: {
PoolVector<int> dst = arrays[j];
PoolVector<int> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
{
int ss = src.size();
PoolVector<int>::Write w = src.write();
for (int k = 0; k < ss; k++) {
w[k] += index_accum;
}
}
dst.append_array(src);
arrays[j] = dst;
index_accum += vcount;
} break;
}
}
}
}
ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref<ArrayMesh>());
{
PoolVector<int>::Write ir;
PoolVector<int> indices = arrays[ARRAY_INDEX];
bool has_indices = false;
PoolVector<Vector3> vertices = arrays[ARRAY_VERTEX];
int vc = vertices.size();
ERR_FAIL_COND_V(!vc, Ref<ArrayMesh>());
PoolVector<Vector3>::Write r = vertices.write();
if (indices.size()) {
ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ArrayMesh>());
vc = indices.size();
ir = indices.write();
has_indices = true;
}
Map<Vector3, Vector3> normal_accum;
//fill normals with triangle normals
for (int i = 0; i < vc; i += 3) {
Vector3 t[3];
if (has_indices) {
t[0] = r[ir[i + 0]];
t[1] = r[ir[i + 1]];
t[2] = r[ir[i + 2]];
} else {
t[0] = r[i + 0];
t[1] = r[i + 1];
t[2] = r[i + 2];
}
Vector3 n = Plane(t[0], t[1], t[2]).normal;
for (int j = 0; j < 3; j++) {
Map<Vector3, Vector3>::Element *E = normal_accum.find(t[j]);
if (!E) {
normal_accum[t[j]] = n;
} else {
float d = n.dot(E->get());
if (d < 1.0) {
E->get() += n * (1.0 - d);
}
//E->get()+=n;
}
}
}
//normalize
for (Map<Vector3, Vector3>::Element *E = normal_accum.front(); E; E = E->next()) {
E->get().normalize();
}
//displace normals
int vc2 = vertices.size();
for (int i = 0; i < vc2; i++) {
Vector3 t = r[i];
Map<Vector3, Vector3>::Element *E = normal_accum.find(t);
ERR_CONTINUE(!E);
t += E->get() * p_margin;
r[i] = t;
}
r.release();
arrays[ARRAY_VERTEX] = vertices;
if (!has_indices) {
PoolVector<int> new_indices;
new_indices.resize(vertices.size());
PoolVector<int>::Write iw = new_indices.write();
for (int j = 0; j < vc2; j += 3) {
iw[j] = j;
iw[j + 1] = j + 2;
iw[j + 2] = j + 1;
}
iw.release();
arrays[ARRAY_INDEX] = new_indices;
} else {
for (int j = 0; j < vc; j += 3) {
SWAP(ir[j + 1], ir[j + 2]);
}
ir.release();
arrays[ARRAY_INDEX] = indices;
}
}
Ref<ArrayMesh> newmesh = memnew(ArrayMesh);
newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays);
return newmesh;
}
void Mesh::set_lightmap_size_hint(const Vector2 &p_size) {
lightmap_size_hint = p_size;
}
Size2 Mesh::get_lightmap_size_hint() const {
return lightmap_size_hint;
}
void Mesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint");
ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count);
ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays);
ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays);
ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material);
ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material);
BIND_ENUM_CONSTANT(PRIMITIVE_POINTS);
BIND_ENUM_CONSTANT(PRIMITIVE_LINES);
BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP);
BIND_ENUM_CONSTANT(PRIMITIVE_LINE_LOOP);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_FAN);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_BASE);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_COLOR);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_BONES);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_INDEX);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_2D_VERTICES);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_16_BIT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_DEFAULT);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
}
void Mesh::clear_cache() const {
triangle_mesh.unref();
debug_lines.clear();
}
Vector<Ref<Shape>> Mesh::convex_decompose(int p_max_convex_hulls) const {
ERR_FAIL_COND_V(!convex_decomposition_function, Vector<Ref<Shape>>());
Ref<TriangleMesh> tm = generate_triangle_mesh();
ERR_FAIL_COND_V(!tm.is_valid(), Vector<Ref<Shape>>());
const PoolVector<TriangleMesh::Triangle> &triangles = tm->get_triangles();
int triangle_count = triangles.size();
PoolVector<uint32_t> indices;
{
indices.resize(triangle_count * 3);
PoolVector<uint32_t>::Write w = indices.write();
PoolVector<TriangleMesh::Triangle>::Read triangles_read = triangles.read();
for (int i = 0; i < triangle_count; i++) {
for (int j = 0; j < 3; j++) {
w[i * 3 + j] = triangles_read[i].indices[j];
}
}
}
const PoolVector<Vector3> &vertices = tm->get_vertices();
int vertex_count = vertices.size();
Vector<PoolVector<Vector3>> decomposed = convex_decomposition_function((real_t *)vertices.read().ptr(), vertex_count, indices.read().ptr(), triangle_count, p_max_convex_hulls, nullptr);
Vector<Ref<Shape>> ret;
for (int i = 0; i < decomposed.size(); i++) {
Ref<ConvexPolygonShape> shape;
shape.instance();
shape->set_points(decomposed[i]);
ret.push_back(shape);
}
return ret;
}
Mesh::Mesh() {
}
bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
String sname = p_name;
if (p_name == "blend_shape/names") {
PoolVector<String> sk = p_value;
int sz = sk.size();
PoolVector<String>::Read r = sk.read();
for (int i = 0; i < sz; i++) {
add_blend_shape(r[i]);
}
return true;
}
if (p_name == "blend_shape/mode") {
set_blend_shape_mode(BlendShapeMode(int(p_value)));
return true;
}
if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1) {
return false;
}
int idx = sname.substr(8, sl - 8).to_int() - 1;
String what = sname.get_slicec('/', 1);
if (what == "material") {
surface_set_material(idx, p_value);
} else if (what == "name") {
surface_set_name(idx, p_value);
}
return true;
}
if (!sname.begins_with("surfaces")) {
return false;
}
int idx = sname.get_slicec('/', 1).to_int();
String what = sname.get_slicec('/', 2);
if (idx == surfaces.size()) {
//create
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("primitive"), false);
if (d.has("arrays")) {
//old format
ERR_FAIL_COND_V(!d.has("morph_arrays"), false);
add_surface_from_arrays(PrimitiveType(int(d["primitive"])), d["arrays"], d["morph_arrays"]);
} else if (d.has("array_data")) {
PoolVector<uint8_t> array_data = d["array_data"];
PoolVector<uint8_t> array_index_data;
if (d.has("array_index_data")) {
array_index_data = d["array_index_data"];
}
ERR_FAIL_COND_V(!d.has("format"), false);
uint32_t format = d["format"];
uint32_t primitive = d["primitive"];
ERR_FAIL_COND_V(!d.has("vertex_count"), false);
int vertex_count = d["vertex_count"];
int index_count = 0;
if (d.has("index_count")) {
index_count = d["index_count"];
}
Vector<PoolVector<uint8_t>> blend_shapes;
if (d.has("blend_shape_data")) {
Array blend_shape_data = d["blend_shape_data"];
for (int i = 0; i < blend_shape_data.size(); i++) {
PoolVector<uint8_t> shape = blend_shape_data[i];
blend_shapes.push_back(shape);
}
}
ERR_FAIL_COND_V(!d.has("aabb"), false);
AABB aabb = d["aabb"];
Vector<AABB> bone_aabb;
if (d.has("skeleton_aabb")) {
Array baabb = d["skeleton_aabb"];
bone_aabb.resize(baabb.size());
for (int i = 0; i < baabb.size(); i++) {
bone_aabb.write[i] = baabb[i];
}
}
add_surface(format, PrimitiveType(primitive), array_data, vertex_count, array_index_data, index_count, aabb, blend_shapes, bone_aabb);
} else {
ERR_FAIL_V(false);
}
if (d.has("material")) {
surface_set_material(idx, d["material"]);
}
if (d.has("name")) {
surface_set_name(idx, d["name"]);
}
return true;
}
return false;
}
bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const {
if (_is_generated()) {
return false;
}
String sname = p_name;
if (p_name == "blend_shape/names") {
PoolVector<String> sk;
for (int i = 0; i < blend_shapes.size(); i++) {
sk.push_back(blend_shapes[i]);
}
r_ret = sk;
return true;
} else if (p_name == "blend_shape/mode") {
r_ret = get_blend_shape_mode();
return true;
} else if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1) {
return false;
}
int idx = sname.substr(8, sl - 8).to_int() - 1;
String what = sname.get_slicec('/', 1);
if (what == "material") {
r_ret = surface_get_material(idx);
} else if (what == "name") {
r_ret = surface_get_name(idx);
}
return true;
} else if (!sname.begins_with("surfaces")) {
return false;
}
int idx = sname.get_slicec('/', 1).to_int();
ERR_FAIL_INDEX_V(idx, surfaces.size(), false);
Dictionary d;
d["array_data"] = VS::get_singleton()->mesh_surface_get_array(mesh, idx);
d["vertex_count"] = VS::get_singleton()->mesh_surface_get_array_len(mesh, idx);
d["array_index_data"] = VS::get_singleton()->mesh_surface_get_index_array(mesh, idx);
d["index_count"] = VS::get_singleton()->mesh_surface_get_array_index_len(mesh, idx);
d["primitive"] = VS::get_singleton()->mesh_surface_get_primitive_type(mesh, idx);
d["format"] = VS::get_singleton()->mesh_surface_get_format(mesh, idx);
d["aabb"] = VS::get_singleton()->mesh_surface_get_aabb(mesh, idx);
Vector<AABB> skel_aabb = VS::get_singleton()->mesh_surface_get_skeleton_aabb(mesh, idx);
Array arr;
arr.resize(skel_aabb.size());
for (int i = 0; i < skel_aabb.size(); i++) {
arr[i] = skel_aabb[i];
}
d["skeleton_aabb"] = arr;
Vector<PoolVector<uint8_t>> blend_shape_data = VS::get_singleton()->mesh_surface_get_blend_shapes(mesh, idx);
Array md;
for (int i = 0; i < blend_shape_data.size(); i++) {
md.push_back(blend_shape_data[i]);
}
d["blend_shape_data"] = md;
Ref<Material> m = surface_get_material(idx);
if (m.is_valid()) {
d["material"] = m;
}
String n = surface_get_name(idx);
if (n != "") {
d["name"] = n;
}
r_ret = d;
return true;
}
void ArrayMesh::_get_property_list(List<PropertyInfo> *p_list) const {
if (_is_generated()) {
return;
}
if (blend_shapes.size()) {
p_list->push_back(PropertyInfo(Variant::POOL_STRING_ARRAY, "blend_shape/names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::INT, "blend_shape/mode", PROPERTY_HINT_ENUM, "Normalized,Relative"));
}
for (int i = 0; i < surfaces.size(); i++) {
p_list->push_back(PropertyInfo(Variant::DICTIONARY, "surfaces/" + itos(i), PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i + 1) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR));
if (surfaces[i].is_2d) {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,CanvasItemMaterial", PROPERTY_USAGE_EDITOR));
} else {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,SpatialMaterial", PROPERTY_USAGE_EDITOR));
}
}
}
void ArrayMesh::_recompute_aabb() {
// regenerate AABB
aabb = AABB();
for (int i = 0; i < surfaces.size(); i++) {
if (i == 0) {
aabb = surfaces[i].aabb;
} else {
aabb.merge_with(surfaces[i].aabb);
}
}
}
void ArrayMesh::add_surface(uint32_t p_format, PrimitiveType p_primitive, const PoolVector<uint8_t> &p_array, int p_vertex_count, const PoolVector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<PoolVector<uint8_t>> &p_blend_shapes, const Vector<AABB> &p_bone_aabbs) {
Surface s;
s.aabb = p_aabb;
s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES;
surfaces.push_back(s);
_recompute_aabb();
VisualServer::get_singleton()->mesh_add_surface(mesh, p_format, (VS::PrimitiveType)p_primitive, p_array, p_vertex_count, p_index_array, p_index_count, p_aabb, p_blend_shapes, p_bone_aabbs);
}
void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, uint32_t p_flags) {
ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);
Surface s;
VisualServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_flags);
/* make aABB? */ {
Variant arr = p_arrays[ARRAY_VERTEX];
PoolVector<Vector3> vertices = arr;
int len = vertices.size();
ERR_FAIL_COND(len == 0);
PoolVector<Vector3>::Read r = vertices.read();
const Vector3 *vtx = r.ptr();
// check AABB
AABB aabb;
for (int i = 0; i < len; i++) {
if (i == 0) {
aabb.position = vtx[i];
} else {
aabb.expand_to(vtx[i]);
}
}
s.aabb = aabb;
s.is_2d = arr.get_type() == Variant::POOL_VECTOR2_ARRAY;
surfaces.push_back(s);
_recompute_aabb();
}
clear_cache();
_change_notify();
emit_changed();
}
Array ArrayMesh::surface_get_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return VisualServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
}
Array ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return VisualServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface);
}
int ArrayMesh::get_surface_count() const {
return surfaces.size();
}
void ArrayMesh::add_blend_shape(const StringName &p_name) {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created.");
StringName name = p_name;
if (blend_shapes.find(name) != -1) {
int count = 2;
do {
name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.find(name) != -1);
}
blend_shapes.push_back(name);
VS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
}
int ArrayMesh::get_blend_shape_count() const {
return blend_shapes.size();
}
StringName ArrayMesh::get_blend_shape_name(int p_index) const {
ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName());
return blend_shapes[p_index];
}
void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
ERR_FAIL_INDEX(p_index, blend_shapes.size());
StringName name = p_name;
int found = blend_shapes.find(name);
if (found != -1 && found != p_index) {
int count = 2;
do {
name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.find(name) != -1);
}
blend_shapes.write[p_index] = name;
}
void ArrayMesh::clear_blend_shapes() {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created.");
blend_shapes.clear();
}
void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) {
blend_shape_mode = p_mode;
VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)p_mode);
}
ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const {
return blend_shape_mode;
}
void ArrayMesh::surface_remove(int p_idx) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
VisualServer::get_singleton()->mesh_remove_surface(mesh, p_idx);
surfaces.remove(p_idx);
clear_cache();
_recompute_aabb();
_change_notify();
emit_changed();
}
int ArrayMesh::surface_get_array_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return VisualServer::get_singleton()->mesh_surface_get_array_len(mesh, p_idx);
}
int ArrayMesh::surface_get_array_index_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return VisualServer::get_singleton()->mesh_surface_get_array_index_len(mesh, p_idx);
}
uint32_t ArrayMesh::surface_get_format(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0);
return VisualServer::get_singleton()->mesh_surface_get_format(mesh, p_idx);
}
ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES);
return (PrimitiveType)VisualServer::get_singleton()->mesh_surface_get_primitive_type(mesh, p_idx);
}
void ArrayMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
if (surfaces[p_idx].material == p_material) {
return;
}
surfaces.write[p_idx].material = p_material;
VisualServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid());
_change_notify("material");
emit_changed();
}
int ArrayMesh::surface_find_by_name(const String &p_name) const {
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].name == p_name) {
return i;
}
}
return -1;
}
void ArrayMesh::surface_set_name(int p_idx, const String &p_name) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].name = p_name;
emit_changed();
}
String ArrayMesh::surface_get_name(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String());
return surfaces[p_idx].name;
}
void ArrayMesh::surface_update_region(int p_surface, int p_offset, const PoolVector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
VS::get_singleton()->mesh_surface_update_region(mesh, p_surface, p_offset, p_data);
emit_changed();
}
void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].aabb = p_aabb;
// set custom aabb too?
emit_changed();
}
Ref<Material> ArrayMesh::surface_get_material(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref<Material>());
return surfaces[p_idx].material;
}
void ArrayMesh::add_surface_from_mesh_data(const Geometry::MeshData &p_mesh_data) {
VisualServer::get_singleton()->mesh_add_surface_from_mesh_data(mesh, p_mesh_data);
AABB aabb;
for (int i = 0; i < p_mesh_data.vertices.size(); i++) {
if (i == 0) {
aabb.position = p_mesh_data.vertices[i];
} else {
aabb.expand_to(p_mesh_data.vertices[i]);
}
}
Surface s;
s.aabb = aabb;
if (surfaces.size() == 0) {
aabb = s.aabb;
} else {
aabb.merge_with(s.aabb);
}
clear_cache();
surfaces.push_back(s);
_change_notify();
emit_changed();
}
RID ArrayMesh::get_rid() const {
return mesh;
}
AABB ArrayMesh::get_aabb() const {
return aabb;
}
void ArrayMesh::clear_surfaces() {
if (!mesh.is_valid()) {
return;
}
VS::get_singleton()->mesh_clear(mesh);
surfaces.clear();
aabb = AABB();
}
void ArrayMesh::set_custom_aabb(const AABB &p_custom) {
custom_aabb = p_custom;
VS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
emit_changed();
}
AABB ArrayMesh::get_custom_aabb() const {
return custom_aabb;
}
void ArrayMesh::regen_normalmaps() {
Vector<Ref<SurfaceTool>> surfs;
for (int i = 0; i < get_surface_count(); i++) {
Ref<SurfaceTool> st = memnew(SurfaceTool);
st->create_from(Ref<ArrayMesh>(this), i);
surfs.push_back(st);
}
while (get_surface_count()) {
surface_remove(0);
}
for (int i = 0; i < surfs.size(); i++) {
surfs.write[i]->generate_tangents();
surfs.write[i]->commit(Ref<ArrayMesh>(this));
}
}
//dirty hack
bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, const int *p_face_materials, int p_index_count, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr;
struct ArrayMeshLightmapSurface {
Ref<Material> material;
Vector<SurfaceTool::Vertex> vertices;
Mesh::PrimitiveType primitive;
uint32_t format;
};
Error ArrayMesh::lightmap_unwrap(const Transform &p_base_transform, float p_texel_size) {
int *cache_data = nullptr;
unsigned int cache_size = 0;
bool use_cache = false; // Don't use cache
return lightmap_unwrap_cached(cache_data, cache_size, use_cache, p_base_transform, p_texel_size);
}
Error ArrayMesh::lightmap_unwrap_cached(int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache, const Transform &p_base_transform, float p_texel_size) {
ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
LocalVector<float> vertices;
LocalVector<float> normals;
LocalVector<int> indices;
LocalVector<int> face_materials;
LocalVector<float> uv;
LocalVector<Pair<int, int>> uv_indices;
Vector<ArrayMeshLightmapSurface> lightmap_surfaces;
// Keep only the scale
Basis basis = p_base_transform.get_basis();
Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length());
Transform transform;
transform.scale(scale);
Basis normal_basis = transform.basis.inverse().transposed();
for (int i = 0; i < get_surface_count(); i++) {
ArrayMeshLightmapSurface s;
s.primitive = surface_get_primitive_type(i);
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
s.format = surface_get_format(i);
ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
Array arrays = surface_get_arrays(i);
s.material = surface_get_material(i);
s.vertices = SurfaceTool::create_vertex_array_from_triangle_arrays(arrays);
PoolVector<Vector3> rvertices = arrays[Mesh::ARRAY_VERTEX];
int vc = rvertices.size();
PoolVector<Vector3>::Read r = rvertices.read();
PoolVector<Vector3> rnormals = arrays[Mesh::ARRAY_NORMAL];
PoolVector<Vector3>::Read rn = rnormals.read();
int vertex_ofs = vertices.size() / 3;
vertices.resize((vertex_ofs + vc) * 3);
normals.resize((vertex_ofs + vc) * 3);
uv_indices.resize(vertex_ofs + vc);
for (int j = 0; j < vc; j++) {
Vector3 v = transform.xform(r[j]);
Vector3 n = normal_basis.xform(rn[j]).normalized();
vertices[(j + vertex_ofs) * 3 + 0] = v.x;
vertices[(j + vertex_ofs) * 3 + 1] = v.y;
vertices[(j + vertex_ofs) * 3 + 2] = v.z;
normals[(j + vertex_ofs) * 3 + 0] = n.x;
normals[(j + vertex_ofs) * 3 + 1] = n.y;
normals[(j + vertex_ofs) * 3 + 2] = n.z;
uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
}
PoolVector<int> rindices = arrays[Mesh::ARRAY_INDEX];
int ic = rindices.size();
float eps = 1.19209290e-7F; // Taken from xatlas.h
if (ic == 0) {
for (int j = 0; j < vc / 3; j++) {
Vector3 p0 = transform.xform(r[j * 3 + 0]);
Vector3 p1 = transform.xform(r[j * 3 + 1]);
Vector3 p2 = transform.xform(r[j * 3 + 2]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + j * 3 + 0);
indices.push_back(vertex_ofs + j * 3 + 1);
indices.push_back(vertex_ofs + j * 3 + 2);
face_materials.push_back(i);
}
} else {
PoolVector<int>::Read ri = rindices.read();
for (int j = 0; j < ic / 3; j++) {
Vector3 p0 = transform.xform(r[ri[j * 3 + 0]]);
Vector3 p1 = transform.xform(r[ri[j * 3 + 1]]);
Vector3 p2 = transform.xform(r[ri[j * 3 + 2]]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + ri[j * 3 + 0]);
indices.push_back(vertex_ofs + ri[j * 3 + 1]);
indices.push_back(vertex_ofs + ri[j * 3 + 2]);
face_materials.push_back(i);
}
}
lightmap_surfaces.push_back(s);
}
CryptoCore::MD5Context ctx;
ctx.start();
ctx.update((unsigned char *)&p_texel_size, sizeof(float));
ctx.update((unsigned char *)indices.ptr(), sizeof(int) * indices.size());
ctx.update((unsigned char *)face_materials.ptr(), sizeof(int) * face_materials.size());
ctx.update((unsigned char *)vertices.ptr(), sizeof(float) * vertices.size());
ctx.update((unsigned char *)normals.ptr(), sizeof(float) * normals.size());
unsigned char hash[16];
ctx.finish(hash);
bool cached = false;
unsigned int cache_idx = 0;
if (r_used_cache && r_cache_data) {
//Check if hash is in cache data
int *cache_data = r_cache_data;
int n_entries = cache_data[0];
unsigned int r_idx = 1;
for (int i = 0; i < n_entries; ++i) {
if (memcmp(&cache_data[r_idx], hash, 16) == 0) {
cached = true;
cache_idx = r_idx;
break;
}
r_idx += 4; // hash
r_idx += 2; // size hint
int vertex_count = cache_data[r_idx];
r_idx += 1; // vertex count
r_idx += vertex_count; // vertex
r_idx += vertex_count * 2; // uvs
int index_count = cache_data[r_idx];
r_idx += 1; // index count
r_idx += index_count; // indices
}
}
//unwrap
float *gen_uvs;
int *gen_vertices;
int *gen_indices;
int gen_vertex_count;
int gen_index_count;
int size_x;
int size_y;
if (r_used_cache && cached) {
int *cache_data = r_cache_data;
// Return cache data pointer to the caller
r_cache_data = &cache_data[cache_idx];
cache_idx += 4;
// Load size
size_x = ((int *)cache_data)[cache_idx];
size_y = ((int *)cache_data)[cache_idx + 1];
cache_idx += 2;
// Load vertices
gen_vertex_count = cache_data[cache_idx];
cache_idx++;
gen_vertices = &cache_data[cache_idx];
cache_idx += gen_vertex_count;
// Load UVs
gen_uvs = (float *)&cache_data[cache_idx];
cache_idx += gen_vertex_count * 2;
// Load indices
gen_index_count = cache_data[cache_idx];
cache_idx++;
gen_indices = &cache_data[cache_idx];
// Return cache data size to the caller
r_cache_size = sizeof(int) * (4 + 2 + 1 + gen_vertex_count + (gen_vertex_count * 2) + 1 + gen_index_count); // hash + size hint + vertex_count + vertices + uvs + index_count + indices
r_used_cache = true;
}
if (!cached) {
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), face_materials.ptr(), indices.size(), &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
if (!ok) {
return ERR_CANT_CREATE;
}
if (r_used_cache) {
unsigned int new_cache_size = 4 + 2 + 1 + gen_vertex_count + (gen_vertex_count * 2) + 1 + gen_index_count; // hash + size hint + vertex_count + vertices + uvs + index_count + indices
new_cache_size *= sizeof(int);
int *new_cache_data = (int *)memalloc(new_cache_size);
unsigned int new_cache_idx = 0;
// hash
memcpy(&new_cache_data[new_cache_idx], hash, 16);
new_cache_idx += 4;
// size hint
new_cache_data[new_cache_idx] = size_x;
new_cache_data[new_cache_idx + 1] = size_y;
new_cache_idx += 2;
// vertex count
new_cache_data[new_cache_idx] = gen_vertex_count;
new_cache_idx++;
// vertices
memcpy(&new_cache_data[new_cache_idx], gen_vertices, sizeof(int) * gen_vertex_count);
new_cache_idx += gen_vertex_count;
// uvs
memcpy(&new_cache_data[new_cache_idx], gen_uvs, sizeof(float) * gen_vertex_count * 2);
new_cache_idx += gen_vertex_count * 2;
// index count
new_cache_data[new_cache_idx] = gen_index_count;
new_cache_idx++;
// indices
memcpy(&new_cache_data[new_cache_idx], gen_indices, sizeof(int) * gen_index_count);
new_cache_idx += gen_index_count;
// Return cache data to the caller
r_cache_data = new_cache_data;
r_cache_size = new_cache_size;
r_used_cache = false;
}
}
//remove surfaces
while (get_surface_count()) {
surface_remove(0);
}
//create surfacetools for each surface..
LocalVector<Ref<SurfaceTool>> surfaces_tools;
for (int i = 0; i < lightmap_surfaces.size(); i++) {
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
st->set_material(lightmap_surfaces[i].material);
surfaces_tools.push_back(st); //stay there
}
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
//go through all indices
for (int i = 0; i < gen_index_count; i += 3) {
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
for (int j = 0; j < 3; j++) {
SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) {
surfaces_tools[surface]->add_color(v.color);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) {
surfaces_tools[surface]->add_uv(v.uv);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) {
surfaces_tools[surface]->add_normal(v.normal);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) {
Plane t;
t.normal = v.tangent;
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
surfaces_tools[surface]->add_tangent(t);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) {
surfaces_tools[surface]->add_bones(v.bones);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) {
surfaces_tools[surface]->add_weights(v.weights);
}
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
surfaces_tools[surface]->add_uv2(uv2);
surfaces_tools[surface]->add_vertex(v.vertex);
}
}
//generate surfaces
for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
surfaces_tools[i]->index();
surfaces_tools[i]->commit(Ref<ArrayMesh>((ArrayMesh *)this), lightmap_surfaces[i].format);
}
set_lightmap_size_hint(Size2(size_x, size_y));
if (!cached) {
//free stuff
::free(gen_vertices);
::free(gen_indices);
::free(gen_uvs);
}
return OK;
}
void ArrayMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape);
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count);
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name);
ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name);
ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes);
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode);
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode);
ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "compress_flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(ARRAY_COMPRESS_DEFAULT));
ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces);
ClassDB::bind_method(D_METHOD("surface_remove", "surf_idx"), &ArrayMesh::surface_remove);
ClassDB::bind_method(D_METHOD("surface_update_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_region);
ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len);
ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len);
ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format);
ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type);
ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name);
ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name);
ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name);
ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape);
ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false));
ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline);
ClassDB::bind_method(D_METHOD("regen_normalmaps"), &ArrayMesh::regen_normalmaps);
ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normalmaps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap);
ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("get_faces"), &ArrayMesh::get_faces);
ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh);
ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb);
ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb);
ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative", PROPERTY_USAGE_NOEDITOR), "set_blend_shape_mode", "get_blend_shape_mode");
ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb");
BIND_CONSTANT(NO_INDEX_ARRAY);
BIND_CONSTANT(ARRAY_WEIGHTS_SIZE);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX);
}
void ArrayMesh::reload_from_file() {
VisualServer::get_singleton()->mesh_clear(mesh);
surfaces.clear();
clear_blend_shapes();
clear_cache();
Resource::reload_from_file();
_change_notify();
}
ArrayMesh::ArrayMesh() {
mesh = VisualServer::get_singleton()->mesh_create();
blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE;
}
ArrayMesh::~ArrayMesh() {
VisualServer::get_singleton()->free(mesh);
}