godot/drivers/gles3/storage/mesh_storage.h
clayjohn 9ce57050a5 Add GPUParticles to the OpenGL3 renderer.
This includes collision (2D SDF, Box, Sphere, Heightmap),
attraction (Box, Sphere), and all sorting modes.

This does not include 3D SDF collisions, trails, or
manual emission.
2022-11-14 23:28:25 -08:00

547 lines
19 KiB
C++

/*************************************************************************/
/* mesh_storage.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef MESH_STORAGE_GLES3_H
#define MESH_STORAGE_GLES3_H
#ifdef GLES3_ENABLED
#include "core/templates/local_vector.h"
#include "core/templates/rid_owner.h"
#include "core/templates/self_list.h"
#include "servers/rendering/storage/mesh_storage.h"
#include "servers/rendering/storage/utilities.h"
#include "platform_config.h"
#ifndef OPENGL_INCLUDE_H
#include <GLES3/gl3.h>
#else
#include OPENGL_INCLUDE_H
#endif
namespace GLES3 {
struct MeshInstance;
struct Mesh {
struct Surface {
struct Attrib {
bool enabled;
bool integer;
GLint size;
GLenum type;
GLboolean normalized;
GLsizei stride;
uint32_t offset;
};
RS::PrimitiveType primitive = RS::PRIMITIVE_POINTS;
uint32_t format = 0;
GLuint vertex_buffer = 0;
GLuint attribute_buffer = 0;
GLuint skin_buffer = 0;
uint32_t vertex_count = 0;
uint32_t vertex_buffer_size = 0;
uint32_t attribute_buffer_size = 0;
uint32_t skin_buffer_size = 0;
// Cache vertex arrays so they can be created
struct Version {
uint32_t input_mask = 0;
GLuint vertex_array = 0;
Attrib attribs[RS::ARRAY_MAX];
};
SpinLock version_lock; //needed to access versions
Version *versions = nullptr; //allocated on demand
uint32_t version_count = 0;
GLuint index_buffer = 0;
uint32_t index_count = 0;
uint32_t index_buffer_size = 0;
struct LOD {
float edge_length = 0.0;
uint32_t index_count = 0;
uint32_t index_buffer_size = 0;
GLuint index_buffer = 0;
};
LOD *lods = nullptr;
uint32_t lod_count = 0;
AABB aabb;
Vector<AABB> bone_aabbs;
GLuint blend_shape_buffer = 0;
RID material;
};
uint32_t blend_shape_count = 0;
RS::BlendShapeMode blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED;
Surface **surfaces = nullptr;
uint32_t surface_count = 0;
Vector<AABB> bone_aabbs;
bool has_bone_weights = false;
AABB aabb;
AABB custom_aabb;
Vector<RID> material_cache;
List<MeshInstance *> instances;
RID shadow_mesh;
HashSet<Mesh *> shadow_owners;
Dependency dependency;
};
/* Mesh Instance */
struct MeshInstance {
Mesh *mesh = nullptr;
RID skeleton;
struct Surface {
GLuint vertex_buffer = 0;
Mesh::Surface::Version *versions = nullptr; //allocated on demand
uint32_t version_count = 0;
};
LocalVector<Surface> surfaces;
LocalVector<float> blend_weights;
GLuint blend_weights_buffer = 0;
List<MeshInstance *>::Element *I = nullptr; //used to erase itself
uint64_t skeleton_version = 0;
bool dirty = false;
bool weights_dirty = false;
SelfList<MeshInstance> weight_update_list;
SelfList<MeshInstance> array_update_list;
MeshInstance() :
weight_update_list(this), array_update_list(this) {}
};
/* MultiMesh */
struct MultiMesh {
RID mesh;
int instances = 0;
RS::MultimeshTransformFormat xform_format = RS::MULTIMESH_TRANSFORM_3D;
bool uses_colors = false;
bool uses_custom_data = false;
int visible_instances = -1;
AABB aabb;
bool aabb_dirty = false;
bool buffer_set = false;
uint32_t stride_cache = 0;
uint32_t color_offset_cache = 0;
uint32_t custom_data_offset_cache = 0;
Vector<float> data_cache; //used if individual setting is used
bool *data_cache_dirty_regions = nullptr;
uint32_t data_cache_used_dirty_regions = 0;
GLuint buffer = 0;
bool dirty = false;
MultiMesh *dirty_list = nullptr;
Dependency dependency;
};
struct Skeleton {
bool use_2d = false;
int size = 0;
Vector<float> data;
GLuint buffer = 0;
bool dirty = false;
Skeleton *dirty_list = nullptr;
Transform2D base_transform_2d;
uint64_t version = 1;
Dependency dependency;
};
class MeshStorage : public RendererMeshStorage {
private:
static MeshStorage *singleton;
/* Mesh */
mutable RID_Owner<Mesh, true> mesh_owner;
void _mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis = nullptr);
/* Mesh Instance API */
mutable RID_Owner<MeshInstance> mesh_instance_owner;
void _mesh_instance_clear(MeshInstance *mi);
void _mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface);
SelfList<MeshInstance>::List dirty_mesh_instance_weights;
SelfList<MeshInstance>::List dirty_mesh_instance_arrays;
/* MultiMesh */
mutable RID_Owner<MultiMesh, true> multimesh_owner;
MultiMesh *multimesh_dirty_list = nullptr;
_FORCE_INLINE_ void _multimesh_make_local(MultiMesh *multimesh) const;
_FORCE_INLINE_ void _multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb);
_FORCE_INLINE_ void _multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb);
_FORCE_INLINE_ void _multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances);
/* Skeleton */
mutable RID_Owner<Skeleton, true> skeleton_owner;
Skeleton *skeleton_dirty_list = nullptr;
_FORCE_INLINE_ void _skeleton_make_dirty(Skeleton *skeleton);
public:
static MeshStorage *get_singleton();
MeshStorage();
virtual ~MeshStorage();
/* MESH API */
Mesh *get_mesh(RID p_rid) { return mesh_owner.get_or_null(p_rid); };
bool owns_mesh(RID p_rid) { return mesh_owner.owns(p_rid); };
virtual RID mesh_allocate() override;
virtual void mesh_initialize(RID p_rid) override;
virtual void mesh_free(RID p_rid) override;
virtual void mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) override;
virtual bool mesh_needs_instance(RID p_mesh, bool p_has_skeleton) override;
virtual void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) override;
virtual int mesh_get_blend_shape_count(RID p_mesh) const override;
virtual void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) override;
virtual RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const override;
virtual void mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) override;
virtual void mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) override;
virtual void mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) override;
virtual void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) override;
virtual RID mesh_surface_get_material(RID p_mesh, int p_surface) const override;
virtual RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const override;
virtual int mesh_get_surface_count(RID p_mesh) const override;
virtual void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) override;
virtual AABB mesh_get_custom_aabb(RID p_mesh) const override;
virtual AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID()) override;
virtual void mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) override;
virtual void mesh_clear(RID p_mesh) override;
_FORCE_INLINE_ const RID *mesh_get_surface_count_and_materials(RID p_mesh, uint32_t &r_surface_count) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_COND_V(!mesh, nullptr);
r_surface_count = mesh->surface_count;
if (r_surface_count == 0) {
return nullptr;
}
if (mesh->material_cache.is_empty()) {
mesh->material_cache.resize(mesh->surface_count);
for (uint32_t i = 0; i < r_surface_count; i++) {
mesh->material_cache.write[i] = mesh->surfaces[i]->material;
}
}
return mesh->material_cache.ptr();
}
_FORCE_INLINE_ void *mesh_get_surface(RID p_mesh, uint32_t p_surface_index) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_COND_V(!mesh, nullptr);
ERR_FAIL_UNSIGNED_INDEX_V(p_surface_index, mesh->surface_count, nullptr);
return mesh->surfaces[p_surface_index];
}
_FORCE_INLINE_ RID mesh_get_shadow_mesh(RID p_mesh) {
Mesh *mesh = mesh_owner.get_or_null(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
return mesh->shadow_mesh;
}
_FORCE_INLINE_ RS::PrimitiveType mesh_surface_get_primitive(void *p_surface) {
Mesh::Surface *surface = reinterpret_cast<Mesh::Surface *>(p_surface);
return surface->primitive;
}
_FORCE_INLINE_ bool mesh_surface_has_lod(void *p_surface) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
return s->lod_count > 0;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_vertices_drawn_count(void *p_surface) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
return s->index_count ? s->index_count : s->vertex_count;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_lod(void *p_surface, float p_model_scale, float p_distance_threshold, float p_mesh_lod_threshold, uint32_t &r_index_count) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
ERR_FAIL_COND_V(!s, 0);
int32_t current_lod = -1;
r_index_count = s->index_count;
for (uint32_t i = 0; i < s->lod_count; i++) {
float screen_size = s->lods[i].edge_length * p_model_scale / p_distance_threshold;
if (screen_size > p_mesh_lod_threshold) {
break;
}
current_lod = i;
}
if (current_lod == -1) {
return 0;
} else {
r_index_count = s->lods[current_lod].index_count;
return current_lod + 1;
}
}
_FORCE_INLINE_ GLuint mesh_surface_get_index_buffer(void *p_surface, uint32_t p_lod) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
if (p_lod == 0) {
return s->index_buffer;
} else {
return s->lods[p_lod - 1].index_buffer;
}
}
_FORCE_INLINE_ GLenum mesh_surface_get_index_type(void *p_surface) const {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
return (s->vertex_count <= 65536 && s->vertex_count > 0) ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT;
}
// Use this to cache Vertex Array Objects so they are only generated once
_FORCE_INLINE_ void mesh_surface_get_vertex_arrays_and_format(void *p_surface, uint32_t p_input_mask, GLuint &r_vertex_array_gl) {
Mesh::Surface *s = reinterpret_cast<Mesh::Surface *>(p_surface);
s->version_lock.lock();
//there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way
for (uint32_t i = 0; i < s->version_count; i++) {
if (s->versions[i].input_mask != p_input_mask) {
continue;
}
//we have this version, hooray
r_vertex_array_gl = s->versions[i].vertex_array;
s->version_lock.unlock();
return;
}
uint32_t version = s->version_count;
s->version_count++;
s->versions = (Mesh::Surface::Version *)memrealloc(s->versions, sizeof(Mesh::Surface::Version) * s->version_count);
_mesh_surface_generate_version_for_input_mask(s->versions[version], s, p_input_mask);
r_vertex_array_gl = s->versions[version].vertex_array;
s->version_lock.unlock();
}
/* MESH INSTANCE API */
MeshInstance *get_mesh_instance(RID p_rid) { return mesh_instance_owner.get_or_null(p_rid); };
bool owns_mesh_instance(RID p_rid) { return mesh_instance_owner.owns(p_rid); };
virtual RID mesh_instance_create(RID p_base) override;
virtual void mesh_instance_free(RID p_rid) override;
virtual void mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) override;
virtual void mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) override;
virtual void mesh_instance_check_for_update(RID p_mesh_instance) override;
virtual void update_mesh_instances() override;
// TODO: considering hashing versions with multimesh buffer RID.
// Doing so would allow us to avoid specifying multimesh buffer pointers every frame and may improve performance.
_FORCE_INLINE_ void mesh_instance_surface_get_vertex_arrays_and_format(RID p_mesh_instance, uint32_t p_surface_index, uint32_t p_input_mask, GLuint &r_vertex_array_gl) {
MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
ERR_FAIL_COND(!mi);
Mesh *mesh = mi->mesh;
ERR_FAIL_UNSIGNED_INDEX(p_surface_index, mesh->surface_count);
MeshInstance::Surface *mis = &mi->surfaces[p_surface_index];
Mesh::Surface *s = mesh->surfaces[p_surface_index];
s->version_lock.lock();
//there will never be more than, at much, 3 or 4 versions, so iterating is the fastest way
for (uint32_t i = 0; i < mis->version_count; i++) {
if (mis->versions[i].input_mask != p_input_mask) {
continue;
}
//we have this version, hooray
r_vertex_array_gl = mis->versions[i].vertex_array;
s->version_lock.unlock();
return;
}
uint32_t version = mis->version_count;
mis->version_count++;
mis->versions = (Mesh::Surface::Version *)memrealloc(mis->versions, sizeof(Mesh::Surface::Version) * mis->version_count);
_mesh_surface_generate_version_for_input_mask(mis->versions[version], s, p_input_mask, mis);
r_vertex_array_gl = mis->versions[version].vertex_array;
s->version_lock.unlock();
}
/* MULTIMESH API */
MultiMesh *get_multimesh(RID p_rid) { return multimesh_owner.get_or_null(p_rid); };
bool owns_multimesh(RID p_rid) { return multimesh_owner.owns(p_rid); };
virtual RID multimesh_allocate() override;
virtual void multimesh_initialize(RID p_rid) override;
virtual void multimesh_free(RID p_rid) override;
virtual void multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false) override;
virtual int multimesh_get_instance_count(RID p_multimesh) const override;
virtual void multimesh_set_mesh(RID p_multimesh, RID p_mesh) override;
virtual void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) override;
virtual void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) override;
virtual void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) override;
virtual void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) override;
virtual RID multimesh_get_mesh(RID p_multimesh) const override;
virtual AABB multimesh_get_aabb(RID p_multimesh) const override;
virtual Transform3D multimesh_instance_get_transform(RID p_multimesh, int p_index) const override;
virtual Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const override;
virtual Color multimesh_instance_get_color(RID p_multimesh, int p_index) const override;
virtual Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const override;
virtual void multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) override;
virtual Vector<float> multimesh_get_buffer(RID p_multimesh) const override;
virtual void multimesh_set_visible_instances(RID p_multimesh, int p_visible) override;
virtual int multimesh_get_visible_instances(RID p_multimesh) const override;
void _update_dirty_multimeshes();
_FORCE_INLINE_ RS::MultimeshTransformFormat multimesh_get_transform_format(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->xform_format;
}
_FORCE_INLINE_ bool multimesh_uses_colors(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->uses_colors;
}
_FORCE_INLINE_ bool multimesh_uses_custom_data(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->uses_custom_data;
}
_FORCE_INLINE_ uint32_t multimesh_get_instances_to_draw(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
if (multimesh->visible_instances >= 0) {
return multimesh->visible_instances;
}
return multimesh->instances;
}
_FORCE_INLINE_ GLuint multimesh_get_gl_buffer(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->buffer;
}
_FORCE_INLINE_ uint32_t multimesh_get_stride(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->stride_cache;
}
_FORCE_INLINE_ uint32_t multimesh_get_color_offset(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->color_offset_cache;
}
_FORCE_INLINE_ uint32_t multimesh_get_custom_data_offset(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
return multimesh->custom_data_offset_cache;
}
/* SKELETON API */
Skeleton *get_skeleton(RID p_rid) { return skeleton_owner.get_or_null(p_rid); };
bool owns_skeleton(RID p_rid) { return skeleton_owner.owns(p_rid); };
virtual RID skeleton_allocate() override;
virtual void skeleton_initialize(RID p_rid) override;
virtual void skeleton_free(RID p_rid) override;
virtual void skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton = false) override;
virtual void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) override;
virtual int skeleton_get_bone_count(RID p_skeleton) const override;
virtual void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) override;
virtual Transform3D skeleton_bone_get_transform(RID p_skeleton, int p_bone) const override;
virtual void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) override;
virtual Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const override;
virtual void skeleton_update_dependency(RID p_base, DependencyTracker *p_instance) override;
/* OCCLUDER */
void occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices);
};
} // namespace GLES3
#endif // GLES3_ENABLED
#endif // MESH_STORAGE_GLES3_H