497 lines
16 KiB
GLSL
497 lines
16 KiB
GLSL
/* clang-format off */
|
|
[vertex]
|
|
|
|
layout(location = 0) in highp vec4 vertex_attrib;
|
|
/* clang-format on */
|
|
layout(location = 4) in vec2 uv_in;
|
|
|
|
out vec2 uv_interp;
|
|
|
|
void main() {
|
|
gl_Position = vertex_attrib;
|
|
|
|
uv_interp = uv_in;
|
|
|
|
#ifdef V_FLIP
|
|
uv_interp.y = 1.0f - uv_interp.y;
|
|
#endif
|
|
}
|
|
|
|
/* clang-format off */
|
|
[fragment]
|
|
|
|
#if !defined(GLES_OVER_GL)
|
|
precision mediump float;
|
|
#endif
|
|
/* clang-format on */
|
|
|
|
in vec2 uv_interp;
|
|
|
|
uniform highp sampler2D source; //texunit:0
|
|
|
|
uniform float exposure;
|
|
uniform float white;
|
|
|
|
#ifdef USE_AUTO_EXPOSURE
|
|
uniform highp sampler2D source_auto_exposure; //texunit:1
|
|
uniform highp float auto_exposure_grey;
|
|
#endif
|
|
|
|
#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
|
|
#define USING_GLOW // only use glow when at least one glow level is selected
|
|
|
|
uniform highp sampler2D source_glow; //texunit:2
|
|
uniform highp float glow_intensity;
|
|
#endif
|
|
|
|
#ifdef USE_BCS
|
|
uniform vec3 bcs;
|
|
#endif
|
|
|
|
#ifdef USE_FXAA
|
|
uniform vec2 pixel_size;
|
|
#endif
|
|
|
|
#ifdef USE_SHARPENING
|
|
uniform float sharpen_intensity;
|
|
#endif
|
|
|
|
#ifdef USE_COLOR_CORRECTION
|
|
uniform sampler2D color_correction; //texunit:3
|
|
#endif
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
|
|
#ifdef USE_GLOW_FILTER_BICUBIC
|
|
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
|
float w0(float a) {
|
|
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
|
|
}
|
|
|
|
float w1(float a) {
|
|
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
|
}
|
|
|
|
float w2(float a) {
|
|
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
|
}
|
|
|
|
float w3(float a) {
|
|
return (1.0f / 6.0f) * (a * a * a);
|
|
}
|
|
|
|
// g0 and g1 are the two amplitude functions
|
|
float g0(float a) {
|
|
return w0(a) + w1(a);
|
|
}
|
|
|
|
float g1(float a) {
|
|
return w2(a) + w3(a);
|
|
}
|
|
|
|
// h0 and h1 are the two offset functions
|
|
float h0(float a) {
|
|
return -1.0f + w1(a) / (w0(a) + w1(a));
|
|
}
|
|
|
|
float h1(float a) {
|
|
return 1.0f + w3(a) / (w2(a) + w3(a));
|
|
}
|
|
|
|
uniform ivec2 glow_texture_size;
|
|
|
|
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
|
|
float lod = float(p_lod);
|
|
vec2 tex_size = vec2(glow_texture_size >> p_lod);
|
|
vec2 texel_size = vec2(1.0f) / tex_size;
|
|
|
|
uv = uv * tex_size + vec2(0.5f);
|
|
|
|
vec2 iuv = floor(uv);
|
|
vec2 fuv = fract(uv);
|
|
|
|
float g0x = g0(fuv.x);
|
|
float g1x = g1(fuv.x);
|
|
float h0x = h0(fuv.x);
|
|
float h1x = h1(fuv.x);
|
|
float h0y = h0(fuv.y);
|
|
float h1y = h1(fuv.y);
|
|
|
|
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * texel_size;
|
|
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * texel_size;
|
|
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * texel_size;
|
|
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * texel_size;
|
|
|
|
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
|
|
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
|
|
}
|
|
|
|
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
|
#else
|
|
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
|
|
#endif
|
|
|
|
vec3 tonemap_filmic(vec3 color, float white) {
|
|
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
|
|
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
|
|
// has no effect on the curve's general shape or visual properties
|
|
const float exposure_bias = 2.0f;
|
|
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
|
|
const float B = 0.30f * exposure_bias;
|
|
const float C = 0.10f;
|
|
const float D = 0.20f;
|
|
const float E = 0.01f;
|
|
const float F = 0.30f;
|
|
|
|
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
|
|
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
|
|
|
|
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
|
|
}
|
|
|
|
vec3 tonemap_aces(vec3 color, float white) {
|
|
const float exposure_bias = 0.85f;
|
|
const float A = 2.51f * exposure_bias * exposure_bias;
|
|
const float B = 0.03f * exposure_bias;
|
|
const float C = 2.43f * exposure_bias * exposure_bias;
|
|
const float D = 0.59f * exposure_bias;
|
|
const float E = 0.14f;
|
|
|
|
vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E);
|
|
float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E);
|
|
|
|
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
|
|
}
|
|
|
|
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
|
|
// (MIT License).
|
|
vec3 tonemap_aces_fitted(vec3 color, float white) {
|
|
const float exposure_bias = 1.8f;
|
|
const float A = 0.0245786f;
|
|
const float B = 0.000090537f;
|
|
const float C = 0.983729f;
|
|
const float D = 0.432951f;
|
|
const float E = 0.238081f;
|
|
|
|
// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
|
|
const mat3 rgb_to_rrt = mat3(
|
|
vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
|
|
vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
|
|
vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
|
|
|
|
const mat3 odt_to_rgb = mat3(
|
|
vec3(1.60475f, -0.53108f, -0.07367f),
|
|
vec3(-0.10208f, 1.10813f, -0.00605f),
|
|
vec3(-0.00327f, -0.07276f, 1.07602f));
|
|
|
|
color *= rgb_to_rrt;
|
|
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
|
|
color_tonemapped *= odt_to_rgb;
|
|
|
|
white *= exposure_bias;
|
|
float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E);
|
|
|
|
return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f));
|
|
}
|
|
|
|
vec3 tonemap_reinhard(vec3 color, float white) {
|
|
return clamp((white * color + color) / (color * white + white), vec3(0.0f), vec3(1.0f));
|
|
}
|
|
|
|
vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1]
|
|
const vec3 a = vec3(0.055f);
|
|
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
|
|
}
|
|
|
|
// inputs are LINEAR, If Linear tonemapping is selected no transform is performed else outputs are clamped [0, 1] color
|
|
vec3 apply_tonemapping(vec3 color, float white) {
|
|
// Ensure color values are positive.
|
|
// They can be negative in the case of negative lights, which leads to undesired behavior.
|
|
#if defined(USE_REINHARD_TONEMAPPER) || defined(USE_FILMIC_TONEMAPPER) || defined(USE_ACES_TONEMAPPER) || defined(USE_ACES_FITTED_TONEMAPPER)
|
|
color = max(vec3(0.0f), color);
|
|
#endif
|
|
|
|
#ifdef USE_REINHARD_TONEMAPPER
|
|
return tonemap_reinhard(color, white);
|
|
#endif
|
|
|
|
#ifdef USE_FILMIC_TONEMAPPER
|
|
return tonemap_filmic(color, white);
|
|
#endif
|
|
|
|
#ifdef USE_ACES_TONEMAPPER
|
|
return tonemap_aces(color, white);
|
|
#endif
|
|
|
|
#ifdef USE_ACES_FITTED_TONEMAPPER
|
|
return tonemap_aces_fitted(color, white);
|
|
#endif
|
|
|
|
return color; // no other selected -> linear: no color transform applied
|
|
}
|
|
|
|
vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
|
|
vec3 glow = vec3(0.0f);
|
|
|
|
#ifdef USE_GLOW_LEVEL1
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_LEVEL2
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_LEVEL3
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_LEVEL4
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_LEVEL5
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_LEVEL6
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_LEVEL7
|
|
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb;
|
|
#endif
|
|
|
|
return glow;
|
|
}
|
|
|
|
vec4 apply_glow(vec4 color, vec3 glow) { // apply glow using the selected blending mode
|
|
#ifdef USE_GLOW_REPLACE
|
|
color.rgb = glow;
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_SCREEN
|
|
//need color clamping
|
|
color.rgb = clamp(color.rgb, vec3(0.0f), vec3(1.0f));
|
|
color.rgb = max((color.rgb + glow) - (color.rgb * glow), vec3(0.0));
|
|
#endif
|
|
|
|
#ifdef USE_GLOW_SOFTLIGHT
|
|
//need color clamping
|
|
color.rgb = clamp(color.rgb, vec3(0.0f), vec3(1.0));
|
|
glow = glow * vec3(0.5f) + vec3(0.5f);
|
|
|
|
color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
|
|
color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
|
|
color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
|
|
#endif
|
|
|
|
#if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive
|
|
color.rgb += glow;
|
|
#endif
|
|
|
|
#ifndef USE_GLOW_SOFTLIGHT // softlight has no effect on black color
|
|
// compute the alpha from glow
|
|
float a = max(max(glow.r, glow.g), glow.b);
|
|
color.a = a + color.a * (1.0 - a);
|
|
if (color.a == 0.0) {
|
|
color.rgb = vec3(0.0);
|
|
} else if (color.a < 1.0) {
|
|
color.rgb /= color.a;
|
|
}
|
|
#endif
|
|
|
|
return color;
|
|
}
|
|
|
|
vec3 apply_bcs(vec3 color, vec3 bcs) {
|
|
color = mix(vec3(0.0f), color, bcs.x);
|
|
color = mix(vec3(0.5f), color, bcs.y);
|
|
color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z);
|
|
|
|
return color;
|
|
}
|
|
|
|
vec3 apply_color_correction(vec3 color, sampler2D correction_tex) {
|
|
color.r = texture(correction_tex, vec2(color.r, 0.0f)).r;
|
|
color.g = texture(correction_tex, vec2(color.g, 0.0f)).g;
|
|
color.b = texture(correction_tex, vec2(color.b, 0.0f)).b;
|
|
|
|
return color;
|
|
}
|
|
|
|
vec4 apply_fxaa(vec4 color, float exposure, vec2 uv_interp, vec2 pixel_size) {
|
|
const float FXAA_REDUCE_MIN = (1.0 / 128.0);
|
|
const float FXAA_REDUCE_MUL = (1.0 / 8.0);
|
|
const float FXAA_SPAN_MAX = 8.0;
|
|
|
|
vec4 rgbNW = textureLod(source, uv_interp + vec2(-1.0, -1.0) * pixel_size, 0.0);
|
|
vec4 rgbNE = textureLod(source, uv_interp + vec2(1.0, -1.0) * pixel_size, 0.0);
|
|
vec4 rgbSW = textureLod(source, uv_interp + vec2(-1.0, 1.0) * pixel_size, 0.0);
|
|
vec4 rgbSE = textureLod(source, uv_interp + vec2(1.0, 1.0) * pixel_size, 0.0);
|
|
vec3 rgbM = color.rgb;
|
|
vec3 luma = vec3(0.299, 0.587, 0.114);
|
|
float lumaNW = dot(rgbNW.rgb * exposure, luma) - ((1.0 - rgbNW.a) / 8.0);
|
|
float lumaNE = dot(rgbNE.rgb * exposure, luma) - ((1.0 - rgbNE.a) / 8.0);
|
|
float lumaSW = dot(rgbSW.rgb * exposure, luma) - ((1.0 - rgbSW.a) / 8.0);
|
|
float lumaSE = dot(rgbSE.rgb * exposure, luma) - ((1.0 - rgbSE.a) / 8.0);
|
|
float lumaM = dot(rgbM * exposure, luma) - (color.a / 8.0);
|
|
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
|
|
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
|
|
|
|
vec2 dir;
|
|
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
|
|
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
|
|
|
|
float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) *
|
|
(0.25 * FXAA_REDUCE_MUL),
|
|
FXAA_REDUCE_MIN);
|
|
|
|
float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce);
|
|
dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX),
|
|
max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
|
|
dir * rcpDirMin)) *
|
|
pixel_size;
|
|
|
|
vec4 rgbA = 0.5 * exposure * (textureLod(source, uv_interp + dir * (1.0 / 3.0 - 0.5), 0.0) + textureLod(source, uv_interp + dir * (2.0 / 3.0 - 0.5), 0.0));
|
|
vec4 rgbB = rgbA * 0.5 + 0.25 * exposure * (textureLod(source, uv_interp + dir * -0.5, 0.0) + textureLod(source, uv_interp + dir * 0.5, 0.0));
|
|
|
|
float lumaB = dot(rgbB.rgb, luma) - ((1.0 - rgbB.a) / 8.0);
|
|
vec4 color_output = ((lumaB < lumaMin) || (lumaB > lumaMax)) ? rgbA : rgbB;
|
|
if (color_output.a == 0.0) {
|
|
color_output.rgb = vec3(0.0);
|
|
} else if (color_output.a < 1.0) {
|
|
color_output.rgb /= color_output.a;
|
|
}
|
|
return color_output;
|
|
}
|
|
|
|
// From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
|
|
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
|
|
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
|
|
vec3 screen_space_dither(vec2 frag_coord) {
|
|
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
|
|
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
|
|
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
|
|
|
|
// Subtract 0.5 to avoid slightly brightening the whole viewport.
|
|
return (dither.rgb - 0.5) / 255.0;
|
|
}
|
|
|
|
// Adapted from https://github.com/DadSchoorse/vkBasalt/blob/b929505ba71dea21d6c32a5a59f2d241592b30c4/src/shader/cas.frag.glsl
|
|
// (MIT license).
|
|
vec3 apply_cas(vec3 color, float exposure, vec2 uv_interp, float sharpen_intensity) {
|
|
// Fetch a 3x3 neighborhood around the pixel 'e',
|
|
// a b c
|
|
// d(e)f
|
|
// g h i
|
|
vec3 a = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, -1)).rgb * exposure;
|
|
vec3 b = textureLodOffset(source, uv_interp, 0.0, ivec2(0, -1)).rgb * exposure;
|
|
vec3 c = textureLodOffset(source, uv_interp, 0.0, ivec2(1, -1)).rgb * exposure;
|
|
vec3 d = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, 0)).rgb * exposure;
|
|
vec3 e = color.rgb;
|
|
vec3 f = textureLodOffset(source, uv_interp, 0.0, ivec2(1, 0)).rgb * exposure;
|
|
vec3 g = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, 1)).rgb * exposure;
|
|
vec3 h = textureLodOffset(source, uv_interp, 0.0, ivec2(0, 1)).rgb * exposure;
|
|
vec3 i = textureLodOffset(source, uv_interp, 0.0, ivec2(1, 1)).rgb * exposure;
|
|
|
|
// Soft min and max.
|
|
// a b c b
|
|
// d e f * 0.5 + d e f * 0.5
|
|
// g h i h
|
|
// These are 2.0x bigger (factored out the extra multiply).
|
|
vec3 min_rgb = min(min(min(d, e), min(f, b)), h);
|
|
vec3 min_rgb2 = min(min(min(min_rgb, a), min(g, c)), i);
|
|
min_rgb += min_rgb2;
|
|
|
|
vec3 max_rgb = max(max(max(d, e), max(f, b)), h);
|
|
vec3 max_rgb2 = max(max(max(max_rgb, a), max(g, c)), i);
|
|
max_rgb += max_rgb2;
|
|
|
|
// Smooth minimum distance to signal limit divided by smooth max.
|
|
vec3 rcp_max_rgb = vec3(1.0) / max_rgb;
|
|
vec3 amp_rgb = clamp((min(min_rgb, 2.0 - max_rgb) * rcp_max_rgb), 0.0, 1.0);
|
|
|
|
// Shaping amount of sharpening.
|
|
amp_rgb = inversesqrt(amp_rgb);
|
|
float peak = 8.0 - 3.0 * sharpen_intensity;
|
|
vec3 w_rgb = -vec3(1) / (amp_rgb * peak);
|
|
vec3 rcp_weight_rgb = vec3(1.0) / (1.0 + 4.0 * w_rgb);
|
|
|
|
// 0 w 0
|
|
// Filter shape: w 1 w
|
|
// 0 w 0
|
|
vec3 window = b + d + f + h;
|
|
|
|
return max(vec3(0.0), (window * w_rgb + e) * rcp_weight_rgb);
|
|
}
|
|
|
|
void main() {
|
|
vec4 color = textureLod(source, uv_interp, 0.0f);
|
|
|
|
// Exposure
|
|
float full_exposure = exposure;
|
|
|
|
#ifdef USE_AUTO_EXPOSURE
|
|
full_exposure /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
|
|
#endif
|
|
|
|
color.rgb *= full_exposure;
|
|
|
|
#ifdef USE_FXAA
|
|
// FXAA must be applied before tonemapping.
|
|
color = apply_fxaa(color, full_exposure, uv_interp, pixel_size);
|
|
#endif
|
|
|
|
#ifdef USE_SHARPENING
|
|
// CAS gives best results when applied after tonemapping, but `source` isn't tonemapped.
|
|
// As a workaround, apply CAS before tonemapping so that the image still has a correct appearance when tonemapped.
|
|
color.rgb = apply_cas(color.rgb, full_exposure, uv_interp, sharpen_intensity);
|
|
#endif
|
|
|
|
#ifdef USE_DEBANDING
|
|
// For best results, debanding should be done before tonemapping.
|
|
// Otherwise, we're adding noise to an already-quantized image.
|
|
color.rgb += screen_space_dither(gl_FragCoord.xy);
|
|
#endif
|
|
|
|
// Early Tonemap & SRGB Conversion; note that Linear tonemapping does not clamp to [0, 1]; some operations below expect a [0, 1] range and will clamp
|
|
color.rgb = apply_tonemapping(color.rgb, white);
|
|
|
|
#ifdef KEEP_3D_LINEAR
|
|
// leave color as is (-> don't convert to SRGB)
|
|
#else
|
|
//need color clamping
|
|
color.rgb = clamp(color.rgb, vec3(0.0f), vec3(1.0f));
|
|
color.rgb = linear_to_srgb(color.rgb); // regular linear -> SRGB conversion (needs clamped values)
|
|
#endif
|
|
|
|
// Glow
|
|
|
|
#ifdef USING_GLOW
|
|
vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity;
|
|
|
|
// high dynamic range -> SRGB
|
|
glow = apply_tonemapping(glow, white);
|
|
glow = clamp(glow, vec3(0.0f), vec3(1.0f));
|
|
glow = linear_to_srgb(glow);
|
|
|
|
color = apply_glow(color, glow);
|
|
#endif
|
|
|
|
// Additional effects
|
|
|
|
#ifdef USE_BCS
|
|
color.rgb = apply_bcs(color.rgb, bcs);
|
|
#endif
|
|
|
|
#ifdef USE_COLOR_CORRECTION
|
|
color.rgb = apply_color_correction(color.rgb, color_correction);
|
|
#endif
|
|
|
|
frag_color = color;
|
|
|
|
#ifdef DISABLE_ALPHA
|
|
frag_color.a = 1.0;
|
|
#endif
|
|
}
|