godot/drivers/d3d12/rendering_device_d3d12.h
2023-12-12 19:10:04 +01:00

1278 lines
49 KiB
C++

/**************************************************************************/
/* rendering_device_d3d12.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERING_DEVICE_D3D12_H
#define RENDERING_DEVICE_D3D12_H
#include "core/os/thread_safe.h"
#include "core/templates/local_vector.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid_owner.h"
#include "drivers/d3d12/d3d12_context.h"
#include "servers/rendering/rendering_device.h"
#include <wrl/client.h>
using Microsoft::WRL::ComPtr;
#define D3D12_BITCODE_OFFSETS_NUM_STAGES 3
struct dxil_validator;
class RenderingDeviceD3D12 : public RenderingDevice {
_THREAD_SAFE_CLASS_
// Miscellaneous tables that map
// our enums to enums used
// by DXGI/D3D12.
D3D12Context::DeviceLimits limits = {};
struct D3D12Format {
DXGI_FORMAT family = DXGI_FORMAT_UNKNOWN;
DXGI_FORMAT general_format = DXGI_FORMAT_UNKNOWN;
UINT swizzle = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
DXGI_FORMAT dsv_format = DXGI_FORMAT_UNKNOWN;
};
static const D3D12Format d3d12_formats[DATA_FORMAT_MAX];
static const char *named_formats[DATA_FORMAT_MAX];
static const D3D12_COMPARISON_FUNC compare_operators[COMPARE_OP_MAX];
static const D3D12_STENCIL_OP stencil_operations[STENCIL_OP_MAX];
static const UINT rasterization_sample_count[TEXTURE_SAMPLES_MAX];
static const D3D12_LOGIC_OP logic_operations[RenderingDevice::LOGIC_OP_MAX];
static const D3D12_BLEND blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
static const D3D12_BLEND_OP blend_operations[RenderingDevice::BLEND_OP_MAX];
static const D3D12_TEXTURE_ADDRESS_MODE address_modes[SAMPLER_REPEAT_MODE_MAX];
static const FLOAT sampler_border_colors[SAMPLER_BORDER_COLOR_MAX][4];
static const D3D12_RESOURCE_DIMENSION d3d12_texture_dimension[TEXTURE_TYPE_MAX];
// Functions used for format
// validation, and ensures the
// user passes valid data.
static int get_format_vertex_size(DataFormat p_format);
static uint32_t get_image_format_pixel_size(DataFormat p_format);
static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
static uint32_t get_image_format_plane_count(DataFormat p_format);
static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw = nullptr, uint32_t *r_blockh = nullptr, uint32_t *r_depth = nullptr);
static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
static bool format_has_stencil(DataFormat p_format);
Mutex dxil_mutex;
HashMap<int, dxil_validator *> dxil_validators; // One per WorkerThreadPool thread used for shader compilation, plus one (-1) for all the other.
dxil_validator *get_dxil_validator_for_current_thread();
class DescriptorsHeap {
D3D12_DESCRIPTOR_HEAP_DESC desc = {};
ComPtr<ID3D12DescriptorHeap> heap;
uint32_t handle_size = 0;
public:
class Walker { // Texas Ranger.
friend class DescriptorsHeap;
uint32_t handle_size = 0;
uint32_t handle_count = 0;
D3D12_CPU_DESCRIPTOR_HANDLE first_cpu_handle = {};
D3D12_GPU_DESCRIPTOR_HANDLE first_gpu_handle = {};
uint32_t handle_index = 0;
public:
D3D12_CPU_DESCRIPTOR_HANDLE get_curr_cpu_handle();
D3D12_GPU_DESCRIPTOR_HANDLE get_curr_gpu_handle();
_FORCE_INLINE_ void rewind() { handle_index = 0; }
void advance(uint32_t p_count = 1);
uint32_t get_current_handle_index() const { return handle_index; }
uint32_t get_free_handles() { return handle_count - handle_index; }
bool is_at_eof() { return handle_index == handle_count; }
};
Error allocate(ID3D12Device *m_device, D3D12_DESCRIPTOR_HEAP_TYPE m_type, uint32_t m_descriptor_count, bool p_for_gpu);
uint32_t get_descriptor_count() const { return desc.NumDescriptors; }
ID3D12DescriptorHeap *get_heap() const { return heap.Get(); }
Walker make_walker() const;
};
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
enum IDType {
ID_TYPE_FRAMEBUFFER_FORMAT,
ID_TYPE_VERTEX_FORMAT,
ID_TYPE_DRAW_LIST,
ID_TYPE_SPLIT_DRAW_LIST,
ID_TYPE_COMPUTE_LIST,
ID_TYPE_MAX,
ID_BASE_SHIFT = 58 // 5 bits for ID types.
};
ComPtr<ID3D12Device> device;
HashMap<RID, HashSet<RID>> dependency_map; // IDs to IDs that depend on it.
HashMap<RID, HashSet<RID>> reverse_dependency_map; // Same as above, but in reverse.
void _add_dependency(RID p_id, RID p_depends_on);
void _free_dependencies(RID p_id);
/******************/
/**** RESOURCE ****/
/******************/
class ResourceState {
D3D12_RESOURCE_STATES states = D3D12_RESOURCE_STATE_COMMON;
public:
void extend(D3D12_RESOURCE_STATES p_states_to_add);
D3D12_RESOURCE_STATES get_state_mask() const { return states; }
ResourceState() {}
ResourceState(D3D12_RESOURCE_STATES p_states) :
states(p_states) {}
};
struct Resource {
struct States {
// As many subresources as mipmaps * layers; planes (for depth-stencil) are tracked together.
LocalVector<D3D12_RESOURCE_STATES> subresource_states; // Used only if not a view.
uint32_t last_batch_transitioned_to_uav = 0;
uint32_t last_batch_with_uav_barrier = 0;
};
ID3D12Resource *resource = nullptr;
D3D12MA::Allocation *allocation = nullptr;
States own_states; // Used only if not a view.
States *states = nullptr; // Non-null only if a view.
States *get_states_ptr() { return states ? states : &own_states; }
};
struct BarrierRequest {
static const uint32_t MAX_GROUPS = 4;
// Maybe this is too much data to have it locally. Benchmarking may reveal that
// cache would be used better by having a maximum of local subresource masks and beyond
// that have an allocated vector with the rest.
static const uint32_t MAX_SUBRESOURCES = 4096; // Must be multiple of 64.
ID3D12Resource *dx_resource;
uint8_t subres_mask_qwords;
uint8_t planes;
struct Group {
ResourceState state;
uint64_t subres_mask[MAX_SUBRESOURCES / 64];
} groups[MAX_GROUPS];
uint8_t groups_count;
static const D3D12_RESOURCE_STATES DELETED_GROUP = D3D12_RESOURCE_STATE_COMMON;
};
HashMap<Resource::States *, BarrierRequest> res_barriers_requests;
LocalVector<D3D12_RESOURCE_BARRIER> res_barriers;
uint32_t res_barriers_count = 0;
uint32_t res_barriers_batch = 0;
#ifdef DEV_ENABLED
int frame_barriers_count = 0;
int frame_barriers_batches_count = 0;
uint64_t frame_barriers_cpu_time = 0;
#endif
void _resource_transition_batch(Resource *p_resource, uint32_t p_subresource, uint32_t p_num_planes, D3D12_RESOURCE_STATES p_new_state, ID3D12Resource *p_resource_override = nullptr);
void _resource_transitions_flush(ID3D12GraphicsCommandList *p_command_list);
/*****************/
/**** TEXTURE ****/
/*****************/
struct Texture : Resource {
D3D12_SHADER_RESOURCE_VIEW_DESC srv_desc = {};
D3D12_UNORDERED_ACCESS_VIEW_DESC uav_desc = {};
D3D12_UNORDERED_ACCESS_VIEW_DESC owner_uav_desc = {}; // [[CROSS_FAMILY_ALIASING]].
TextureType type;
DataFormat format;
uint32_t planes = 1;
TextureSamples samples;
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
uint32_t layers = 0;
uint32_t mipmaps = 0;
uint32_t owner_layers = 0;
uint32_t owner_mipmaps = 0;
uint32_t usage_flags = 0;
uint32_t base_mipmap = 0;
uint32_t base_layer = 0;
Vector<DataFormat> allowed_shared_formats;
TightLocalVector<ID3D12Resource *> aliases; // [[CROSS_FAMILY_ALIASING]].
ID3D12Resource *owner_resource = nullptr; // Always the one of the main format passed to creation. [[CROSS_FAMILY_ALIASING]].
bool is_resolve_buffer = false;
bool bound = false; // Bound to framebffer.
RID owner;
};
RID_Owner<Texture, true> texture_owner;
uint32_t texture_upload_region_size_px = 0;
Vector<uint8_t> _texture_get_data_from_image(Texture *tex, uint32_t p_layer, bool p_2d = false);
Error _texture_update(Texture *p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier, ID3D12GraphicsCommandList *p_command_list);
/*****************/
/**** SAMPLER ****/
/*****************/
RID_Owner<D3D12_SAMPLER_DESC> sampler_owner;
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
// These are temporary buffers on CPU memory that hold
// the information until the CPU fetches it and places it
// either on GPU buffers, or images (textures). It ensures
// updates are properly synchronized with whatever the
// GPU is doing.
//
// The logic here is as follows, only 3 of these
// blocks are created at the beginning (one per frame)
// they can each belong to a frame (assigned to current when
// used) and they can only be reused after the same frame is
// recycled.
//
// When CPU requires to allocate more than what is available,
// more of these buffers are created. If a limit is reached,
// then a fence will ensure will wait for blocks allocated
// in previous frames are processed. If that fails, then
// another fence will ensure everything pending for the current
// frame is processed (effectively stalling).
//
// See the comments in the code to understand better how it works.
struct StagingBufferBlock {
ID3D12Resource *resource = nullptr; // Owned, but ComPtr would have too much overhead in a Vector.
D3D12MA::Allocation *allocation = nullptr;
uint64_t frame_used = 0;
uint32_t fill_amount = 0;
};
Vector<StagingBufferBlock> staging_buffer_blocks;
int staging_buffer_current = 0;
uint32_t staging_buffer_block_size = 0;
uint64_t staging_buffer_max_size = 0;
bool staging_buffer_used = false;
Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true);
Error _insert_staging_block();
struct Buffer : Resource {
uint32_t size = 0;
D3D12_RESOURCE_STATES usage = {};
uint32_t last_execution = 0;
};
Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, D3D12_RESOURCE_STATES p_usage, D3D12_HEAP_TYPE p_heap_type);
Error _buffer_free(Buffer *p_buffer);
Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_list = false, uint32_t p_required_align = 32);
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
static D3D12_RENDER_TARGET_VIEW_DESC _make_rtv_for_texture(const RenderingDeviceD3D12::Texture *p_texture, uint32_t p_mipmap_offset = 0, uint32_t p_layer_offset = 0, uint32_t p_layers = UINT32_MAX);
static D3D12_DEPTH_STENCIL_VIEW_DESC _make_dsv_for_texture(const RenderingDeviceD3D12::Texture *p_texture);
// In Vulkan we'd create some structures the driver uses for render pass based rendering.
// (Dynamic rendering is supported on Vulkan 1.3+, though, but Godot is not using it.)
// In contrast, in D3D12 we'll go the dynamic rendering way, since it's more convenient
// and render pass based render setup is not available on every version.
// Therefore, we just need to keep the data at hand and use it where appropriate.
struct FramebufferFormat {
Vector<AttachmentFormat> attachments;
Vector<FramebufferPass> passes;
Vector<TextureSamples> pass_samples;
uint32_t view_count = 1;
uint32_t max_supported_sample_count = 1;
};
bool _framebuffer_format_preprocess(FramebufferFormat *p_fb_format, uint32_t p_view_count);
HashMap<FramebufferFormatID, FramebufferFormat> framebuffer_formats;
struct Framebuffer {
DisplayServer::WindowID window_id = DisplayServer::INVALID_WINDOW_ID;
FramebufferFormatID format_id = 0;
Vector<RID> texture_ids; // Empty if for screen.
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
Vector<uint32_t> attachments_handle_inds; // RTV heap index for color; DSV heap index for DSV.
Size2 size;
uint32_t view_count = 1;
DescriptorsHeap rtv_heap; // Used only if not for screen and some color attachments.
D3D12_CPU_DESCRIPTOR_HANDLE screen_rtv_handle = {}; // Used only if for screen.
DescriptorsHeap dsv_heap; // Used only if not for screen and some depth-stencil attachments.
};
RID_Owner<Framebuffer, true> framebuffer_owner;
/***********************/
/**** VERTEX BUFFER ****/
/***********************/
RID_Owner<Buffer, true> vertex_buffer_owner;
struct VertexDescriptionKey {
Vector<VertexAttribute> vertex_formats;
bool operator==(const VertexDescriptionKey &p_key) const {
int vdc = vertex_formats.size();
int vdck = p_key.vertex_formats.size();
if (vdc != vdck) {
return false;
} else {
const VertexAttribute *a_ptr = vertex_formats.ptr();
const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &a = a_ptr[i];
const VertexAttribute &b = b_ptr[i];
if (a.location != b.location) {
return false;
}
if (a.offset != b.offset) {
return false;
}
if (a.format != b.format) {
return false;
}
if (a.stride != b.stride) {
return false;
}
if (a.frequency != b.frequency) {
return false;
}
}
return true; // They are equal.
}
}
uint32_t hash() const {
int vdc = vertex_formats.size();
uint32_t h = hash_murmur3_one_32(vdc);
const VertexAttribute *ptr = vertex_formats.ptr();
for (int i = 0; i < vdc; i++) {
const VertexAttribute &vd = ptr[i];
h = hash_murmur3_one_32(vd.location, h);
h = hash_murmur3_one_32(vd.offset, h);
h = hash_murmur3_one_32(vd.format, h);
h = hash_murmur3_one_32(vd.stride, h);
h = hash_murmur3_one_32(vd.frequency, h);
}
return hash_fmix32(h);
}
};
struct VertexDescriptionHash {
static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
return p_key.hash();
}
};
// This is a cache and it's never freed, it ensures that
// ID used for a specific format always remain the same.
HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;
struct VertexDescriptionCache {
Vector<VertexAttribute> vertex_formats;
Vector<D3D12_INPUT_ELEMENT_DESC> elements_desc;
};
HashMap<VertexFormatID, VertexDescriptionCache> vertex_formats;
struct VertexArray {
Vector<Buffer *> unique_buffers;
VertexFormatID description = 0;
int vertex_count = 0;
uint32_t max_instances_allowed = 0;
Vector<D3D12_VERTEX_BUFFER_VIEW> views;
};
RID_Owner<VertexArray, true> vertex_array_owner;
struct IndexBuffer : public Buffer {
uint32_t max_index = 0; // Used for validation.
uint32_t index_count = 0;
DXGI_FORMAT index_format = {};
bool supports_restart_indices = false;
};
RID_Owner<IndexBuffer, true> index_buffer_owner;
struct IndexArray {
IndexBuffer *buffer = nullptr;
uint32_t max_index = 0; // Remember the maximum index here too, for validation.
uint32_t offset = 0;
uint32_t indices = 0;
bool supports_restart_indices = false;
D3D12_INDEX_BUFFER_VIEW view = {};
};
RID_Owner<IndexArray, true> index_array_owner;
/****************/
/**** SHADER ****/
/****************/
static const uint32_t ROOT_SIGNATURE_SIZE = 256;
static const uint32_t PUSH_CONSTANT_SIZE = 128; // Mimicking Vulkan.
enum {
// We can only aim to set a maximum here, since depending on the shader
// there may be more or less root signature free for descriptor tables.
// Therefore, we'll have to rely on the final check at runtime, when building
// the root signature structure for a given shader.
// To be precise, these may be present or not, and their size vary statically:
// - Push constant (we'll assume this is always present to avoid reserving much
// more space for descriptor sets than needed for almost any imaginable case,
// given that most shader templates feature push constants).
// - NIR-DXIL runtime data.
MAX_UNIFORM_SETS = (ROOT_SIGNATURE_SIZE - PUSH_CONSTANT_SIZE) / sizeof(uint32_t),
};
enum ResourceClass {
RES_CLASS_INVALID,
RES_CLASS_CBV,
RES_CLASS_SRV,
RES_CLASS_UAV,
};
struct UniformBindingInfo {
uint32_t stages = 0; // Actual shader stages using the uniform (0 if totally optimized out).
ResourceClass res_class = RES_CLASS_INVALID;
struct RootSignatureLocation {
uint32_t root_param_idx = UINT32_MAX;
uint32_t range_idx = UINT32_MAX;
};
struct {
RootSignatureLocation resource;
RootSignatureLocation sampler;
} root_sig_locations;
};
struct UniformInfo {
UniformType type = UniformType::UNIFORM_TYPE_MAX;
bool writable = false;
int binding = 0;
int length = 0; // Size of arrays (in total elements), or ubos (in bytes * total elements).
bool operator!=(const UniformInfo &p_info) const {
return (binding != p_info.binding || type != p_info.type || writable != p_info.writable || length != p_info.length);
}
bool operator<(const UniformInfo &p_info) const {
if (binding != p_info.binding) {
return binding < p_info.binding;
}
if (type != p_info.type) {
return type < p_info.type;
}
if (writable != p_info.writable) {
return writable < p_info.writable;
}
return length < p_info.length;
}
};
struct UniformSetFormat {
Vector<UniformInfo> uniform_info;
bool operator<(const UniformSetFormat &p_format) const {
uint32_t size = uniform_info.size();
uint32_t psize = p_format.uniform_info.size();
if (size != psize) {
return size < psize;
}
const UniformInfo *infoptr = uniform_info.ptr();
const UniformInfo *pinfoptr = p_format.uniform_info.ptr();
for (uint32_t i = 0; i < size; i++) {
if (infoptr[i] != pinfoptr[i]) {
return infoptr[i] < pinfoptr[i];
}
}
return false;
}
};
// Always grows, never shrinks, ensuring unique IDs, but we assume
// the amount of formats will never be a problem, as the amount of shaders
// in a game is limited.
RBMap<UniformSetFormat, uint32_t> uniform_set_format_cache;
Vector<RBMap<UniformSetFormat, uint32_t>::Element *> uniform_set_format_cache_reverse;
struct Shader {
struct ShaderUniformInfo {
UniformInfo info;
UniformBindingInfo binding;
bool operator<(const ShaderUniformInfo &p_info) const {
return *((UniformInfo *)this) < (const UniformInfo &)p_info;
}
};
struct Set {
Vector<ShaderUniformInfo> uniforms;
struct {
uint32_t resources = 0;
uint32_t samplers = 0;
} num_root_params;
};
uint64_t vertex_input_mask = 0; // Inputs used, this is mostly for validation.
uint32_t fragment_output_mask = 0;
uint32_t spirv_push_constant_size = 0;
uint32_t dxil_push_constant_size = 0;
uint32_t nir_runtime_data_root_param_idx = UINT32_MAX;
uint32_t compute_local_size[3] = { 0, 0, 0 };
struct SpecializationConstant {
PipelineSpecializationConstant constant;
uint64_t stages_bit_offsets[D3D12_BITCODE_OFFSETS_NUM_STAGES];
};
bool is_compute = false;
Vector<Set> sets;
Vector<uint32_t> set_formats;
Vector<SpecializationConstant> specialization_constants;
uint32_t spirv_specialization_constants_ids_mask = 0;
HashMap<ShaderStage, Vector<uint8_t>> stages_bytecode;
String name; // Used for debug.
ComPtr<ID3D12RootSignature> root_signature;
ComPtr<ID3D12RootSignatureDeserializer> root_signature_deserializer;
const D3D12_ROOT_SIGNATURE_DESC *root_signature_desc = nullptr; // Owned by the deserializer.
uint32_t root_signature_crc = 0;
};
String _shader_uniform_debug(RID p_shader, int p_set = -1);
RID_Owner<Shader, true> shader_owner;
uint32_t _shader_patch_dxil_specialization_constant(
PipelineSpecializationConstantType p_type,
const void *p_value,
const uint64_t (&p_stages_bit_offsets)[D3D12_BITCODE_OFFSETS_NUM_STAGES],
HashMap<ShaderStage, Vector<uint8_t>> &r_stages_bytecodes,
bool p_is_first_patch);
bool _shader_sign_dxil_bytecode(ShaderStage p_stage, Vector<uint8_t> &r_dxil_blob);
/******************/
/**** UNIFORMS ****/
/******************/
RID_Owner<Buffer, true> uniform_buffer_owner;
RID_Owner<Buffer, true> storage_buffer_owner;
// Texture buffer needs a view.
struct TextureBuffer {
Buffer buffer;
};
RID_Owner<TextureBuffer, true> texture_buffer_owner;
struct RootDescriptorTable {
uint32_t root_param_idx = UINT32_MAX;
D3D12_GPU_DESCRIPTOR_HANDLE start_gpu_handle = {};
};
// This structure contains the descriptor set. They _need_ to be allocated
// for a shader (and will be erased when this shader is erased), but should
// work for other shaders as long as the hash matches. This covers using
// them in shader variants.
//
// Keep also in mind that you can share buffers between descriptor sets, so
// the above restriction is not too serious.
struct UniformSet {
uint32_t format = 0;
RID shader_id;
uint32_t shader_set = 0;
struct {
DescriptorsHeap resources;
DescriptorsHeap samplers;
} desc_heaps;
struct StateRequirement {
Resource *resource;
bool is_buffer;
D3D12_RESOURCE_STATES states;
uint64_t shader_uniform_idx_mask;
};
struct AttachableTexture {
uint32_t bind;
RID texture;
};
struct RecentBind {
uint64_t execution_index = 0;
uint32_t root_signature_crc = 0;
struct {
LocalVector<RootDescriptorTable> resources;
LocalVector<RootDescriptorTable> samplers;
} root_tables;
int uses = 0;
} recent_binds[4]; // A better amount may be empirically found.
LocalVector<AttachableTexture> attachable_textures; // Used for validation.
Vector<StateRequirement> resource_states;
InvalidationCallback invalidated_callback = nullptr;
void *invalidated_callback_userdata = nullptr;
#ifdef DEV_ENABLED
// Filthy, but useful for dev.
struct ResourceDescInfo {
D3D12_DESCRIPTOR_RANGE_TYPE type;
D3D12_SRV_DIMENSION srv_dimension;
};
LocalVector<ResourceDescInfo> _resources_desc_info;
const Shader *_shader = nullptr;
#endif
};
RID_Owner<UniformSet, true> uniform_set_owner;
void _bind_uniform_set(UniformSet *p_uniform_set, const Shader::Set &p_shader_set, const Vector<UniformBindingInfo> &p_bindings, ID3D12GraphicsCommandList *p_command_list, bool p_for_compute);
void _apply_uniform_set_resource_states(const UniformSet *p_uniform_set, const Shader::Set &p_shader_set);
/*******************/
/**** PIPELINES ****/
/*******************/
Error _apply_specialization_constants(
const Shader *p_shader,
const Vector<PipelineSpecializationConstant> &p_specialization_constants,
HashMap<ShaderStage, Vector<uint8_t>> &r_final_stages_bytecode);
#ifdef DEV_ENABLED
String _build_pipeline_blob_filename(
const Vector<uint8_t> &p_blob,
const Shader *p_shader,
const Vector<PipelineSpecializationConstant> &p_specialization_constants,
const String &p_extra_name_suffix = "",
const String &p_forced_id = "");
void _save_pso_blob(
ID3D12PipelineState *p_pso,
const Shader *p_shader,
const Vector<PipelineSpecializationConstant> &p_specialization_constants);
void _save_stages_bytecode(
const HashMap<ShaderStage, Vector<uint8_t>> &p_stages_bytecode,
const Shader *p_shader,
const RID p_shader_rid,
const Vector<PipelineSpecializationConstant> &p_specialization_constants);
#endif
// Render pipeline contains ALL the
// information required for drawing.
// This includes all the rasterizer state
// as well as shader used, framebuffer format,
// etc.
// Some parameters aren't fixed in D3D12,
// so they are stored in an ancillary
// dynamic parameters structure to be set
// on pipeline activation via several calls.
struct RenderPipeline {
// Cached values for validation.
#ifdef DEBUG_ENABLED
struct Validation {
FramebufferFormatID framebuffer_format = 0;
uint32_t render_pass = 0;
uint32_t dynamic_state = 0;
VertexFormatID vertex_format = 0;
bool uses_restart_indices = false;
uint32_t primitive_minimum = 0;
uint32_t primitive_divisor = 0;
} validation;
#endif
RID shader;
Vector<uint32_t> set_formats;
uint32_t bindings_id = 0;
ComPtr<ID3D12PipelineState> pso;
uint32_t root_signature_crc = 0;
uint32_t spirv_push_constant_size = 0;
uint32_t dxil_push_constant_size = 0;
uint32_t nir_runtime_data_root_param_idx = UINT32_MAX;
struct DynamicParams {
D3D12_PRIMITIVE_TOPOLOGY primitive_topology = {};
Color blend_constant;
float depth_bounds_min = 0.0f;
float depth_bounds_max = 0.0f;
uint32_t stencil_reference = 0;
} dyn_params;
};
HashMap<uint32_t, Vector<Vector<UniformBindingInfo>>> pipeline_bindings;
uint32_t next_pipeline_binding_id = 1;
RID_Owner<RenderPipeline, true> render_pipeline_owner;
struct ComputePipeline {
RID shader;
Vector<uint32_t> set_formats;
uint32_t bindings_id = 0;
ComPtr<ID3D12PipelineState> pso;
uint32_t root_signature_crc = 0;
uint32_t spirv_push_constant_size = 0;
uint32_t dxil_push_constant_size = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
};
RID_Owner<ComputePipeline, true> compute_pipeline_owner;
/*******************/
/**** DRAW LIST ****/
/*******************/
// Draw list contains both the command buffer
// used for drawing as well as a LOT of
// information used for validation. This
// validation is cheap so most of it can
// also run in release builds.
// When using split command lists, this is
// implemented internally using bundles.
// As they can be created in threads,
// each needs its own command allocator.
struct SplitDrawListAllocator {
// All pointers are owned, but not using ComPtr to avoid overhead in the vector.
ID3D12CommandAllocator *command_allocator = nullptr;
Vector<ID3D12GraphicsCommandList *> command_lists; // One for each frame.
};
Vector<SplitDrawListAllocator> split_draw_list_allocators;
struct DrawList {
ID3D12GraphicsCommandList *command_list = nullptr; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
Rect2i viewport;
bool viewport_set = false;
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
RID uniform_set;
bool bound = false;
#ifdef DEV_ENABLED
// Filthy, but useful for dev.
const Vector<UniformInfo> *_pipeline_expected_format = nullptr;
const UniformSet *_uniform_set = nullptr;
#endif
};
struct State {
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
ID3D12PipelineState *pso = nullptr;
ID3D12PipelineState *bound_pso = nullptr;
RID pipeline_shader;
uint32_t pipeline_dxil_push_constant_size = 0;
uint32_t pipeline_bindings_id = 0;
uint32_t root_signature_crc = 0;
RID vertex_array;
RID index_array;
#ifdef DEV_ENABLED
// Filthy, but useful for dev.
Shader *_shader = nullptr;
#endif
} state;
#ifdef DEBUG_ENABLED
struct Validation {
bool active = true; // Means command buffer was not closed, so you can keep adding things.
// Actual render pass values.
uint32_t dynamic_state = 0;
VertexFormatID vertex_format = INVALID_ID;
uint32_t vertex_array_size = 0;
uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
bool index_buffer_uses_restart_indices = false;
uint32_t index_array_size = 0;
uint32_t index_array_max_index = 0;
uint32_t index_array_offset = 0;
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
uint32_t pipeline_dynamic_state = 0;
VertexFormatID pipeline_vertex_format = INVALID_ID;
RID pipeline_shader;
bool pipeline_uses_restart_indices = false;
uint32_t pipeline_primitive_divisor = 0;
uint32_t pipeline_primitive_minimum = 0;
uint32_t pipeline_spirv_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#else
struct Validation {
uint32_t vertex_array_size = 0;
uint32_t index_array_size = 0;
uint32_t index_array_offset;
} validation;
#endif
};
DrawList *draw_list = nullptr; // One for regular draw lists, multiple for split.
uint32_t draw_list_subpass_count = 0;
uint32_t draw_list_count = 0;
Framebuffer curr_screen_framebuffer; // Only valid while a screen draw list is open.
Framebuffer *draw_list_framebuffer = nullptr;
FinalAction draw_list_final_color_action = FINAL_ACTION_DISCARD;
FinalAction draw_list_final_depth_action = FINAL_ACTION_DISCARD;
Vector2 draw_list_viewport_size = {};
uint32_t draw_list_current_subpass = 0;
bool draw_list_split = false;
Vector<RID> draw_list_bound_textures;
bool draw_list_unbind_color_textures = false;
bool draw_list_unbind_depth_textures = false;
struct {
RID texture_bound;
bool configured = false;
} vrs_state;
uint32_t vrs_state_execution_index = 0;
Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, Point2i viewport_offset, Point2i viewport_size, ID3D12GraphicsCommandList *command_list, const Vector<RID> &p_storage_textures);
_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);
Buffer *_get_buffer_from_owner(RID p_buffer);
Error _draw_list_allocate(const Rect2i &p_viewport, uint32_t p_splits, uint32_t p_subpass);
void _draw_list_free(Rect2i *r_last_viewport = nullptr);
void _draw_list_subpass_begin();
void _draw_list_subpass_end();
/**********************/
/**** COMPUTE LIST ****/
/**********************/
struct ComputeList {
ID3D12GraphicsCommandList *command_list = nullptr; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
struct SetState {
uint32_t pipeline_expected_format = 0;
uint32_t uniform_set_format = 0;
RID uniform_set;
bool bound = false;
#ifdef DEV_ENABLED
// Filthy, but useful for dev.
const Vector<UniformInfo> *_pipeline_expected_format = nullptr;
const UniformSet *_uniform_set = nullptr;
#endif
};
struct State {
HashSet<Texture *> textures_to_sampled_layout;
SetState sets[MAX_UNIFORM_SETS];
uint32_t set_count = 0;
RID pipeline;
ID3D12PipelineState *pso = nullptr;
ID3D12PipelineState *bound_pso = nullptr;
RID pipeline_shader;
uint32_t pipeline_dxil_push_constant_size = 0;
uint32_t pipeline_bindings_id = 0;
uint32_t root_signature_crc = 0;
uint32_t local_group_size[3] = { 0, 0, 0 };
bool allow_draw_overlap;
#ifdef DEV_ENABLED
// Filthy, but useful for dev.
Shader *_shader = nullptr;
#endif
} state;
#ifdef DEBUG_ENABLED
struct Validation {
bool active = true; // Means command buffer was not closed, so you can keep adding things.
Vector<uint32_t> set_formats;
Vector<bool> set_bound;
Vector<RID> set_rids;
// Last pipeline set values.
bool pipeline_active = false;
RID pipeline_shader;
uint32_t pipeline_spirv_push_constant_size = 0;
bool pipeline_push_constant_supplied = false;
} validation;
#endif
};
ComputeList *compute_list = nullptr;
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
// This is the frame structure. There are normally
// 3 of these (used for triple buffering), or 2
// (double buffering). They are cycled constantly.
//
// It contains two command buffers, one that is
// used internally for setting up (creating stuff)
// and another used mostly for drawing.
//
// They also contains a list of things that need
// to be disposed of when deleted, which can't
// happen immediately due to the asynchronous
// nature of the GPU. They will get deleted
// when the frame is cycled.
struct Frame {
// List in usage order, from last to free to first to free.
List<Buffer> buffers_to_dispose_of;
List<Texture> textures_to_dispose_of;
List<Framebuffer> framebuffers_to_dispose_of;
List<Shader> shaders_to_dispose_of;
List<RenderPipeline> render_pipelines_to_dispose_of;
List<ComputePipeline> compute_pipelines_to_dispose_of;
struct {
DescriptorsHeap resources;
DescriptorsHeap samplers;
DescriptorsHeap aux;
DescriptorsHeap rtv;
} desc_heaps;
struct {
DescriptorsHeap::Walker resources;
DescriptorsHeap::Walker samplers;
DescriptorsHeap::Walker aux;
DescriptorsHeap::Walker rtv;
} desc_heap_walkers;
struct {
bool resources;
bool samplers;
bool aux;
bool rtv;
} desc_heaps_exhausted_reported;
CD3DX12_CPU_DESCRIPTOR_HANDLE null_rtv_handle = {}; // For [[MANUAL_SUBPASSES]].
ComPtr<ID3D12CommandAllocator> setup_command_allocator;
ComPtr<ID3D12CommandAllocator> draw_command_allocator;
ComPtr<ID3D12GraphicsCommandList> setup_command_list; // Used at the beginning of every frame for set-up.
ComPtr<ID3D12GraphicsCommandList> draw_command_list;
struct Timestamp {
String description;
uint64_t value = 0;
};
ComPtr<ID3D12QueryHeap> timestamp_heap;
TightLocalVector<String> timestamp_names;
TightLocalVector<uint64_t> timestamp_cpu_values;
uint32_t timestamp_count = 0;
TightLocalVector<String> timestamp_result_names;
TightLocalVector<uint64_t> timestamp_cpu_result_values;
Buffer timestamp_result_values_buffer;
TightLocalVector<uint64_t> timestamp_result_values;
uint32_t timestamp_result_count = 0;
uint64_t index = 0;
uint64_t execution_index = 0;
#ifdef DEV_ENABLED
uint32_t uniform_set_reused = 0;
#endif
};
uint32_t max_timestamp_query_elements = 0;
TightLocalVector<Frame> frames; // Frames available, for main device they are cycled (usually 3), for local devices only 1.
int frame = 0; // Current frame.
int frame_count = 0; // Total amount of frames.
uint64_t frames_drawn = 0;
uint32_t execution_index = 0; // Gets incremented on every call to ExecuteCommandLists (each frame and each flush).
RID local_device;
bool local_device_processing = false;
void _free_pending_resources(int p_frame);
//#define USE_SMALL_ALLOCS_POOL // Disabled by now; seems not to be beneficial as it is in Vulkan.
#ifdef USE_SMALL_ALLOCS_POOL
union AllocPoolKey {
struct {
D3D12_HEAP_TYPE heap_type;
D3D12_HEAP_FLAGS heap_flags;
};
uint64_t key;
};
HashMap<uint64_t, ComPtr<D3D12MA::Pool>> small_allocs_pools;
D3D12MA::Pool *_find_or_create_small_allocs_pool(D3D12_HEAP_TYPE p_heap_type, D3D12_HEAP_FLAGS p_heap_flags);
#endif
ComPtr<ID3D12CommandSignature> indirect_dispatch_cmd_sig;
RID aux_resource; // Used for causing full barriers.
D3D12Context *context = nullptr;
uint64_t image_memory = 0;
uint64_t buffer_memory = 0;
void _free_internal(RID p_id);
void _flush(bool p_flush_current_frame);
bool screen_prepared = false;
template <class T>
void _free_rids(T &p_owner, const char *p_type);
void _finalize_command_bufers();
void _begin_frame();
#ifdef DEV_ENABLED
HashMap<RID, String> resource_names;
#endif
HashMap<DXGI_FORMAT, uint32_t> format_sample_counts_mask_cache;
uint32_t _find_max_common_supported_sample_count(const DXGI_FORMAT *p_formats, uint32_t p_num_formats);
public:
virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
virtual RID texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_flags, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers);
virtual RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D, uint32_t p_layers = 0);
virtual Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer);
virtual bool texture_is_format_supported_for_usage(DataFormat p_format, BitField<RenderingDevice::TextureUsageBits> p_usage) const;
virtual bool texture_is_shared(RID p_texture);
virtual bool texture_is_valid(RID p_texture);
virtual TextureFormat texture_get_format(RID p_texture);
virtual Size2i texture_size(RID p_texture);
virtual uint64_t texture_get_native_handle(RID p_texture);
virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
virtual FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count = 1);
virtual FramebufferFormatID framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count = 1);
virtual FramebufferFormatID framebuffer_format_create_empty(TextureSamples p_samples = TEXTURE_SAMPLES_1);
virtual TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass = 0);
virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
virtual RID framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
virtual RID framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples = TEXTURE_SAMPLES_1, FramebufferFormatID p_format_check = INVALID_ID);
virtual bool framebuffer_is_valid(RID p_framebuffer) const;
virtual void framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata);
virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);
/*****************/
/**** SAMPLER ****/
/*****************/
virtual RID sampler_create(const SamplerState &p_state);
virtual bool sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const;
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
virtual RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_as_storage = false);
// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated.
virtual VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_formats);
virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets = Vector<uint64_t>());
virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false);
virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
/****************/
/**** SHADER ****/
/****************/
virtual String shader_get_binary_cache_key() const;
virtual Vector<uint8_t> shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
virtual RID shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, RID p_placeholder = RID());
virtual RID shader_create_placeholder();
virtual uint64_t shader_get_vertex_input_attribute_mask(RID p_shader);
/*****************/
/**** UNIFORM ****/
/*****************/
virtual RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
virtual RID storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<StorageBufferUsage> p_usage = 0);
virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());
virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
virtual bool uniform_set_is_valid(RID p_uniform_set);
virtual void uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata);
virtual Error buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS); // Works for any buffer.
virtual Error buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual Vector<uint8_t> buffer_get_data(RID p_buffer, uint32_t p_offset = 0, uint32_t p_size = 0);
/*************************/
/**** RENDER PIPELINE ****/
/*************************/
virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags = 0, uint32_t p_for_render_pass = 0, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
virtual bool render_pipeline_is_valid(RID p_pipeline);
/**************************/
/**** COMPUTE PIPELINE ****/
/**************************/
virtual RID compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
virtual bool compute_pipeline_is_valid(RID p_pipeline);
/****************/
/**** SCREEN ****/
/****************/
virtual int screen_get_width(DisplayServer::WindowID p_screen = 0) const;
virtual int screen_get_height(DisplayServer::WindowID p_screen = 0) const;
virtual FramebufferFormatID screen_get_framebuffer_format() const;
/********************/
/**** DRAW LISTS ****/
/********************/
virtual DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());
virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
virtual void draw_list_set_blend_constants(DrawListID p_list, const Color &p_color);
virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
virtual void draw_list_set_line_width(DrawListID p_list, float p_width);
virtual void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);
virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);
virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
virtual void draw_list_disable_scissor(DrawListID p_list);
virtual uint32_t draw_list_get_current_pass();
virtual DrawListID draw_list_switch_to_next_pass();
virtual Error draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids);
virtual void draw_list_end(BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
virtual ComputeListID compute_list_begin(bool p_allow_draw_overlap = false);
virtual void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
virtual void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
virtual void compute_list_add_barrier(ComputeListID p_list);
virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
virtual void compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads);
virtual void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset);
virtual void compute_list_end(BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
virtual void barrier(BitField<BarrierMask> p_from = BARRIER_MASK_ALL_BARRIERS, BitField<BarrierMask> p_to = BARRIER_MASK_ALL_BARRIERS);
virtual void full_barrier();
/**************/
/**** FREE ****/
/**************/
virtual void free(RID p_id);
/****************/
/**** Timing ****/
/****************/
virtual void capture_timestamp(const String &p_name);
virtual uint32_t get_captured_timestamps_count() const;
virtual uint64_t get_captured_timestamps_frame() const;
virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
virtual String get_captured_timestamp_name(uint32_t p_index) const;
/****************/
/**** Limits ****/
/****************/
virtual uint64_t limit_get(Limit p_limit) const;
virtual void prepare_screen_for_drawing();
void initialize(D3D12Context *p_context, bool p_local_device = false);
void finalize();
virtual void swap_buffers(); // For main device.
virtual void submit(); // For local device.
virtual void sync(); // For local device.
virtual uint32_t get_frame_delay() const;
virtual RenderingDevice *create_local_device();
virtual uint64_t get_memory_usage(MemoryType p_type) const;
virtual void set_resource_name(RID p_id, const String p_name);
virtual void draw_command_begin_label(String p_label_name, const Color p_color = Color(1, 1, 1, 1));
virtual void draw_command_insert_label(String p_label_name, const Color p_color = Color(1, 1, 1, 1));
virtual void draw_command_end_label();
virtual String get_device_vendor_name() const;
virtual String get_device_name() const;
virtual RenderingDevice::DeviceType get_device_type() const;
virtual String get_device_api_version() const;
virtual String get_device_pipeline_cache_uuid() const;
virtual uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0);
virtual bool has_feature(const Features p_feature) const;
RenderingDeviceD3D12();
~RenderingDeviceD3D12();
};
#endif // RENDERING_DEVICE_D3D12_H