godot/drivers/dummy/rasterizer_dummy.h
Rémi Verschelde 0be6d925dc Style: clang-format: Disable KeepEmptyLinesAtTheStartOfBlocks
Which means that reduz' beloved style which we all became used to
will now be changed automatically to remove the first empty line.

This makes us lean closer to 1TBS (the one true brace style) instead
of hybridating it with some Allman-inspired spacing.

There's still the case of braces around single-statement blocks that
needs to be addressed (but clang-format can't help with that, but
clang-tidy may if we agree about it).

Part of #33027.
2020-05-14 16:54:55 +02:00

979 lines
46 KiB
C++

/*************************************************************************/
/* rasterizer_dummy.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZER_DUMMY_H
#define RASTERIZER_DUMMY_H
#include "core/math/camera_matrix.h"
#include "core/rid_owner.h"
#include "core/self_list.h"
#include "scene/resources/mesh.h"
#include "servers/rendering/rasterizer.h"
#include "servers/rendering_server.h"
class RasterizerSceneDummy : public RasterizerScene {
public:
/* SHADOW ATLAS API */
RID shadow_atlas_create() { return RID(); }
void shadow_atlas_set_size(RID p_atlas, int p_size) {}
void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {}
bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { return false; }
void directional_shadow_atlas_set_size(int p_size) {}
int get_directional_light_shadow_size(RID p_light_intance) { return 0; }
void set_directional_shadow_count(int p_count) {}
/* SKY API */
RID sky_create() { return RID(); }
void sky_set_radiance_size(RID p_sky, int p_radiance_size) {}
void sky_set_mode(RID p_sky, RS::SkyMode p_samples) {}
void sky_set_texture(RID p_sky, RID p_panorama) {}
void sky_set_texture(RID p_sky, RID p_cube_map, int p_radiance_size) {}
void sky_set_material(RID p_sky, RID p_material) {}
virtual Ref<Image> sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { return Ref<Image>(); }
/* ENVIRONMENT API */
RID environment_create() { return RID(); }
void environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {}
void environment_set_sky(RID p_env, RID p_sky) {}
void environment_set_sky_custom_fov(RID p_env, float p_scale) {}
void environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {}
void environment_set_bg_color(RID p_env, const Color &p_color) {}
void environment_set_bg_energy(RID p_env, float p_energy) {}
void environment_set_canvas_max_layer(RID p_env, int p_max_layer) {}
void environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient = RS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, RS::EnvironmentReflectionSource p_reflection_source = RS::ENV_REFLECTION_SOURCE_BG, const Color &p_ao_color = Color()) {}
// FIXME: Disabled during Vulkan refactoring, should be ported.
#if 0
void environment_set_camera_feed_id(RID p_env, int p_camera_feed_id) {}
#endif
void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {}
virtual void environment_glow_set_use_bicubic_upscale(bool p_enable) {}
void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {}
void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {}
virtual void environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {}
virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {}
virtual void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) {}
void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {}
void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {}
void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {}
void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {}
void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {}
virtual Ref<Image> environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { return Ref<Image>(); }
bool is_environment(RID p_env) const { return false; }
RS::EnvironmentBG environment_get_background(RID p_env) const { return RS::ENV_BG_KEEP; }
int environment_get_canvas_max_layer(RID p_env) const { return 0; }
virtual RID camera_effects_create() { return RID(); }
virtual void camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {}
virtual void camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {}
virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {}
virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {}
virtual void shadows_quality_set(RS::ShadowQuality p_quality) {}
virtual void directional_shadow_quality_set(RS::ShadowQuality p_quality) {}
RID light_instance_create(RID p_light) { return RID(); }
void light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {}
void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) {}
void light_instance_mark_visible(RID p_light_instance) {}
RID reflection_atlas_create() { return RID(); }
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {}
RID reflection_probe_instance_create(RID p_probe) { return RID(); }
void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {}
void reflection_probe_release_atlas_index(RID p_instance) {}
bool reflection_probe_instance_needs_redraw(RID p_instance) { return false; }
bool reflection_probe_instance_has_reflection(RID p_instance) { return false; }
bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { return false; }
bool reflection_probe_instance_postprocess_step(RID p_instance) { return true; }
virtual RID decal_instance_create(RID p_decal) { return RID(); }
virtual void decal_instance_set_transform(RID p_decal, const Transform &p_transform) {}
virtual RID gi_probe_instance_create(RID p_gi_probe) { return RID(); }
void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {}
void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {}
virtual bool gi_probe_needs_update(RID p_probe) const { return false; }
virtual void gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) {}
virtual void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {}
void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {}
virtual void render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) {}
void set_scene_pass(uint64_t p_pass) {}
virtual void set_time(double p_time, double p_step) {}
void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {}
virtual RID render_buffers_create() { return RID(); }
virtual void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RS::ViewportScreenSpaceAA p_screen_space_aa) {}
virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_curve) {}
virtual bool screen_space_roughness_limiter_is_active() const { return false; }
virtual void sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {}
virtual void sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {}
virtual TypedArray<Image> bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) { return TypedArray<Image>(); }
bool free(RID p_rid) { return true; }
virtual void update() {}
RasterizerSceneDummy() {}
~RasterizerSceneDummy() {}
};
class RasterizerStorageDummy : public RasterizerStorage {
public:
/* TEXTURE API */
struct DummyTexture {
int width;
int height;
uint32_t flags;
Image::Format format;
Ref<Image> image;
String path;
};
struct DummySurface {
uint32_t format;
RS::PrimitiveType primitive;
Vector<uint8_t> array;
int vertex_count;
Vector<uint8_t> index_array;
int index_count;
AABB aabb;
Vector<Vector<uint8_t>> blend_shapes;
Vector<AABB> bone_aabbs;
};
struct DummyMesh {
Vector<DummySurface> surfaces;
int blend_shape_count;
RS::BlendShapeMode blend_shape_mode;
};
mutable RID_PtrOwner<DummyTexture> texture_owner;
mutable RID_PtrOwner<DummyMesh> mesh_owner;
virtual RID texture_2d_create(const Ref<Image> &p_image) { return RID(); }
virtual RID texture_2d_layered_create(const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type) { return RID(); }
virtual RID texture_3d_create(const Vector<Ref<Image>> &p_slices) { return RID(); }
virtual RID texture_proxy_create(RID p_base) { return RID(); }
virtual void texture_2d_update_immediate(RID p_texture, const Ref<Image> &p_image, int p_layer = 0) {}
virtual void texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer = 0) {}
virtual void texture_3d_update(RID p_texture, const Ref<Image> &p_image, int p_depth, int p_mipmap) {}
virtual void texture_proxy_update(RID p_proxy, RID p_base) {}
virtual RID texture_2d_placeholder_create() { return RID(); }
virtual RID texture_2d_layered_placeholder_create(RenderingServer::TextureLayeredType p_layered_type) { return RID(); }
virtual RID texture_3d_placeholder_create() { return RID(); }
virtual Ref<Image> texture_2d_get(RID p_texture) const { return Ref<Image>(); }
virtual Ref<Image> texture_2d_layer_get(RID p_texture, int p_layer) const { return Ref<Image>(); }
virtual Ref<Image> texture_3d_slice_get(RID p_texture, int p_depth, int p_mipmap) const { return Ref<Image>(); }
virtual void texture_replace(RID p_texture, RID p_by_texture) {}
virtual void texture_set_size_override(RID p_texture, int p_width, int p_height) {}
// FIXME: Disabled during Vulkan refactoring, should be ported.
#if 0
virtual void texture_bind(RID p_texture, uint32_t p_texture_no) = 0;
#endif
virtual void texture_set_path(RID p_texture, const String &p_path) {}
virtual String texture_get_path(RID p_texture) const { return String(); }
virtual void texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {}
virtual void texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {}
virtual void texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata) {}
virtual void texture_debug_usage(List<RS::TextureInfo> *r_info) {}
virtual void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {}
virtual Size2 texture_size_with_proxy(RID p_proxy) { return Size2(); }
virtual void texture_add_to_decal_atlas(RID p_texture, bool p_panorama_to_dp = false) {}
virtual void texture_remove_from_decal_atlas(RID p_texture, bool p_panorama_to_dp = false) {}
#if 0
RID texture_create() {
DummyTexture *texture = memnew(DummyTexture);
ERR_FAIL_COND_V(!texture, RID());
return texture_owner.make_rid(texture);
}
void texture_allocate(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, RenderingServer::TextureType p_type = RS::TEXTURE_TYPE_2D, uint32_t p_flags = RS::TEXTURE_FLAGS_DEFAULT) {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!t);
t->width = p_width;
t->height = p_height;
t->flags = p_flags;
t->format = p_format;
t->image = Ref<Image>(memnew(Image));
t->image->create(p_width, p_height, false, p_format);
}
void texture_set_data(RID p_texture, const Ref<Image> &p_image, int p_level) {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!t);
t->width = p_image->get_width();
t->height = p_image->get_height();
t->format = p_image->get_format();
t->image->create(t->width, t->height, false, t->format, p_image->get_data());
}
void texture_set_data_partial(RID p_texture, const Ref<Image> &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_level) {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!t);
ERR_FAIL_COND_MSG(p_image.is_null(), "It's not a reference to a valid Image object.");
ERR_FAIL_COND(t->format != p_image->get_format());
ERR_FAIL_COND(src_w <= 0 || src_h <= 0);
ERR_FAIL_COND(src_x < 0 || src_y < 0 || src_x + src_w > p_image->get_width() || src_y + src_h > p_image->get_height());
ERR_FAIL_COND(dst_x < 0 || dst_y < 0 || dst_x + src_w > t->width || dst_y + src_h > t->height);
t->image->blit_rect(p_image, Rect2(src_x, src_y, src_w, src_h), Vector2(dst_x, dst_y));
}
Ref<Image> texture_get_data(RID p_texture, int p_level) const {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!t, Ref<Image>());
return t->image;
}
void texture_set_flags(RID p_texture, uint32_t p_flags) {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!t);
t->flags = p_flags;
}
uint32_t texture_get_flags(RID p_texture) const {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!t, 0);
return t->flags;
}
Image::Format texture_get_format(RID p_texture) const {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!t, Image::FORMAT_RGB8);
return t->format;
}
RenderingServer::TextureType texture_get_type(RID p_texture) const { return RS::TEXTURE_TYPE_2D; }
uint32_t texture_get_texid(RID p_texture) const { return 0; }
uint32_t texture_get_width(RID p_texture) const { return 0; }
uint32_t texture_get_height(RID p_texture) const { return 0; }
uint32_t texture_get_depth(RID p_texture) const { return 0; }
void texture_set_size_override(RID p_texture, int p_width, int p_height, int p_depth_3d) {}
void texture_bind(RID p_texture, uint32_t p_texture_no) {}
void texture_set_path(RID p_texture, const String &p_path) {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!t);
t->path = p_path;
}
String texture_get_path(RID p_texture) const {
DummyTexture *t = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!t, String());
return t->path;
}
void texture_set_shrink_all_x2_on_set_data(bool p_enable) {}
void texture_debug_usage(List<RS::TextureInfo> *r_info) {}
RID texture_create_radiance_cubemap(RID p_source, int p_resolution = -1) const { return RID(); }
void texture_set_detect_3d_callback(RID p_texture, RenderingServer::TextureDetectCallback p_callback, void *p_userdata) {}
void texture_set_detect_srgb_callback(RID p_texture, RenderingServer::TextureDetectCallback p_callback, void *p_userdata) {}
void texture_set_detect_normal_callback(RID p_texture, RenderingServer::TextureDetectCallback p_callback, void *p_userdata) {}
void textures_keep_original(bool p_enable) {}
void texture_set_proxy(RID p_proxy, RID p_base) {}
virtual Size2 texture_size_with_proxy(RID p_texture) const { return Size2(); }
void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {}
#endif
/* SKY API */
RID sky_create() { return RID(); }
void sky_set_texture(RID p_sky, RID p_cube_map, int p_radiance_size) {}
/* SHADER API */
RID shader_create() { return RID(); }
void shader_set_code(RID p_shader, const String &p_code) {}
String shader_get_code(RID p_shader) const { return ""; }
void shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {}
void shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {}
RID shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { return RID(); }
virtual Variant shader_get_param_default(RID p_material, const StringName &p_param) const { return Variant(); }
/* COMMON MATERIAL API */
RID material_create() { return RID(); }
void material_set_render_priority(RID p_material, int priority) {}
void material_set_shader(RID p_shader_material, RID p_shader) {}
void material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {}
Variant material_get_param(RID p_material, const StringName &p_param) const { return Variant(); }
void material_set_next_pass(RID p_material, RID p_next_material) {}
bool material_is_animated(RID p_material) { return false; }
bool material_casts_shadows(RID p_material) { return false; }
virtual void material_get_instance_shader_parameters(RID p_material, List<InstanceShaderParam> *r_parameters) {}
void material_update_dependency(RID p_material, RasterizerScene::InstanceBase *p_instance) {}
/* MESH API */
RID mesh_create() {
DummyMesh *mesh = memnew(DummyMesh);
ERR_FAIL_COND_V(!mesh, RID());
mesh->blend_shape_count = 0;
mesh->blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED;
return mesh_owner.make_rid(mesh);
}
void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {}
#if 0
void mesh_add_surface(RID p_mesh, uint32_t p_format, RS::PrimitiveType p_primitive, const Vector<uint8_t> &p_array, int p_vertex_count, const Vector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<Vector<uint8_t> > &p_blend_shapes = Vector<Vector<uint8_t> >(), const Vector<AABB> &p_bone_aabbs = Vector<AABB>()) {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!m);
m->surfaces.push_back(DummySurface());
DummySurface *s = &m->surfaces.write[m->surfaces.size() - 1];
s->format = p_format;
s->primitive = p_primitive;
s->array = p_array;
s->vertex_count = p_vertex_count;
s->index_array = p_index_array;
s->index_count = p_index_count;
s->aabb = p_aabb;
s->blend_shapes = p_blend_shapes;
s->bone_aabbs = p_bone_aabbs;
}
void mesh_set_blend_shape_count(RID p_mesh, int p_amount) {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!m);
m->blend_shape_count = p_amount;
}
#endif
int mesh_get_blend_shape_count(RID p_mesh) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, 0);
return m->blend_shape_count;
}
void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!m);
m->blend_shape_mode = p_mode;
}
RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, RS::BLEND_SHAPE_MODE_NORMALIZED);
return m->blend_shape_mode;
}
void mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {}
void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {}
RID mesh_surface_get_material(RID p_mesh, int p_surface) const { return RID(); }
#if 0
int mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, 0);
return m->surfaces[p_surface].vertex_count;
}
int mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, 0);
return m->surfaces[p_surface].index_count;
}
Vector<uint8_t> mesh_surface_get_array(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, Vector<uint8_t>());
return m->surfaces[p_surface].array;
}
Vector<uint8_t> mesh_surface_get_index_array(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, Vector<uint8_t>());
return m->surfaces[p_surface].index_array;
}
uint32_t mesh_surface_get_format(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, 0);
return m->surfaces[p_surface].format;
}
RS::PrimitiveType mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, RS::PRIMITIVE_POINTS);
return m->surfaces[p_surface].primitive;
}
AABB mesh_surface_get_aabb(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, AABB());
return m->surfaces[p_surface].aabb;
}
Vector<Vector<uint8_t> > mesh_surface_get_blend_shapes(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, Vector<Vector<uint8_t> >());
return m->surfaces[p_surface].blend_shapes;
}
Vector<AABB> mesh_surface_get_skeleton_aabb(RID p_mesh, int p_surface) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, Vector<AABB>());
return m->surfaces[p_surface].bone_aabbs;
}
void mesh_remove_surface(RID p_mesh, int p_index) {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!m);
ERR_FAIL_COND(p_index >= m->surfaces.size());
m->surfaces.remove(p_index);
}
#endif
RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const { return RS::SurfaceData(); }
int mesh_get_surface_count(RID p_mesh) const {
DummyMesh *m = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!m, 0);
return m->surfaces.size();
}
void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {}
AABB mesh_get_custom_aabb(RID p_mesh) const { return AABB(); }
AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID()) { return AABB(); }
void mesh_clear(RID p_mesh) {}
/* MULTIMESH API */
virtual RID multimesh_create() { return RID(); }
virtual void multimesh_allocate(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false) {}
int multimesh_get_instance_count(RID p_multimesh) const { return 0; }
void multimesh_set_mesh(RID p_multimesh, RID p_mesh) {}
void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {}
void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {}
void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {}
void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {}
RID multimesh_get_mesh(RID p_multimesh) const { return RID(); }
AABB multimesh_get_aabb(RID p_multimesh) const { return AABB(); }
Transform multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return Transform(); }
Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { return Transform2D(); }
Color multimesh_instance_get_color(RID p_multimesh, int p_index) const { return Color(); }
Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { return Color(); }
virtual void multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {}
virtual Vector<float> multimesh_get_buffer(RID p_multimesh) const { return Vector<float>(); }
void multimesh_set_visible_instances(RID p_multimesh, int p_visible) {}
int multimesh_get_visible_instances(RID p_multimesh) const { return 0; }
/* IMMEDIATE API */
RID immediate_create() { return RID(); }
void immediate_begin(RID p_immediate, RS::PrimitiveType p_rimitive, RID p_texture = RID()) {}
void immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {}
void immediate_normal(RID p_immediate, const Vector3 &p_normal) {}
void immediate_tangent(RID p_immediate, const Plane &p_tangent) {}
void immediate_color(RID p_immediate, const Color &p_color) {}
void immediate_uv(RID p_immediate, const Vector2 &tex_uv) {}
void immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {}
void immediate_end(RID p_immediate) {}
void immediate_clear(RID p_immediate) {}
void immediate_set_material(RID p_immediate, RID p_material) {}
RID immediate_get_material(RID p_immediate) const { return RID(); }
AABB immediate_get_aabb(RID p_immediate) const { return AABB(); }
/* SKELETON API */
RID skeleton_create() { return RID(); }
void skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton = false) {}
void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {}
void skeleton_set_world_transform(RID p_skeleton, bool p_enable, const Transform &p_world_transform) {}
int skeleton_get_bone_count(RID p_skeleton) const { return 0; }
void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {}
Transform skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { return Transform(); }
void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {}
Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { return Transform2D(); }
/* Light API */
RID light_create(RS::LightType p_type) { return RID(); }
RID directional_light_create() { return light_create(RS::LIGHT_DIRECTIONAL); }
RID omni_light_create() { return light_create(RS::LIGHT_OMNI); }
RID spot_light_create() { return light_create(RS::LIGHT_SPOT); }
void light_set_color(RID p_light, const Color &p_color) {}
void light_set_param(RID p_light, RS::LightParam p_param, float p_value) {}
void light_set_shadow(RID p_light, bool p_enabled) {}
void light_set_shadow_color(RID p_light, const Color &p_color) {}
void light_set_projector(RID p_light, RID p_texture) {}
void light_set_negative(RID p_light, bool p_enable) {}
void light_set_cull_mask(RID p_light, uint32_t p_mask) {}
void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {}
void light_set_use_gi(RID p_light, bool p_enabled) {}
void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {}
void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {}
void light_directional_set_blend_splits(RID p_light, bool p_enable) {}
bool light_directional_get_blend_splits(RID p_light) const { return false; }
void light_directional_set_shadow_depth_range_mode(RID p_light, RS::LightDirectionalShadowDepthRangeMode p_range_mode) {}
RS::LightDirectionalShadowDepthRangeMode light_directional_get_shadow_depth_range_mode(RID p_light) const { return RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE; }
RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) { return RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; }
RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) { return RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID; }
bool light_has_shadow(RID p_light) const { return false; }
RS::LightType light_get_type(RID p_light) const { return RS::LIGHT_OMNI; }
AABB light_get_aabb(RID p_light) const { return AABB(); }
float light_get_param(RID p_light, RS::LightParam p_param) { return 0.0; }
Color light_get_color(RID p_light) { return Color(); }
bool light_get_use_gi(RID p_light) { return false; }
uint64_t light_get_version(RID p_light) const { return 0; }
/* PROBE API */
RID reflection_probe_create() { return RID(); }
void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {}
void reflection_probe_set_intensity(RID p_probe, float p_intensity) {}
void reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) {}
void reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) {}
void reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) {}
void reflection_probe_set_max_distance(RID p_probe, float p_distance) {}
void reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {}
void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {}
void reflection_probe_set_as_interior(RID p_probe, bool p_enable) {}
void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {}
void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {}
void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {}
void reflection_probe_set_resolution(RID p_probe, int p_resolution) {}
AABB reflection_probe_get_aabb(RID p_probe) const { return AABB(); }
RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const { return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE; }
uint32_t reflection_probe_get_cull_mask(RID p_probe) const { return 0; }
Vector3 reflection_probe_get_extents(RID p_probe) const { return Vector3(); }
Vector3 reflection_probe_get_origin_offset(RID p_probe) const { return Vector3(); }
float reflection_probe_get_origin_max_distance(RID p_probe) const { return 0.0; }
bool reflection_probe_renders_shadows(RID p_probe) const { return false; }
virtual void base_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {}
virtual void skeleton_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {}
/* DECAL API */
virtual RID decal_create() { return RID(); }
virtual void decal_set_extents(RID p_decal, const Vector3 &p_extents) {}
virtual void decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture) {}
virtual void decal_set_emission_energy(RID p_decal, float p_energy) {}
virtual void decal_set_albedo_mix(RID p_decal, float p_mix) {}
virtual void decal_set_modulate(RID p_decal, const Color &p_modulate) {}
virtual void decal_set_cull_mask(RID p_decal, uint32_t p_layers) {}
virtual void decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length) {}
virtual void decal_set_fade(RID p_decal, float p_above, float p_below) {}
virtual void decal_set_normal_fade(RID p_decal, float p_fade) {}
virtual AABB decal_get_aabb(RID p_decal) const { return AABB(); }
/* GI PROBE API */
RID gi_probe_create() { return RID(); }
virtual void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {}
virtual AABB gi_probe_get_bounds(RID p_gi_probe) const { return AABB(); }
virtual Vector3i gi_probe_get_octree_size(RID p_gi_probe) const { return Vector3i(); }
virtual Vector<uint8_t> gi_probe_get_octree_cells(RID p_gi_probe) const { return Vector<uint8_t>(); }
virtual Vector<uint8_t> gi_probe_get_data_cells(RID p_gi_probe) const { return Vector<uint8_t>(); }
virtual Vector<uint8_t> gi_probe_get_distance_field(RID p_gi_probe) const { return Vector<uint8_t>(); }
virtual Vector<int> gi_probe_get_level_counts(RID p_gi_probe) const { return Vector<int>(); }
virtual Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const { return Transform(); }
virtual void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) {}
virtual float gi_probe_get_dynamic_range(RID p_gi_probe) const { return 0; }
virtual void gi_probe_set_propagation(RID p_gi_probe, float p_range) {}
virtual float gi_probe_get_propagation(RID p_gi_probe) const { return 0; }
void gi_probe_set_energy(RID p_gi_probe, float p_range) {}
float gi_probe_get_energy(RID p_gi_probe) const { return 0.0; }
virtual void gi_probe_set_ao(RID p_gi_probe, float p_ao) {}
virtual float gi_probe_get_ao(RID p_gi_probe) const { return 0; }
virtual void gi_probe_set_ao_size(RID p_gi_probe, float p_strength) {}
virtual float gi_probe_get_ao_size(RID p_gi_probe) const { return 0; }
void gi_probe_set_bias(RID p_gi_probe, float p_range) {}
float gi_probe_get_bias(RID p_gi_probe) const { return 0.0; }
void gi_probe_set_normal_bias(RID p_gi_probe, float p_range) {}
float gi_probe_get_normal_bias(RID p_gi_probe) const { return 0.0; }
void gi_probe_set_interior(RID p_gi_probe, bool p_enable) {}
bool gi_probe_is_interior(RID p_gi_probe) const { return false; }
virtual void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) {}
virtual bool gi_probe_is_using_two_bounces(RID p_gi_probe) const { return false; }
virtual void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) {}
virtual float gi_probe_get_anisotropy_strength(RID p_gi_probe) const { return 0; }
uint32_t gi_probe_get_version(RID p_gi_probe) { return 0; }
/* LIGHTMAP CAPTURE */
#if 0
struct Instantiable {
SelfList<RasterizerScene::InstanceBase>::List instance_list;
_FORCE_INLINE_ void instance_change_notify(bool p_aabb = true, bool p_materials = true) {
SelfList<RasterizerScene::InstanceBase> *instances = instance_list.first();
while (instances) {
//instances->self()->base_changed(p_aabb, p_materials);
instances = instances->next();
}
}
_FORCE_INLINE_ void instance_remove_deps() {
SelfList<RasterizerScene::InstanceBase> *instances = instance_list.first();
while (instances) {
SelfList<RasterizerScene::InstanceBase> *next = instances->next();
//instances->self()->base_removed();
instances = next;
}
}
Instantiable() {}
virtual ~Instantiable() {
}
};
struct LightmapCapture : public Instantiable {
Vector<LightmapCaptureOctree> octree;
AABB bounds;
Transform cell_xform;
int cell_subdiv;
float energy;
LightmapCapture() {
energy = 1.0;
cell_subdiv = 1;
}
};
mutable RID_PtrOwner<LightmapCapture> lightmap_capture_data_owner;
void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) {}
AABB lightmap_capture_get_bounds(RID p_capture) const { return AABB(); }
void lightmap_capture_set_octree(RID p_capture, const Vector<uint8_t> &p_octree) {}
RID lightmap_capture_create() {
LightmapCapture *capture = memnew(LightmapCapture);
return lightmap_capture_data_owner.make_rid(capture);
}
Vector<uint8_t> lightmap_capture_get_octree(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, Vector<uint8_t>());
return Vector<uint8_t>();
}
void lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) {}
Transform lightmap_capture_get_octree_cell_transform(RID p_capture) const { return Transform(); }
void lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) {}
int lightmap_capture_get_octree_cell_subdiv(RID p_capture) const { return 0; }
void lightmap_capture_set_energy(RID p_capture, float p_energy) {}
float lightmap_capture_get_energy(RID p_capture) const { return 0.0; }
const Vector<LightmapCaptureOctree> *lightmap_capture_get_octree_ptr(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, nullptr);
return &capture->octree;
}
#endif
virtual RID lightmap_create() { return RID(); }
virtual void lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) {}
virtual void lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) {}
virtual void lightmap_set_probe_interior(RID p_lightmap, bool p_interior) {}
virtual void lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {}
virtual PackedVector3Array lightmap_get_probe_capture_points(RID p_lightmap) const { return PackedVector3Array(); }
virtual PackedColorArray lightmap_get_probe_capture_sh(RID p_lightmap) const { return PackedColorArray(); }
virtual PackedInt32Array lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const { return PackedInt32Array(); }
virtual PackedInt32Array lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const { return PackedInt32Array(); }
virtual AABB lightmap_get_aabb(RID p_lightmap) const { return AABB(); }
virtual void lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) {}
virtual bool lightmap_is_interior(RID p_lightmap) const { return false; }
virtual void lightmap_set_probe_capture_update_speed(float p_speed) {}
virtual float lightmap_get_probe_capture_update_speed() const { return 0; }
/* PARTICLES */
RID particles_create() { return RID(); }
void particles_set_emitting(RID p_particles, bool p_emitting) {}
void particles_set_amount(RID p_particles, int p_amount) {}
void particles_set_lifetime(RID p_particles, float p_lifetime) {}
void particles_set_one_shot(RID p_particles, bool p_one_shot) {}
void particles_set_pre_process_time(RID p_particles, float p_time) {}
void particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {}
void particles_set_randomness_ratio(RID p_particles, float p_ratio) {}
void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {}
void particles_set_speed_scale(RID p_particles, float p_scale) {}
void particles_set_use_local_coordinates(RID p_particles, bool p_enable) {}
void particles_set_process_material(RID p_particles, RID p_material) {}
void particles_set_fixed_fps(RID p_particles, int p_fps) {}
void particles_set_fractional_delta(RID p_particles, bool p_enable) {}
void particles_restart(RID p_particles) {}
void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {}
void particles_set_draw_passes(RID p_particles, int p_count) {}
void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {}
void particles_request_process(RID p_particles) {}
AABB particles_get_current_aabb(RID p_particles) { return AABB(); }
AABB particles_get_aabb(RID p_particles) const { return AABB(); }
void particles_set_emission_transform(RID p_particles, const Transform &p_transform) {}
bool particles_get_emitting(RID p_particles) { return false; }
int particles_get_draw_passes(RID p_particles) const { return 0; }
RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { return RID(); }
/* GLOBAL VARIABLES */
virtual void global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value) {}
virtual void global_variable_remove(const StringName &p_name) {}
virtual Vector<StringName> global_variable_get_list() const { return Vector<StringName>(); }
virtual void global_variable_set(const StringName &p_name, const Variant &p_value) {}
virtual void global_variable_set_override(const StringName &p_name, const Variant &p_value) {}
virtual Variant global_variable_get(const StringName &p_name) const { return Variant(); }
virtual RS::GlobalVariableType global_variable_get_type(const StringName &p_name) const { return RS::GLOBAL_VAR_TYPE_MAX; }
virtual void global_variables_load_settings(bool p_load_textures = true) {}
virtual void global_variables_clear() {}
virtual int32_t global_variables_instance_allocate(RID p_instance) { return 0; }
virtual void global_variables_instance_free(RID p_instance) {}
virtual void global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value) {}
virtual bool particles_is_inactive(RID p_particles) const { return false; }
/* RENDER TARGET */
RID render_target_create() { return RID(); }
void render_target_set_position(RID p_render_target, int p_x, int p_y) {}
void render_target_set_size(RID p_render_target, int p_width, int p_height) {}
RID render_target_get_texture(RID p_render_target) { return RID(); }
void render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) {}
void render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {}
bool render_target_was_used(RID p_render_target) { return false; }
void render_target_set_as_unused(RID p_render_target) {}
virtual void render_target_request_clear(RID p_render_target, const Color &p_clear_color) {}
virtual bool render_target_is_clear_requested(RID p_render_target) { return false; }
virtual Color render_target_get_clear_request_color(RID p_render_target) { return Color(); }
virtual void render_target_disable_clear_request(RID p_render_target) {}
virtual void render_target_do_clear_request(RID p_render_target) {}
RS::InstanceType get_base_type(RID p_rid) const {
if (mesh_owner.owns(p_rid)) {
return RS::INSTANCE_MESH;
}
return RS::INSTANCE_NONE;
}
bool free(RID p_rid) {
if (texture_owner.owns(p_rid)) {
// delete the texture
DummyTexture *texture = texture_owner.getornull(p_rid);
texture_owner.free(p_rid);
memdelete(texture);
}
return true;
}
bool has_os_feature(const String &p_feature) const { return false; }
void update_dirty_resources() {}
void set_debug_generate_wireframes(bool p_generate) {}
void render_info_begin_capture() {}
void render_info_end_capture() {}
int get_captured_render_info(RS::RenderInfo p_info) { return 0; }
int get_render_info(RS::RenderInfo p_info) { return 0; }
String get_video_adapter_name() const { return String(); }
String get_video_adapter_vendor() const { return String(); }
static RasterizerStorage *base_singleton;
virtual void capture_timestamps_begin() {}
virtual void capture_timestamp(const String &p_name) {}
virtual uint32_t get_captured_timestamps_count() const { return 0; }
virtual uint64_t get_captured_timestamps_frame() const { return 0; }
virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const { return 0; }
virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const { return 0; }
virtual String get_captured_timestamp_name(uint32_t p_index) const { return String(); }
RasterizerStorageDummy() {}
~RasterizerStorageDummy() {}
};
class RasterizerCanvasDummy : public RasterizerCanvas {
public:
virtual TextureBindingID request_texture_binding(RID p_texture, RID p_normalmap, RID p_specular, RS::CanvasItemTextureFilter p_filter, RS::CanvasItemTextureRepeat p_repeat, RID p_multimesh) { return 0; }
virtual void free_texture_binding(TextureBindingID p_binding) {}
virtual PolygonID request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs = Vector<Point2>(), const Vector<int> &p_bones = Vector<int>(), const Vector<float> &p_weights = Vector<float>()) { return 0; }
virtual void free_polygon(PolygonID p_polygon) {}
virtual void canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, const Transform2D &p_canvas_transform) {}
virtual void canvas_debug_viewport_shadows(Light *p_lights_with_shadow) {}
virtual RID light_create() { return RID(); }
virtual void light_set_texture(RID p_rid, RID p_texture) {}
virtual void light_set_use_shadow(RID p_rid, bool p_enable, int p_resolution) {}
virtual void light_update_shadow(RID p_rid, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) {}
virtual RID occluder_polygon_create() { return RID(); }
virtual void occluder_polygon_set_shape_as_lines(RID p_occluder, const Vector<Vector2> &p_lines) {}
virtual void occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) {}
void draw_window_margins(int *p_margins, RID *p_margin_textures) {}
virtual bool free(RID p_rid) { return true; }
virtual void update() {}
RasterizerCanvasDummy() {}
~RasterizerCanvasDummy() {}
};
class RasterizerDummy : public Rasterizer {
private:
uint64_t frame = 1;
float delta = 0;
protected:
RasterizerCanvasDummy canvas;
RasterizerStorageDummy storage;
RasterizerSceneDummy scene;
public:
RasterizerStorage *get_storage() { return &storage; }
RasterizerCanvas *get_canvas() { return &canvas; }
RasterizerScene *get_scene() { return &scene; }
void set_boot_image(const Ref<Image> &p_image, const Color &p_color, bool p_scale, bool p_use_filter = true) {}
void initialize() {}
void begin_frame(double frame_step) {
frame++;
delta = frame_step;
}
virtual void prepare_for_blitting_render_targets() {}
virtual void blit_render_targets_to_screen(int p_screen, const BlitToScreen *p_render_targets, int p_amount) {}
void end_frame(bool p_swap_buffers) {
if (p_swap_buffers) {
DisplayServer::get_singleton()->swap_buffers();
}
}
void finalize() {}
static Error is_viable() {
return OK;
}
static Rasterizer *_create_current() {
return memnew(RasterizerDummy);
}
static void make_current() {
_create_func = _create_current;
}
virtual bool is_low_end() const { return true; }
virtual uint64_t get_frame_number() const { return frame; }
virtual float get_frame_delta_time() const { return delta; }
RasterizerDummy() {}
~RasterizerDummy() {}
};
#endif // RASTERIZER_DUMMY_H