godot/editor/io_plugins/editor_import_collada.cpp
Rémi Verschelde 2712014744 Update copyright statements to 2018
Happy new year to the wonderful Godot community!
2018-01-02 11:27:24 +01:00

2268 lines
67 KiB
C++

/*************************************************************************/
/* editor_import_collada.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "editor_import_collada.h"
#include "editor/collada/collada.h"
#include "editor/editor_node.h"
#include "os/os.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "scene/3d/mesh_instance.h"
#include "scene/3d/path.h"
#include "scene/3d/skeleton.h"
#include "scene/3d/spatial.h"
#include "scene/animation/animation_player.h"
#include "scene/resources/animation.h"
#include "scene/resources/packed_scene.h"
#include <iostream>
struct ColladaImport {
Collada collada;
Spatial *scene;
Vector<Ref<Animation> > animations;
struct NodeMap {
//String path;
Spatial *node;
int bone;
List<int> anim_tracks;
NodeMap() {
node = NULL;
bone = -1;
}
};
bool found_ambient;
Color ambient;
bool found_directional;
bool force_make_tangents;
bool apply_mesh_xform_to_vertices;
float bake_fps;
Map<String, NodeMap> node_map; //map from collada node to engine node
Map<String, String> node_name_map; //map from collada node to engine node
Map<String, Ref<Mesh> > mesh_cache;
Map<String, Ref<Curve3D> > curve_cache;
Map<String, Ref<Material> > material_cache;
Map<Collada::Node *, Skeleton *> skeleton_map;
Map<Skeleton *, Map<String, int> > skeleton_bone_map;
Set<String> valid_animated_nodes;
Vector<int> valid_animated_properties;
Map<String, bool> bones_with_animation;
Error _populate_skeleton(Skeleton *p_skeleton, Collada::Node *p_node, int &r_bone, int p_parent);
Error _create_scene_skeletons(Collada::Node *p_node);
Error _create_scene(Collada::Node *p_node, Spatial *p_parent);
Error _create_resources(Collada::Node *p_node);
Error _create_material(const String &p_material);
Error _create_mesh_surfaces(bool p_optimize, Ref<Mesh> &p_mesh, const Map<String, Collada::NodeGeometry::Material> &p_material_map, const Collada::MeshData &meshdata, const Transform &p_local_xform, const Vector<int> &bone_remap, const Collada::SkinControllerData *p_skin_data, const Collada::MorphControllerData *p_morph_data, Vector<Ref<Mesh> > p_morph_meshes = Vector<Ref<Mesh> >());
Error load(const String &p_path, int p_flags, bool p_force_make_tangents = false);
void _fix_param_animation_tracks();
void create_animation(int p_clip, bool p_make_tracks_in_all_bones, bool p_import_value_tracks);
void create_animations(bool p_make_tracks_in_all_bones, bool p_import_value_tracks);
Set<String> tracks_in_clips;
Vector<String> missing_textures;
void _pre_process_lights(Collada::Node *p_node);
ColladaImport() {
found_ambient = false;
found_directional = false;
force_make_tangents = false;
apply_mesh_xform_to_vertices = true;
bake_fps = 15;
}
};
Error ColladaImport::_populate_skeleton(Skeleton *p_skeleton, Collada::Node *p_node, int &r_bone, int p_parent) {
if (p_node->type != Collada::Node::TYPE_JOINT)
return OK;
Collada::NodeJoint *joint = static_cast<Collada::NodeJoint *>(p_node);
print_line("populating joint " + joint->name);
p_skeleton->add_bone(p_node->name);
if (p_parent >= 0)
p_skeleton->set_bone_parent(r_bone, p_parent);
NodeMap nm;
nm.node = p_skeleton;
nm.bone = r_bone;
node_map[p_node->id] = nm;
node_name_map[p_node->name] = p_node->id;
skeleton_bone_map[p_skeleton][joint->sid] = r_bone;
if (collada.state.bone_rest_map.has(joint->sid)) {
p_skeleton->set_bone_rest(r_bone, collada.fix_transform(collada.state.bone_rest_map[joint->sid]));
//should map this bone to something for animation?
} else {
print_line("no rest: " + joint->sid);
WARN_PRINT("Joint has no rest..");
}
int id = r_bone++;
for (int i = 0; i < p_node->children.size(); i++) {
Error err = _populate_skeleton(p_skeleton, p_node->children[i], r_bone, id);
if (err)
return err;
}
return OK;
}
void ColladaImport::_pre_process_lights(Collada::Node *p_node) {
if (p_node->type == Collada::Node::TYPE_LIGHT) {
Collada::NodeLight *light = static_cast<Collada::NodeLight *>(p_node);
if (collada.state.light_data_map.has(light->light)) {
Collada::LightData &ld = collada.state.light_data_map[light->light];
if (ld.mode == Collada::LightData::MODE_AMBIENT) {
found_ambient = true;
ambient = ld.color;
}
if (ld.mode == Collada::LightData::MODE_DIRECTIONAL) {
found_directional = true;
}
}
}
for (int i = 0; i < p_node->children.size(); i++)
_pre_process_lights(p_node->children[i]);
}
Error ColladaImport::_create_scene_skeletons(Collada::Node *p_node) {
if (p_node->type == Collada::Node::TYPE_SKELETON) {
Skeleton *sk = memnew(Skeleton);
int bone = 0;
for (int i = 0; i < p_node->children.size(); i++) {
_populate_skeleton(sk, p_node->children[i], bone, -1);
}
sk->localize_rests(); //after creating skeleton, rests must be localized...!
skeleton_map[p_node] = sk;
}
for (int i = 0; i < p_node->children.size(); i++) {
Error err = _create_scene_skeletons(p_node->children[i]);
if (err)
return err;
}
return OK;
}
Error ColladaImport::_create_scene(Collada::Node *p_node, Spatial *p_parent) {
Spatial *node = NULL;
switch (p_node->type) {
case Collada::Node::TYPE_NODE: {
node = memnew(Spatial);
} break;
case Collada::Node::TYPE_JOINT: {
return OK; // do nothing
} break;
case Collada::Node::TYPE_LIGHT: {
//node = memnew( Light)
Collada::NodeLight *light = static_cast<Collada::NodeLight *>(p_node);
if (collada.state.light_data_map.has(light->light)) {
Collada::LightData &ld = collada.state.light_data_map[light->light];
if (ld.mode == Collada::LightData::MODE_AMBIENT) {
if (found_directional)
return OK; //do nothing not needed
if (!bool(GLOBAL_DEF("collada/use_ambient", false)))
return OK;
//well, it's an ambient light..
Light *l = memnew(DirectionalLight);
// l->set_color(Light::COLOR_AMBIENT,ld.color);
l->set_color(Light::COLOR_DIFFUSE, Color(0, 0, 0));
l->set_color(Light::COLOR_SPECULAR, Color(0, 0, 0));
node = l;
} else if (ld.mode == Collada::LightData::MODE_DIRECTIONAL) {
//well, it's an ambient light..
Light *l = memnew(DirectionalLight);
//if (found_ambient) //use it here
// l->set_color(Light::COLOR_AMBIENT,ambient);
l->set_color(Light::COLOR_DIFFUSE, ld.color);
l->set_color(Light::COLOR_SPECULAR, Color(1, 1, 1));
node = l;
} else {
Light *l;
if (ld.mode == Collada::LightData::MODE_OMNI)
l = memnew(OmniLight);
else {
l = memnew(SpotLight);
l->set_parameter(Light::PARAM_SPOT_ANGLE, ld.spot_angle);
l->set_parameter(Light::PARAM_SPOT_ATTENUATION, ld.spot_exp);
}
//
l->set_color(Light::COLOR_DIFFUSE, ld.color);
l->set_color(Light::COLOR_SPECULAR, Color(1, 1, 1));
l->approximate_opengl_attenuation(ld.constant_att, ld.linear_att, ld.quad_att);
node = l;
}
} else {
node = memnew(Spatial);
}
} break;
case Collada::Node::TYPE_CAMERA: {
Collada::NodeCamera *cam = static_cast<Collada::NodeCamera *>(p_node);
Camera *camera = memnew(Camera);
if (collada.state.camera_data_map.has(cam->camera)) {
const Collada::CameraData &cd = collada.state.camera_data_map[cam->camera];
switch (cd.mode) {
case Collada::CameraData::MODE_ORTHOGONAL: {
if (cd.orthogonal.y_mag) {
camera->set_keep_aspect_mode(Camera::KEEP_HEIGHT);
camera->set_orthogonal(cd.orthogonal.y_mag * 2.0, cd.z_near, cd.z_far);
} else if (!cd.orthogonal.y_mag && cd.orthogonal.x_mag) {
camera->set_keep_aspect_mode(Camera::KEEP_WIDTH);
camera->set_orthogonal(cd.orthogonal.x_mag * 2.0, cd.z_near, cd.z_far);
}
} break;
case Collada::CameraData::MODE_PERSPECTIVE: {
if (cd.perspective.y_fov) {
camera->set_perspective(cd.perspective.y_fov, cd.z_near, cd.z_far);
} else if (!cd.perspective.y_fov && cd.perspective.x_fov) {
camera->set_perspective(cd.perspective.x_fov / cd.aspect, cd.z_near, cd.z_far);
}
} break;
}
}
node = camera;
} break;
case Collada::Node::TYPE_GEOMETRY: {
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry *>(p_node);
if (collada.state.curve_data_map.has(ng->source)) {
node = memnew(Path);
} else {
//mesh since nothing else
node = memnew(MeshInstance);
node->cast_to<MeshInstance>()->set_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT, true);
}
} break;
case Collada::Node::TYPE_SKELETON: {
ERR_FAIL_COND_V(!skeleton_map.has(p_node), ERR_CANT_CREATE);
Skeleton *sk = skeleton_map[p_node];
node = sk;
} break;
}
if (p_node->name != "")
node->set_name(p_node->name);
NodeMap nm;
nm.node = node;
node_map[p_node->id] = nm;
node_name_map[p_node->name] = p_node->id;
Transform xf = p_node->default_transform;
xf = collada.fix_transform(xf) * p_node->post_transform;
node->set_transform(xf);
p_parent->add_child(node);
node->set_owner(scene);
if (p_node->empty_draw_type != "") {
node->set_meta("empty_draw_type", Variant(p_node->empty_draw_type));
}
for (int i = 0; i < p_node->children.size(); i++) {
Error err = _create_scene(p_node->children[i], node);
if (err)
return err;
}
return OK;
}
Error ColladaImport::_create_material(const String &p_target) {
ERR_FAIL_COND_V(material_cache.has(p_target), ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(!collada.state.material_map.has(p_target), ERR_INVALID_PARAMETER);
Collada::Material &src_mat = collada.state.material_map[p_target];
ERR_FAIL_COND_V(!collada.state.effect_map.has(src_mat.instance_effect), ERR_INVALID_PARAMETER);
Collada::Effect &effect = collada.state.effect_map[src_mat.instance_effect];
Ref<FixedMaterial> material = memnew(FixedMaterial);
if (src_mat.name != "")
material->set_name(src_mat.name);
else if (effect.name != "")
material->set_name(effect.name);
// DIFFUSE
if (effect.diffuse.texture != "") {
String texfile = effect.get_texture_path(effect.diffuse.texture, collada);
if (texfile != "") {
Ref<Texture> texture = ResourceLoader::load(texfile, "Texture");
if (texture.is_valid()) {
material->set_texture(FixedMaterial::PARAM_DIFFUSE, texture);
material->set_parameter(FixedMaterial::PARAM_DIFFUSE, Color(1, 1, 1, 1));
} else {
missing_textures.push_back(texfile.get_file());
}
}
} else {
material->set_parameter(FixedMaterial::PARAM_DIFFUSE, effect.diffuse.color);
}
// SPECULAR
if (effect.specular.texture != "") {
String texfile = effect.get_texture_path(effect.specular.texture, collada);
if (texfile != "") {
Ref<Texture> texture = ResourceLoader::load(texfile, "Texture");
if (texture.is_valid()) {
material->set_texture(FixedMaterial::PARAM_SPECULAR, texture);
material->set_parameter(FixedMaterial::PARAM_SPECULAR, Color(1, 1, 1, 1));
} else {
missing_textures.push_back(texfile.get_file());
}
}
} else {
material->set_parameter(FixedMaterial::PARAM_SPECULAR, effect.specular.color);
}
// EMISSION
if (effect.emission.texture != "") {
String texfile = effect.get_texture_path(effect.emission.texture, collada);
if (texfile != "") {
Ref<Texture> texture = ResourceLoader::load(texfile, "Texture");
if (texture.is_valid()) {
material->set_texture(FixedMaterial::PARAM_EMISSION, texture);
material->set_parameter(FixedMaterial::PARAM_EMISSION, Color(1, 1, 1, 1));
} else {
missing_textures.push_back(texfile.get_file());
}
}
} else {
material->set_parameter(FixedMaterial::PARAM_EMISSION, effect.emission.color);
}
// NORMAL
if (effect.bump.texture != "") {
String texfile = effect.get_texture_path(effect.bump.texture, collada);
if (texfile != "") {
Ref<Texture> texture = ResourceLoader::load(texfile, "Texture");
if (texture.is_valid()) {
material->set_texture(FixedMaterial::PARAM_NORMAL, texture);
} else {
missing_textures.push_back(texfile.get_file());
}
}
}
material->set_parameter(FixedMaterial::PARAM_SPECULAR_EXP, effect.shininess);
material->set_flag(Material::FLAG_DOUBLE_SIDED, effect.double_sided);
material->set_flag(Material::FLAG_UNSHADED, effect.unshaded);
material_cache[p_target] = material;
return OK;
}
static void _generate_normals(const DVector<int> &p_indices, const DVector<Vector3> &p_vertices, DVector<Vector3> &r_normals) {
r_normals.resize(p_vertices.size());
DVector<Vector3>::Write narrayw = r_normals.write();
int iacount = p_indices.size() / 3;
DVector<int>::Read index_arrayr = p_indices.read();
DVector<Vector3>::Read vertex_arrayr = p_vertices.read();
for (int idx = 0; idx < iacount; idx++) {
Vector3 v[3] = {
vertex_arrayr[index_arrayr[idx * 3 + 0]],
vertex_arrayr[index_arrayr[idx * 3 + 1]],
vertex_arrayr[index_arrayr[idx * 3 + 2]]
};
Vector3 normal = Plane(v[0], v[1], v[2]).normal;
narrayw[index_arrayr[idx * 3 + 0]] += normal;
narrayw[index_arrayr[idx * 3 + 1]] += normal;
narrayw[index_arrayr[idx * 3 + 2]] += normal;
}
int vlen = p_vertices.size();
for (int idx = 0; idx < vlen; idx++) {
narrayw[idx].normalize();
}
}
static void _generate_tangents_and_binormals(const DVector<int> &p_indices, const DVector<Vector3> &p_vertices, const DVector<Vector3> &p_uvs, const DVector<Vector3> &p_normals, DVector<real_t> &r_tangents) {
int vlen = p_vertices.size();
Vector<Vector3> tangents;
tangents.resize(vlen);
Vector<Vector3> binormals;
binormals.resize(vlen);
int iacount = p_indices.size() / 3;
DVector<int>::Read index_arrayr = p_indices.read();
DVector<Vector3>::Read vertex_arrayr = p_vertices.read();
DVector<Vector3>::Read narrayr = p_normals.read();
DVector<Vector3>::Read uvarrayr = p_uvs.read();
for (int idx = 0; idx < iacount; idx++) {
Vector3 v1 = vertex_arrayr[index_arrayr[idx * 3 + 0]];
Vector3 v2 = vertex_arrayr[index_arrayr[idx * 3 + 1]];
Vector3 v3 = vertex_arrayr[index_arrayr[idx * 3 + 2]];
Vector3 w1 = uvarrayr[index_arrayr[idx * 3 + 0]];
Vector3 w2 = uvarrayr[index_arrayr[idx * 3 + 1]];
Vector3 w3 = uvarrayr[index_arrayr[idx * 3 + 2]];
real_t x1 = v2.x - v1.x;
real_t x2 = v3.x - v1.x;
real_t y1 = v2.y - v1.y;
real_t y2 = v3.y - v1.y;
real_t z1 = v2.z - v1.z;
real_t z2 = v3.z - v1.z;
real_t s1 = w2.x - w1.x;
real_t s2 = w3.x - w1.x;
real_t t1 = w2.y - w1.y;
real_t t2 = w3.y - w1.y;
real_t r = (s1 * t2 - s2 * t1);
Vector3 tangent;
Vector3 binormal;
if (r == 0) {
binormal = Vector3();
tangent = Vector3();
} else {
tangent = Vector3((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r,
(t2 * z1 - t1 * z2) * r)
.normalized();
binormal = Vector3((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r,
(s1 * z2 - s2 * z1) * r)
.normalized();
}
tangents[index_arrayr[idx * 3 + 0]] += tangent;
binormals[index_arrayr[idx * 3 + 0]] += binormal;
tangents[index_arrayr[idx * 3 + 1]] += tangent;
binormals[index_arrayr[idx * 3 + 1]] += binormal;
tangents[index_arrayr[idx * 3 + 2]] += tangent;
binormals[index_arrayr[idx * 3 + 2]] += binormal;
//print_line(itos(idx)+" tangent: "+tangent);
//print_line(itos(idx)+" binormal: "+binormal);
}
r_tangents.resize(vlen * 4);
DVector<real_t>::Write tarrayw = r_tangents.write();
for (int idx = 0; idx < vlen; idx++) {
Vector3 tangent = tangents[idx];
Vector3 bingen = narrayr[idx].cross(tangent);
float dir;
if (bingen.dot(binormals[idx]) < 0)
dir = -1.0;
else
dir = +1.0;
tarrayw[idx * 4 + 0] = tangent.x;
tarrayw[idx * 4 + 1] = tangent.y;
tarrayw[idx * 4 + 2] = tangent.z;
tarrayw[idx * 4 + 3] = dir;
}
}
Error ColladaImport::_create_mesh_surfaces(bool p_optimize, Ref<Mesh> &p_mesh, const Map<String, Collada::NodeGeometry::Material> &p_material_map, const Collada::MeshData &meshdata, const Transform &p_local_xform, const Vector<int> &bone_remap, const Collada::SkinControllerData *skin_controller, const Collada::MorphControllerData *p_morph_data, Vector<Ref<Mesh> > p_morph_meshes) {
bool local_xform_mirror = p_local_xform.basis.determinant() < 0;
if (p_morph_data) {
//add morphie target
ERR_FAIL_COND_V(!p_morph_data->targets.has("MORPH_TARGET"), ERR_INVALID_DATA);
String mt = p_morph_data->targets["MORPH_TARGET"];
ERR_FAIL_COND_V(!p_morph_data->sources.has(mt), ERR_INVALID_DATA);
int morph_targets = p_morph_data->sources[mt].sarray.size();
for (int i = 0; i < morph_targets; i++) {
String target = p_morph_data->sources[mt].sarray[i];
ERR_FAIL_COND_V(!collada.state.mesh_data_map.has(target), ERR_INVALID_DATA);
String name = collada.state.mesh_data_map[target].name;
p_mesh->add_morph_target(name);
}
if (p_morph_data->mode == "RELATIVE")
p_mesh->set_morph_target_mode(Mesh::MORPH_MODE_RELATIVE);
else if (p_morph_data->mode == "NORMALIZED")
p_mesh->set_morph_target_mode(Mesh::MORPH_MODE_NORMALIZED);
}
int surface = 0;
for (int p_i = 0; p_i < meshdata.primitives.size(); p_i++) {
const Collada::MeshData::Primitives &p = meshdata.primitives[p_i];
/* VERTEX SOURCE */
ERR_FAIL_COND_V(!p.sources.has("VERTEX"), ERR_INVALID_DATA);
String vertex_src_id = p.sources["VERTEX"].source;
int vertex_ofs = p.sources["VERTEX"].offset;
ERR_FAIL_COND_V(!meshdata.vertices.has(vertex_src_id), ERR_INVALID_DATA);
ERR_FAIL_COND_V(!meshdata.vertices[vertex_src_id].sources.has("POSITION"), ERR_INVALID_DATA);
String position_src_id = meshdata.vertices[vertex_src_id].sources["POSITION"];
ERR_FAIL_COND_V(!meshdata.sources.has(position_src_id), ERR_INVALID_DATA);
const Collada::MeshData::Source *vertex_src = &meshdata.sources[position_src_id];
/* NORMAL SOURCE */
const Collada::MeshData::Source *normal_src = NULL;
int normal_ofs = 0;
if (p.sources.has("NORMAL")) {
String normal_source_id = p.sources["NORMAL"].source;
normal_ofs = p.sources["NORMAL"].offset;
ERR_FAIL_COND_V(!meshdata.sources.has(normal_source_id), ERR_INVALID_DATA);
normal_src = &meshdata.sources[normal_source_id];
}
const Collada::MeshData::Source *binormal_src = NULL;
int binormal_ofs = 0;
if (p.sources.has("TEXBINORMAL")) {
String binormal_source_id = p.sources["TEXBINORMAL"].source;
binormal_ofs = p.sources["TEXBINORMAL"].offset;
ERR_FAIL_COND_V(!meshdata.sources.has(binormal_source_id), ERR_INVALID_DATA);
binormal_src = &meshdata.sources[binormal_source_id];
}
const Collada::MeshData::Source *tangent_src = NULL;
int tangent_ofs = 0;
if (p.sources.has("TEXTANGENT")) {
String tangent_source_id = p.sources["TEXTANGENT"].source;
tangent_ofs = p.sources["TEXTANGENT"].offset;
ERR_FAIL_COND_V(!meshdata.sources.has(tangent_source_id), ERR_INVALID_DATA);
tangent_src = &meshdata.sources[tangent_source_id];
}
const Collada::MeshData::Source *uv_src = NULL;
int uv_ofs = 0;
if (p.sources.has("TEXCOORD0")) {
String uv_source_id = p.sources["TEXCOORD0"].source;
uv_ofs = p.sources["TEXCOORD0"].offset;
ERR_FAIL_COND_V(!meshdata.sources.has(uv_source_id), ERR_INVALID_DATA);
uv_src = &meshdata.sources[uv_source_id];
}
const Collada::MeshData::Source *uv2_src = NULL;
int uv2_ofs = 0;
if (p.sources.has("TEXCOORD1")) {
String uv2_source_id = p.sources["TEXCOORD1"].source;
uv2_ofs = p.sources["TEXCOORD1"].offset;
ERR_FAIL_COND_V(!meshdata.sources.has(uv2_source_id), ERR_INVALID_DATA);
uv2_src = &meshdata.sources[uv2_source_id];
}
const Collada::MeshData::Source *color_src = NULL;
int color_ofs = 0;
if (p.sources.has("COLOR")) {
String color_source_id = p.sources["COLOR"].source;
color_ofs = p.sources["COLOR"].offset;
ERR_FAIL_COND_V(!meshdata.sources.has(color_source_id), ERR_INVALID_DATA);
color_src = &meshdata.sources[color_source_id];
}
//find largest source..
/************************/
/* ADD WEIGHTS IF EXIST */
/************************/
Map<int, Vector<Collada::Vertex::Weight> > pre_weights;
bool has_weights = false;
if (skin_controller) {
const Collada::SkinControllerData::Source *weight_src = NULL;
int weight_ofs = 0;
if (skin_controller->weights.sources.has("WEIGHT")) {
String weight_id = skin_controller->weights.sources["WEIGHT"].source;
weight_ofs = skin_controller->weights.sources["WEIGHT"].offset;
if (skin_controller->sources.has(weight_id)) {
weight_src = &skin_controller->sources[weight_id];
}
}
int joint_ofs = 0;
if (skin_controller->weights.sources.has("JOINT")) {
joint_ofs = skin_controller->weights.sources["JOINT"].offset;
}
//should be OK, given this was pre-checked.
int index_ofs = 0;
int wstride = skin_controller->weights.sources.size();
for (int w_i = 0; w_i < skin_controller->weights.sets.size(); w_i++) {
int amount = skin_controller->weights.sets[w_i];
Vector<Collada::Vertex::Weight> weights;
for (int a_i = 0; a_i < amount; a_i++) {
Collada::Vertex::Weight w;
int read_from = index_ofs + a_i * wstride;
ERR_FAIL_INDEX_V(read_from + wstride - 1, skin_controller->weights.indices.size(), ERR_INVALID_DATA);
int weight_index = skin_controller->weights.indices[read_from + weight_ofs];
ERR_FAIL_INDEX_V(weight_index, weight_src->array.size(), ERR_INVALID_DATA);
w.weight = weight_src->array[weight_index];
int bone_index = skin_controller->weights.indices[read_from + joint_ofs];
if (bone_index == -1)
continue; //ignore this weight (refers to bind shape)
ERR_FAIL_INDEX_V(bone_index, bone_remap.size(), ERR_INVALID_DATA);
w.bone_idx = bone_remap[bone_index];
weights.push_back(w);
}
/* FIX WEIGHTS */
weights.sort();
if (weights.size() > 4) {
//cap to 4 and make weights add up 1
weights.resize(4);
}
//make sure weights allways add up to 1
float total = 0;
for (int i = 0; i < weights.size(); i++)
total += weights[i].weight;
if (total)
for (int i = 0; i < weights.size(); i++)
weights[i].weight /= total;
if (weights.size() == 0 || total == 0) { //if nothing, add a weight to bone 0
//no weights assigned
Collada::Vertex::Weight w;
w.bone_idx = 0;
w.weight = 1.0;
weights.clear();
weights.push_back(w);
}
pre_weights[w_i] = weights;
/*
for(Set<int>::Element *E=vertex_map[w_i].front();E;E=E->next()) {
int dst = E->get();
ERR_EXPLAIN("invalid vertex index in array");
ERR_FAIL_INDEX_V(dst,vertex_array.size(),ERR_INVALID_DATA);
vertex_array[dst].weights=weights;
}*/
index_ofs += wstride * amount;
}
//vertices need to be localized
has_weights = true;
}
Set<Collada::Vertex> vertex_set; //vertex set will be the vertices
List<int> indices_list; //indices will be the indices
//Map<int,Set<int> > vertex_map; //map vertices (for setting skinning/morph)
/**************************/
/* CREATE PRIMITIVE ARRAY */
/**************************/
// The way collada uses indices is more optimal, and friendlier with 3D modelling sofware,
// because it can index everything, not only vertices (similar to how the WII works).
// This is, however, more incompatible with standard video cards, so arrays must be converted.
// Must convert to GL/DX format.
int _prim_ofs = 0;
int vertidx = 0;
for (int p_i = 0; p_i < p.count; p_i++) {
int amount;
if (p.polygons.size()) {
ERR_FAIL_INDEX_V(p_i, p.polygons.size(), ERR_INVALID_DATA);
amount = p.polygons[p_i];
} else {
amount = 3; //triangles;
}
//COLLADA_PRINT("amount: "+itos(amount));
int prev2[2] = { 0, 0 };
for (int j = 0; j < amount; j++) {
int src = _prim_ofs;
//_prim_ofs+=p.sources.size()
ERR_FAIL_INDEX_V(src, p.indices.size(), ERR_INVALID_DATA);
Collada::Vertex vertex;
if (!p_optimize)
vertex.uid = vertidx++;
int vertex_index = p.indices[src + vertex_ofs]; //used for index field (later used by controllers)
int vertex_pos = (vertex_src->stride ? vertex_src->stride : 3) * vertex_index;
ERR_FAIL_INDEX_V(vertex_pos, vertex_src->array.size(), ERR_INVALID_DATA);
vertex.vertex = Vector3(vertex_src->array[vertex_pos + 0], vertex_src->array[vertex_pos + 1], vertex_src->array[vertex_pos + 2]);
if (pre_weights.has(vertex_index)) {
vertex.weights = pre_weights[vertex_index];
}
if (normal_src) {
int normal_pos = (normal_src->stride ? normal_src->stride : 3) * p.indices[src + normal_ofs];
ERR_FAIL_INDEX_V(normal_pos, normal_src->array.size(), ERR_INVALID_DATA);
vertex.normal = Vector3(normal_src->array[normal_pos + 0], normal_src->array[normal_pos + 1], normal_src->array[normal_pos + 2]);
vertex.normal = vertex.normal.snapped(0.001);
if (tangent_src && binormal_src) {
int binormal_pos = (binormal_src->stride ? binormal_src->stride : 3) * p.indices[src + binormal_ofs];
ERR_FAIL_INDEX_V(binormal_pos, binormal_src->array.size(), ERR_INVALID_DATA);
Vector3 binormal = Vector3(binormal_src->array[binormal_pos + 0], binormal_src->array[binormal_pos + 1], binormal_src->array[binormal_pos + 2]);
int tangent_pos = (tangent_src->stride ? tangent_src->stride : 3) * p.indices[src + tangent_ofs];
ERR_FAIL_INDEX_V(tangent_pos, tangent_src->array.size(), ERR_INVALID_DATA);
Vector3 tangent = Vector3(tangent_src->array[tangent_pos + 0], tangent_src->array[tangent_pos + 1], tangent_src->array[tangent_pos + 2]);
vertex.tangent.normal = tangent;
vertex.tangent.d = vertex.normal.cross(tangent).dot(binormal) > 0 ? 1 : -1;
}
}
if (uv_src) {
int uv_pos = (uv_src->stride ? uv_src->stride : 2) * p.indices[src + uv_ofs];
ERR_FAIL_INDEX_V(uv_pos, uv_src->array.size(), ERR_INVALID_DATA);
vertex.uv = Vector3(uv_src->array[uv_pos + 0], 1.0 - uv_src->array[uv_pos + 1], 0);
}
if (uv2_src) {
int uv2_pos = (uv2_src->stride ? uv2_src->stride : 2) * p.indices[src + uv2_ofs];
ERR_FAIL_INDEX_V(uv2_pos, uv2_src->array.size(), ERR_INVALID_DATA);
vertex.uv2 = Vector3(uv2_src->array[uv2_pos + 0], 1.0 - uv2_src->array[uv2_pos + 1], 0);
}
if (color_src) {
int color_pos = (color_src->stride ? color_src->stride : 3) * p.indices[src + color_ofs]; // colors are RGB in collada..
ERR_FAIL_INDEX_V(color_pos, color_src->array.size(), ERR_INVALID_DATA);
vertex.color = Color(color_src->array[color_pos + 0], color_src->array[color_pos + 1], color_src->array[color_pos + 2], (color_src->stride > 3) ? color_src->array[color_pos + 3] : 1.0);
}
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis == Vector3::AXIS_Z) {
SWAP(vertex.vertex.z, vertex.vertex.y);
vertex.vertex.z = -vertex.vertex.z;
SWAP(vertex.normal.z, vertex.normal.y);
vertex.normal.z = -vertex.normal.z;
SWAP(vertex.tangent.normal.z, vertex.tangent.normal.y);
vertex.tangent.normal.z = -vertex.tangent.normal.z;
}
#endif
vertex.fix_unit_scale(collada);
int index = 0;
//COLLADA_PRINT("vertex: "+vertex.vertex);
if (vertex_set.has(vertex)) {
index = vertex_set.find(vertex)->get().idx;
} else {
index = vertex_set.size();
vertex.idx = index;
vertex_set.insert(vertex);
}
/* if (!vertex_map.has(vertex_index))
vertex_map[vertex_index]=Set<int>();
vertex_map[vertex_index].insert(index); //should be outside..*/
//build triangles if needed
if (j == 0)
prev2[0] = index;
if (j >= 2) {
//insert indices in reverse order (collada uses CCW as frontface)
if (local_xform_mirror) {
indices_list.push_back(prev2[0]);
indices_list.push_back(prev2[1]);
indices_list.push_back(index);
} else {
indices_list.push_back(prev2[0]);
indices_list.push_back(index);
indices_list.push_back(prev2[1]);
}
}
prev2[1] = index;
_prim_ofs += p.vertex_size;
}
}
Vector<Collada::Vertex> vertex_array; //there we go, vertex array
vertex_array.resize(vertex_set.size());
for (Set<Collada::Vertex>::Element *F = vertex_set.front(); F; F = F->next()) {
vertex_array[F->get().idx] = F->get();
}
if (has_weights) {
//if skeleton, localize
Transform local_xform = p_local_xform;
for (int i = 0; i < vertex_array.size(); i++) {
vertex_array[i].vertex = local_xform.xform(vertex_array[i].vertex);
vertex_array[i].normal = local_xform.basis.xform(vertex_array[i].normal).normalized();
vertex_array[i].tangent.normal = local_xform.basis.xform(vertex_array[i].tangent.normal).normalized();
if (local_xform_mirror) {
//i shouldn't do this? wtf?
//vertex_array[i].normal*=-1.0;
//vertex_array[i].tangent.normal*=-1.0;
}
}
}
DVector<int> index_array;
index_array.resize(indices_list.size());
DVector<int>::Write index_arrayw = index_array.write();
int iidx = 0;
for (List<int>::Element *F = indices_list.front(); F; F = F->next()) {
index_arrayw[iidx++] = F->get();
}
index_arrayw = DVector<int>::Write();
/*****************/
/* MAKE SURFACES */
/*****************/
{
Ref<FixedMaterial> material;
//find material
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
{
if (p_material_map.has(p.material)) {
String target = p_material_map[p.material].target;
if (!material_cache.has(target)) {
Error err = _create_material(target);
if (!err)
material = material_cache[target];
} else
material = material_cache[target];
} else if (p.material != "") {
print_line("Warning, unreferenced material in geometry instance: " + p.material);
}
}
DVector<Vector3> final_vertex_array;
DVector<Vector3> final_normal_array;
DVector<float> final_tangent_array;
DVector<Color> final_color_array;
DVector<Vector3> final_uv_array;
DVector<Vector3> final_uv2_array;
DVector<float> final_bone_array;
DVector<float> final_weight_array;
uint32_t final_format = 0;
//create format
final_format = Mesh::ARRAY_FORMAT_VERTEX | Mesh::ARRAY_FORMAT_INDEX;
if (normal_src) {
final_format |= Mesh::ARRAY_FORMAT_NORMAL;
if (uv_src && binormal_src && tangent_src) {
final_format |= Mesh::ARRAY_FORMAT_TANGENT;
}
}
if (color_src)
final_format |= Mesh::ARRAY_FORMAT_COLOR;
if (uv_src)
final_format |= Mesh::ARRAY_FORMAT_TEX_UV;
if (uv2_src)
final_format |= Mesh::ARRAY_FORMAT_TEX_UV2;
if (has_weights) {
final_format |= Mesh::ARRAY_FORMAT_WEIGHTS;
final_format |= Mesh::ARRAY_FORMAT_BONES;
}
//set arrays
int vlen = vertex_array.size();
{ //vertices
DVector<Vector3> varray;
varray.resize(vertex_array.size());
DVector<Vector3>::Write varrayw = varray.write();
for (int k = 0; k < vlen; k++)
varrayw[k] = vertex_array[k].vertex;
varrayw = DVector<Vector3>::Write();
final_vertex_array = varray;
}
if (uv_src) { //compute uv first, may be needed for computing tangent/bionrmal
DVector<Vector3> uvarray;
uvarray.resize(vertex_array.size());
DVector<Vector3>::Write uvarrayw = uvarray.write();
for (int k = 0; k < vlen; k++) {
uvarrayw[k] = vertex_array[k].uv;
}
uvarrayw = DVector<Vector3>::Write();
final_uv_array = uvarray;
}
if (uv2_src) { //compute uv first, may be needed for computing tangent/bionrmal
DVector<Vector3> uv2array;
uv2array.resize(vertex_array.size());
DVector<Vector3>::Write uv2arrayw = uv2array.write();
for (int k = 0; k < vlen; k++) {
uv2arrayw[k] = vertex_array[k].uv2;
}
uv2arrayw = DVector<Vector3>::Write();
final_uv2_array = uv2array;
}
if (normal_src) {
DVector<Vector3> narray;
narray.resize(vertex_array.size());
DVector<Vector3>::Write narrayw = narray.write();
for (int k = 0; k < vlen; k++) {
narrayw[k] = vertex_array[k].normal;
}
narrayw = DVector<Vector3>::Write();
final_normal_array = narray;
//DVector<Vector3> altnaray;
//_generate_normals(index_array,final_vertex_array,altnaray);
//for(int i=0;i<altnaray.size();i++)
// print_line(rtos(altnaray[i].dot(final_normal_array[i])));
} else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
//generate normals (even if unused later)
_generate_normals(index_array, final_vertex_array, final_normal_array);
if (OS::get_singleton()->is_stdout_verbose())
print_line("Collada: Triangle mesh lacks normals, so normals were generated.");
final_format |= Mesh::ARRAY_FORMAT_NORMAL;
}
if (final_normal_array.size() && uv_src && binormal_src && tangent_src && !force_make_tangents) {
DVector<real_t> tarray;
tarray.resize(vertex_array.size() * 4);
DVector<real_t>::Write tarrayw = tarray.write();
for (int k = 0; k < vlen; k++) {
tarrayw[k * 4 + 0] = vertex_array[k].tangent.normal.x;
tarrayw[k * 4 + 1] = vertex_array[k].tangent.normal.y;
tarrayw[k * 4 + 2] = vertex_array[k].tangent.normal.z;
tarrayw[k * 4 + 3] = vertex_array[k].tangent.d;
}
tarrayw = DVector<real_t>::Write();
final_tangent_array = tarray;
} else if (final_normal_array.size() && primitive == Mesh::PRIMITIVE_TRIANGLES && final_uv_array.size() && (force_make_tangents || (material.is_valid() && material->get_texture(FixedMaterial::PARAM_NORMAL).is_valid()))) {
//if this uses triangles, there are uvs and the material is using a normalmap, generate tangents and binormals, because they WILL be needed
//generate binormals/tangents
_generate_tangents_and_binormals(index_array, final_vertex_array, final_uv_array, final_normal_array, final_tangent_array);
final_format |= Mesh::ARRAY_FORMAT_TANGENT;
if (OS::get_singleton()->is_stdout_verbose())
print_line("Collada: Triangle mesh lacks tangents (And normalmap was used), so tangents were generated.");
}
if (color_src) {
DVector<Color> colorarray;
colorarray.resize(vertex_array.size());
DVector<Color>::Write colorarrayw = colorarray.write();
for (int k = 0; k < vlen; k++) {
colorarrayw[k] = vertex_array[k].color;
}
colorarrayw = DVector<Color>::Write();
final_color_array = colorarray;
}
if (has_weights) {
DVector<float> weightarray;
DVector<float> bonearray;
weightarray.resize(vertex_array.size() * 4);
DVector<float>::Write weightarrayw = weightarray.write();
bonearray.resize(vertex_array.size() * 4);
DVector<float>::Write bonearrayw = bonearray.write();
for (int k = 0; k < vlen; k++) {
float sum = 0;
for (int l = 0; l < VS::ARRAY_WEIGHTS_SIZE; l++) {
if (l < vertex_array[k].weights.size()) {
weightarrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = vertex_array[k].weights[l].weight;
sum += weightarrayw[k * VS::ARRAY_WEIGHTS_SIZE + l];
bonearrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = vertex_array[k].weights[l].bone_idx;
//COLLADA_PRINT(itos(k)+": "+rtos(bonearrayw[k*VS::ARRAY_WEIGHTS_SIZE+l])+":"+rtos(weightarray[k*VS::ARRAY_WEIGHTS_SIZE+l]));
} else {
weightarrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = 0;
bonearrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = 0;
}
}
// if (sum<0.8)
// COLLADA_PRINT("ERROR SUMMING INDEX "+itos(k)+" had weights: "+itos(vertex_array[k].weights.size()));
}
weightarrayw = DVector<float>::Write();
bonearrayw = DVector<float>::Write();
final_weight_array = weightarray;
final_bone_array = bonearray;
}
////////////////////////////
// FINALLY CREATE SUFRACE //
////////////////////////////
Array d;
d.resize(VS::ARRAY_MAX);
d[Mesh::ARRAY_INDEX] = index_array;
d[Mesh::ARRAY_VERTEX] = final_vertex_array;
if (final_normal_array.size())
d[Mesh::ARRAY_NORMAL] = final_normal_array;
if (final_tangent_array.size())
d[Mesh::ARRAY_TANGENT] = final_tangent_array;
if (final_uv_array.size())
d[Mesh::ARRAY_TEX_UV] = final_uv_array;
if (final_uv2_array.size())
d[Mesh::ARRAY_TEX_UV2] = final_uv2_array;
if (final_color_array.size())
d[Mesh::ARRAY_COLOR] = final_color_array;
if (final_weight_array.size())
d[Mesh::ARRAY_WEIGHTS] = final_weight_array;
if (final_bone_array.size())
d[Mesh::ARRAY_BONES] = final_bone_array;
Array mr;
////////////////////////////
// THEN THE MORPH TARGETS //
////////////////////////////
#if 0
if (p_morph_data) {
//add morphie target
ERR_FAIL_COND_V( !p_morph_data->targets.has("MORPH_TARGET"), ERR_INVALID_DATA );
String mt = p_morph_data->targets["MORPH_TARGET"];
ERR_FAIL_COND_V( !p_morph_data->sources.has(mt), ERR_INVALID_DATA);
int morph_targets = p_morph_data->sources[mt].sarray.size();
mr.resize(morph_targets);
for(int j=0;j<morph_targets;j++) {
Array mrt;
mrt.resize(VS::ARRAY_MAX);
String target = p_morph_data->sources[mt].sarray[j];
ERR_FAIL_COND_V( !collada.state.mesh_data_map.has(target), ERR_INVALID_DATA );
String name = collada.state.mesh_data_map[target].name;
Collada::MeshData &md = collada.state.mesh_data_map[target];
// collada in itself supports morphing everything. However, the spec is unclear and no examples or exporters that
// morph anything but "POSITIONS" seem to exit. Because of this, normals and binormals/tangents have to be regenerated here,
// which may result in inaccurate (but most of the time good enough) results.
DVector<Vector3> vertices;
vertices.resize(vlen);
ERR_FAIL_COND_V( md.vertices.size() != 1, ERR_INVALID_DATA);
String vertex_src_id=md.vertices.front()->key();
ERR_FAIL_COND_V(!md.vertices[vertex_src_id].sources.has("POSITION"),ERR_INVALID_DATA);
String position_src_id = md.vertices[vertex_src_id].sources["POSITION"];
ERR_FAIL_COND_V(!md.sources.has(position_src_id),ERR_INVALID_DATA);
const Collada::MeshData::Source *m=&md.sources[position_src_id];
ERR_FAIL_COND_V( m->array.size() != vertex_src->array.size(), ERR_INVALID_DATA);
int stride=m->stride;
if (stride==0)
stride=3;
//read vertices from morph target
DVector<Vector3>::Write vertw = vertices.write();
for(int m_i=0;m_i<m->array.size()/stride;m_i++) {
int pos = m_i*stride;
Vector3 vtx( m->array[pos+0], m->array[pos+1], m->array[pos+2] );
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis==Vector3::AXIS_Z) {
SWAP( vtx.z, vtx.y );
vtx.z = -vtx.z;
}
#endif
Collada::Vertex vertex;
vertex.vertex=vtx;
vertex.fix_unit_scale(collada);
vtx=vertex.vertex;
vtx = p_local_xform.xform(vtx);
if (vertex_map.has(m_i)) { //vertex may no longer be here, don't bother converting
for (Set<int> ::Element *E=vertex_map[m_i].front() ; E; E=E->next() ) {
vertw[E->get()]=vtx;
}
}
}
//vertices are in place, now generate everything else
vertw = DVector<Vector3>::Write();
DVector<Vector3> normals;
DVector<float> tangents;
print_line("vertex source id: "+vertex_src_id);
if(md.vertices[vertex_src_id].sources.has("NORMAL")){
//has normals
normals.resize(vlen);
//std::cout << "has normals" << std::endl;
String normal_src_id = md.vertices[vertex_src_id].sources["NORMAL"];
//std::cout << "normals source: "<< normal_src_id.utf8().get_data() <<std::endl;
ERR_FAIL_COND_V(!md.sources.has(normal_src_id),ERR_INVALID_DATA);
const Collada::MeshData::Source *m=&md.sources[normal_src_id];
ERR_FAIL_COND_V( m->array.size() != vertex_src->array.size(), ERR_INVALID_DATA);
int stride=m->stride;
if (stride==0)
stride=3;
//read normals from morph target
DVector<Vector3>::Write vertw = normals.write();
for(int m_i=0;m_i<m->array.size()/stride;m_i++) {
int pos = m_i*stride;
Vector3 vtx( m->array[pos+0], m->array[pos+1], m->array[pos+2] );
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis==Vector3::AXIS_Z) {
SWAP( vtx.z, vtx.y );
vtx.z = -vtx.z;
}
#endif
Collada::Vertex vertex;
vertex.vertex=vtx;
vertex.fix_unit_scale(collada);
vtx=vertex.vertex;
vtx = p_local_xform.xform(vtx);
if (vertex_map.has(m_i)) { //vertex may no longer be here, don't bother converting
for (Set<int> ::Element *E=vertex_map[m_i].front() ; E; E=E->next() ) {
vertw[E->get()]=vtx;
}
}
}
print_line("using built-in normals");
}else{
print_line("generating normals");
_generate_normals(index_array,vertices,normals);//no normals
}
if (final_tangent_array.size() && final_uv_array.size()) {
_generate_tangents_and_binormals(index_array,vertices,final_uv_array,normals,tangents);
}
mrt[Mesh::ARRAY_VERTEX]=vertices;
mrt[Mesh::ARRAY_NORMAL]=normals;
if (tangents.size())
mrt[Mesh::ARRAY_TANGENT]=tangents;
if (final_uv_array.size())
mrt[Mesh::ARRAY_TEX_UV]=final_uv_array;
if (final_uv2_array.size())
mrt[Mesh::ARRAY_TEX_UV2]=final_uv2_array;
if (final_color_array.size())
mrt[Mesh::ARRAY_COLOR]=final_color_array;
mr[j]=mrt;
}
}
#endif
for (int mi = 0; mi < p_morph_meshes.size(); mi++) {
// print_line("want surface "+itos(mi)+" has "+itos(p_morph_meshes[mi]->get_surface_count()));
Array a = p_morph_meshes[mi]->surface_get_arrays(surface);
a[Mesh::ARRAY_BONES] = Variant();
a[Mesh::ARRAY_WEIGHTS] = Variant();
a[Mesh::ARRAY_INDEX] = Variant();
//a.resize(Mesh::ARRAY_MAX); //no need for index
mr.push_back(a);
}
p_mesh->add_surface(Mesh::PRIMITIVE_TRIANGLES, d, mr);
if (material.is_valid()) {
p_mesh->surface_set_material(surface, material);
p_mesh->surface_set_name(surface, material->get_name());
}
}
/*****************/
/* FIND MATERIAL */
/*****************/
surface++;
}
return OK;
}
Error ColladaImport::_create_resources(Collada::Node *p_node) {
if (p_node->type == Collada::Node::TYPE_GEOMETRY && node_map.has(p_node->id)) {
Spatial *node = node_map[p_node->id].node;
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry *>(p_node);
if (node->cast_to<Path>()) {
Path *path = node->cast_to<Path>();
String curve = ng->source;
if (curve_cache.has(ng->source)) {
path->set_curve(curve_cache[ng->source]);
} else {
Ref<Curve3D> c = memnew(Curve3D);
const Collada::CurveData &cd = collada.state.curve_data_map[ng->source];
ERR_FAIL_COND_V(!cd.control_vertices.has("POSITION"), ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.control_vertices.has("IN_TANGENT"), ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.control_vertices.has("OUT_TANGENT"), ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.control_vertices.has("INTERPOLATION"), ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["POSITION"]), ERR_INVALID_DATA);
const Collada::CurveData::Source &vertices = cd.sources[cd.control_vertices["POSITION"]];
ERR_FAIL_COND_V(vertices.stride != 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["IN_TANGENT"]), ERR_INVALID_DATA);
const Collada::CurveData::Source &in_tangents = cd.sources[cd.control_vertices["IN_TANGENT"]];
ERR_FAIL_COND_V(in_tangents.stride != 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["OUT_TANGENT"]), ERR_INVALID_DATA);
const Collada::CurveData::Source &out_tangents = cd.sources[cd.control_vertices["OUT_TANGENT"]];
ERR_FAIL_COND_V(out_tangents.stride != 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["INTERPOLATION"]), ERR_INVALID_DATA);
const Collada::CurveData::Source &interps = cd.sources[cd.control_vertices["INTERPOLATION"]];
ERR_FAIL_COND_V(interps.stride != 1, ERR_INVALID_DATA);
const Collada::CurveData::Source *tilts = NULL;
if (cd.control_vertices.has("TILT") && cd.sources.has(cd.control_vertices["TILT"]))
tilts = &cd.sources[cd.control_vertices["TILT"]];
if (tilts) {
print_line("FOUND TILTS!!!");
}
int pc = vertices.array.size() / 3;
for (int i = 0; i < pc; i++) {
Vector3 pos(vertices.array[i * 3 + 0], vertices.array[i * 3 + 1], vertices.array[i * 3 + 2]);
Vector3 in(in_tangents.array[i * 3 + 0], in_tangents.array[i * 3 + 1], in_tangents.array[i * 3 + 2]);
Vector3 out(out_tangents.array[i * 3 + 0], out_tangents.array[i * 3 + 1], out_tangents.array[i * 3 + 2]);
#ifndef NO_UP_AXIS_SWAP
if (collada.state.up_axis == Vector3::AXIS_Z) {
SWAP(pos.y, pos.z);
pos.z = -pos.z;
SWAP(in.y, in.z);
in.z = -in.z;
SWAP(out.y, out.z);
out.z = -out.z;
}
#endif
pos *= collada.state.unit_scale;
in *= collada.state.unit_scale;
out *= collada.state.unit_scale;
c->add_point(pos, in - pos, out - pos);
if (tilts)
c->set_point_tilt(i, tilts->array[i]);
}
curve_cache[ng->source] = c;
path->set_curve(c);
}
}
if (node->cast_to<MeshInstance>()) {
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry *>(p_node);
MeshInstance *mi = node->cast_to<MeshInstance>();
ERR_FAIL_COND_V(!mi, ERR_BUG);
Collada::SkinControllerData *skin = NULL;
Collada::MorphControllerData *morph = NULL;
String meshid;
Transform apply_xform;
Vector<int> bone_remap;
Vector<Ref<Mesh> > morphs;
print_line("mesh: " + String(mi->get_name()));
if (ng->controller) {
print_line("has controller");
String ngsource = ng->source;
if (collada.state.skin_controller_data_map.has(ngsource)) {
ERR_FAIL_COND_V(!collada.state.skin_controller_data_map.has(ngsource), ERR_INVALID_DATA);
skin = &collada.state.skin_controller_data_map[ngsource];
Vector<String> skeletons = ng->skeletons;
ERR_FAIL_COND_V(skeletons.empty(), ERR_INVALID_DATA);
String skname = skeletons[0];
if (!node_map.has(skname)) {
print_line("no node for skeleton " + skname);
}
ERR_FAIL_COND_V(!node_map.has(skname), ERR_INVALID_DATA);
NodeMap nmsk = node_map[skname];
Skeleton *sk = nmsk.node->cast_to<Skeleton>();
ERR_FAIL_COND_V(!sk, ERR_INVALID_DATA);
ERR_FAIL_COND_V(!skeleton_bone_map.has(sk), ERR_INVALID_DATA);
Map<String, int> &bone_remap_map = skeleton_bone_map[sk];
meshid = skin->base;
if (collada.state.morph_controller_data_map.has(meshid)) {
//it's a morph!!
morph = &collada.state.morph_controller_data_map[meshid];
ngsource = meshid;
meshid = morph->mesh;
} else {
ngsource = "";
}
if (apply_mesh_xform_to_vertices) {
apply_xform = collada.fix_transform(p_node->default_transform);
node->set_transform(Transform());
} else {
apply_xform = Transform();
}
Collada::SkinControllerData::Source *joint_src = NULL;
ERR_FAIL_COND_V(!skin->weights.sources.has("JOINT"), ERR_INVALID_DATA);
String joint_id = skin->weights.sources["JOINT"].source;
ERR_FAIL_COND_V(!skin->sources.has(joint_id), ERR_INVALID_DATA);
joint_src = &skin->sources[joint_id];
bone_remap.resize(joint_src->sarray.size());
for (int i = 0; i < bone_remap.size(); i++) {
String str = joint_src->sarray[i];
if (!bone_remap_map.has(str)) {
print_line("bone not found for remap: " + str);
print_line("in skeleton: " + skname);
}
ERR_FAIL_COND_V(!bone_remap_map.has(str), ERR_INVALID_DATA);
bone_remap[i] = bone_remap_map[str];
}
}
if (collada.state.morph_controller_data_map.has(ngsource)) {
print_line("is morph " + ngsource);
//it's a morph!!
morph = &collada.state.morph_controller_data_map[ngsource];
meshid = morph->mesh;
printf("KKmorph: %p\n", morph);
print_line("morph mshid: " + meshid);
Vector<String> targets;
morph->targets.has("MORPH_TARGET");
String target = morph->targets["MORPH_TARGET"];
bool valid = false;
if (morph->sources.has(target)) {
valid = true;
Vector<String> names = morph->sources[target].sarray;
for (int i = 0; i < names.size(); i++) {
String meshid = names[i];
if (collada.state.mesh_data_map.has(meshid)) {
Ref<Mesh> mesh = Ref<Mesh>(memnew(Mesh));
const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid];
Error err = _create_mesh_surfaces(false, mesh, ng->material_map, meshdata, apply_xform, bone_remap, skin, NULL);
ERR_FAIL_COND_V(err, err);
morphs.push_back(mesh);
} else {
valid = false;
}
}
}
if (!valid)
morphs.clear();
ngsource = "";
}
if (ngsource != "") {
ERR_EXPLAIN("Controller Instance Source '" + ngsource + "' is neither skin or morph!");
ERR_FAIL_V(ERR_INVALID_DATA);
}
} else {
meshid = ng->source;
}
Ref<Mesh> mesh;
if (mesh_cache.has(meshid)) {
mesh = mesh_cache[meshid];
} else {
if (collada.state.mesh_data_map.has(meshid)) {
//bleh, must ignore invalid
ERR_FAIL_COND_V(!collada.state.mesh_data_map.has(meshid), ERR_INVALID_DATA);
mesh = Ref<Mesh>(memnew(Mesh));
const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid];
mesh->set_name(meshdata.name);
Error err = _create_mesh_surfaces(morphs.size() == 0, mesh, ng->material_map, meshdata, apply_xform, bone_remap, skin, morph, morphs);
ERR_FAIL_COND_V(err, err);
mesh_cache[meshid] = mesh;
} else {
print_line("Warning, will not import geometry: " + meshid);
}
}
if (!mesh.is_null()) {
mi->set_mesh(mesh);
}
}
}
for (int i = 0; i < p_node->children.size(); i++) {
Error err = _create_resources(p_node->children[i]);
if (err)
return err;
}
return OK;
}
Error ColladaImport::load(const String &p_path, int p_flags, bool p_force_make_tangents) {
Error err = collada.load(p_path, p_flags);
ERR_FAIL_COND_V(err, err);
force_make_tangents = p_force_make_tangents;
ERR_FAIL_COND_V(!collada.state.visual_scene_map.has(collada.state.root_visual_scene), ERR_INVALID_DATA);
Collada::VisualScene &vs = collada.state.visual_scene_map[collada.state.root_visual_scene];
scene = memnew(Spatial); // root
//determine what's going on with the lights
for (int i = 0; i < vs.root_nodes.size(); i++) {
_pre_process_lights(vs.root_nodes[i]);
}
//import scene
for (int i = 0; i < vs.root_nodes.size(); i++) {
Error err = _create_scene_skeletons(vs.root_nodes[i]);
if (err != OK) {
memdelete(scene);
ERR_FAIL_COND_V(err, err);
}
}
for (int i = 0; i < vs.root_nodes.size(); i++) {
Error err = _create_scene(vs.root_nodes[i], scene);
if (err != OK) {
memdelete(scene);
ERR_FAIL_COND_V(err, err);
}
Error err2 = _create_resources(vs.root_nodes[i]);
if (err2 != OK) {
memdelete(scene);
ERR_FAIL_COND_V(err2, err2);
}
}
//optatively, set unit scale in the root
scene->set_transform(collada.get_root_transform());
return OK;
}
void ColladaImport::_fix_param_animation_tracks() {
for (Map<String, Collada::Node *>::Element *E = collada.state.scene_map.front(); E; E = E->next()) {
Collada::Node *n = E->get();
switch (n->type) {
case Collada::Node::TYPE_NODE: {
// ? do nothing
} break;
case Collada::Node::TYPE_JOINT: {
} break;
case Collada::Node::TYPE_SKELETON: {
} break;
case Collada::Node::TYPE_LIGHT: {
} break;
case Collada::Node::TYPE_CAMERA: {
} break;
case Collada::Node::TYPE_GEOMETRY: {
Collada::NodeGeometry *ng = static_cast<Collada::NodeGeometry *>(n);
// test source(s)
String source = ng->source;
while (source != "") {
if (collada.state.skin_controller_data_map.has(source)) {
const Collada::SkinControllerData &skin = collada.state.skin_controller_data_map[source];
//nothing to animate here i think
source = skin.base;
} else if (collada.state.morph_controller_data_map.has(source)) {
const Collada::MorphControllerData &morph = collada.state.morph_controller_data_map[source];
if (morph.targets.has("MORPH_WEIGHT") && morph.targets.has("MORPH_TARGET")) {
String weights = morph.targets["MORPH_WEIGHT"];
String targets = morph.targets["MORPH_TARGET"];
//fails here
if (morph.sources.has(targets) && morph.sources.has(weights)) {
const Collada::MorphControllerData::Source &weight_src = morph.sources[weights];
const Collada::MorphControllerData::Source &target_src = morph.sources[targets];
ERR_FAIL_COND(weight_src.array.size() != target_src.sarray.size());
for (int i = 0; i < weight_src.array.size(); i++) {
String track_name = weights + "(" + itos(i) + ")";
String mesh_name = target_src.sarray[i];
if (collada.state.mesh_name_map.has(mesh_name) && collada.state.referenced_tracks.has(track_name)) {
const Vector<int> &rt = collada.state.referenced_tracks[track_name];
for (int rti = 0; rti < rt.size(); rti++) {
Collada::AnimationTrack *at = &collada.state.animation_tracks[rt[rti]];
at->target = E->key();
at->param = "morph/" + collada.state.mesh_name_map[mesh_name];
at->property = true;
//at->param
}
}
}
}
}
source = morph.mesh;
} else {
source = ""; // for now nothing else supported
}
}
} break;
}
}
}
void ColladaImport::create_animations(bool p_make_tracks_in_all_bones, bool p_import_value_tracks) {
_fix_param_animation_tracks();
for (int i = 0; i < collada.state.animation_clips.size(); i++) {
for (int j = 0; j < collada.state.animation_clips[i].tracks.size(); j++)
tracks_in_clips.insert(collada.state.animation_clips[i].tracks[j]);
}
for (int i = 0; i < collada.state.animation_tracks.size(); i++) {
Collada::AnimationTrack &at = collada.state.animation_tracks[i];
//print_line("CHANNEL: "+at.target+" PARAM: "+at.param);
String node;
if (!node_map.has(at.target)) {
if (node_name_map.has(at.target)) {
node = node_name_map[at.target];
} else {
print_line("Coudlnt find node: " + at.target);
continue;
}
} else {
node = at.target;
}
if (at.property) {
valid_animated_properties.push_back(i);
} else {
node_map[node].anim_tracks.push_back(i);
valid_animated_nodes.insert(node);
}
}
create_animation(-1, p_make_tracks_in_all_bones, p_import_value_tracks);
//print_line("clipcount: "+itos(collada.state.animation_clips.size()));
for (int i = 0; i < collada.state.animation_clips.size(); i++)
create_animation(i, p_make_tracks_in_all_bones, p_import_value_tracks);
}
void ColladaImport::create_animation(int p_clip, bool p_make_tracks_in_all_bones, bool p_import_value_tracks) {
Ref<Animation> animation = Ref<Animation>(memnew(Animation));
if (p_clip == -1) {
//print_line("default");
animation->set_name("default");
} else {
//print_line("clip name: "+collada.state.animation_clips[p_clip].name);
animation->set_name(collada.state.animation_clips[p_clip].name);
}
for (Map<String, NodeMap>::Element *E = node_map.front(); E; E = E->next()) {
if (E->get().bone < 0)
continue;
bones_with_animation[E->key()] = false;
}
//store and validate tracks
if (p_clip == -1) {
//main anim
}
Set<int> track_filter;
if (p_clip == -1) {
for (int i = 0; i < collada.state.animation_clips.size(); i++) {
int tc = collada.state.animation_clips[i].tracks.size();
for (int j = 0; j < tc; j++) {
String n = collada.state.animation_clips[i].tracks[j];
if (collada.state.by_id_tracks.has(n)) {
const Vector<int> &ti = collada.state.by_id_tracks[n];
for (int k = 0; k < ti.size(); k++) {
track_filter.insert(ti[k]);
}
}
}
}
} else {
int tc = collada.state.animation_clips[p_clip].tracks.size();
for (int j = 0; j < tc; j++) {
String n = collada.state.animation_clips[p_clip].tracks[j];
if (collada.state.by_id_tracks.has(n)) {
const Vector<int> &ti = collada.state.by_id_tracks[n];
for (int k = 0; k < ti.size(); k++) {
track_filter.insert(ti[k]);
}
}
}
}
//animation->set_loop(true);
//create animation tracks
Vector<float> base_snapshots;
float f = 0;
float snapshot_interval = 1.0 / bake_fps; //should be customizable somewhere...
float anim_length = collada.state.animation_length;
if (p_clip >= 0 && collada.state.animation_clips[p_clip].end)
anim_length = collada.state.animation_clips[p_clip].end;
while (f < anim_length) {
base_snapshots.push_back(f);
f += snapshot_interval;
if (f >= anim_length) {
base_snapshots.push_back(anim_length);
}
}
//print_line("anim len: "+rtos(anim_length));
animation->set_length(anim_length);
bool tracks_found = false;
for (Set<String>::Element *E = valid_animated_nodes.front(); E; E = E->next()) {
// take snapshots
if (!collada.state.scene_map.has(E->get())) {
continue;
}
NodeMap &nm = node_map[E->get()];
String path = scene->get_path_to(nm.node);
if (nm.bone >= 0) {
Skeleton *sk = static_cast<Skeleton *>(nm.node);
String name = sk->get_bone_name(nm.bone);
path = path + ":" + name;
}
bool found_anim = false;
Collada::Node *cn = collada.state.scene_map[E->get()];
if (cn->ignore_anim) {
continue;
}
animation->add_track(Animation::TYPE_TRANSFORM);
int track = animation->get_track_count() - 1;
animation->track_set_path(track, path);
animation->track_set_imported(track, true); //helps merging later
Vector<float> snapshots = base_snapshots;
if (nm.anim_tracks.size() == 1) {
//use snapshot keys from anim track instead, because this was most likely exported baked
Collada::AnimationTrack &at = collada.state.animation_tracks[nm.anim_tracks.front()->get()];
snapshots.clear();
for (int i = 0; i < at.keys.size(); i++)
snapshots.push_back(at.keys[i].time);
}
for (int i = 0; i < snapshots.size(); i++) {
for (List<int>::Element *ET = nm.anim_tracks.front(); ET; ET = ET->next()) {
//apply tracks
if (p_clip == -1) {
if (track_filter.has(ET->get())) {
continue;
}
} else {
if (!track_filter.has(ET->get()))
continue;
}
found_anim = true;
Collada::AnimationTrack &at = collada.state.animation_tracks[ET->get()];
int xform_idx = -1;
for (int j = 0; j < cn->xform_list.size(); j++) {
if (cn->xform_list[j].id == at.param) {
xform_idx = j;
break;
}
}
if (xform_idx == -1) {
print_line("couldnt find matching node " + at.target + " xform for track " + at.param);
continue;
}
ERR_CONTINUE(xform_idx == -1);
Vector<float> data = at.get_value_at_time(snapshots[i]);
ERR_CONTINUE(data.empty());
Collada::Node::XForm &xf = cn->xform_list[xform_idx];
if (at.component == "ANGLE") {
ERR_CONTINUE(data.size() != 1);
ERR_CONTINUE(xf.op != Collada::Node::XForm::OP_ROTATE);
ERR_CONTINUE(xf.data.size() < 4);
xf.data[3] = data[0];
} else if (at.component == "X" || at.component == "Y" || at.component == "Z") {
int cn = at.component[0] - 'X';
ERR_CONTINUE(cn >= xf.data.size());
ERR_CONTINUE(data.size() > 1);
xf.data[cn] = data[0];
} else if (data.size() == xf.data.size()) {
xf.data = data;
} else {
if (data.size() != xf.data.size()) {
print_line("component " + at.component + " datasize " + itos(data.size()) + " xfdatasize " + itos(xf.data.size()));
}
ERR_CONTINUE(data.size() != xf.data.size());
}
}
Transform xform = cn->compute_transform(collada);
xform = collada.fix_transform(xform) * cn->post_transform;
if (nm.bone >= 0) {
//make bone transform relative to rest (in case of skeleton)
Skeleton *sk = nm.node->cast_to<Skeleton>();
if (sk) {
xform = sk->get_bone_rest(nm.bone).affine_inverse() * xform;
} else {
ERR_PRINT("INVALID SKELETON!!!!");
}
}
Quat q = xform.basis;
q.normalize();
Vector3 s = xform.basis.get_scale();
Vector3 l = xform.origin;
animation->transform_track_insert_key(track, snapshots[i], l, q, s);
}
if (nm.bone >= 0) {
if (found_anim)
bones_with_animation[E->get()] = true;
}
if (found_anim)
tracks_found = true;
else {
animation->remove_track(track);
}
}
if (p_make_tracks_in_all_bones) {
//some bones may lack animation, but since we don't store pose as a property, we must add keyframes!
for (Map<String, bool>::Element *E = bones_with_animation.front(); E; E = E->next()) {
if (E->get())
continue;
//print_line("BONE LACKS ANIM: "+E->key());
NodeMap &nm = node_map[E->key()];
String path = scene->get_path_to(nm.node);
ERR_CONTINUE(nm.bone < 0);
Skeleton *sk = static_cast<Skeleton *>(nm.node);
String name = sk->get_bone_name(nm.bone);
path = path + ":" + name;
Collada::Node *cn = collada.state.scene_map[E->key()];
if (cn->ignore_anim) {
print_line("warning, ignoring animation on node: " + path);
continue;
}
animation->add_track(Animation::TYPE_TRANSFORM);
int track = animation->get_track_count() - 1;
animation->track_set_path(track, path);
animation->track_set_imported(track, true); //helps merging later
Transform xform = cn->compute_transform(collada);
xform = collada.fix_transform(xform) * cn->post_transform;
xform = sk->get_bone_rest(nm.bone).affine_inverse() * xform;
Quat q = xform.basis;
q.normalize();
Vector3 s = xform.basis.get_scale();
Vector3 l = xform.origin;
animation->transform_track_insert_key(track, 0, l, q, s);
tracks_found = true;
}
}
if (p_import_value_tracks) {
for (int i = 0; i < valid_animated_properties.size(); i++) {
int ti = valid_animated_properties[i];
if (p_clip == -1) {
if (track_filter.has(ti))
continue;
} else {
if (!track_filter.has(ti))
continue;
}
Collada::AnimationTrack &at = collada.state.animation_tracks[ti];
// take snapshots
if (!collada.state.scene_map.has(at.target))
continue;
NodeMap &nm = node_map[at.target];
String path = scene->get_path_to(nm.node);
animation->add_track(Animation::TYPE_VALUE);
int track = animation->get_track_count() - 1;
path = path + ":" + at.param;
animation->track_set_path(track, path);
animation->track_set_imported(track, true); //helps merging later
for (int i = 0; i < at.keys.size(); i++) {
float time = at.keys[i].time;
Variant value;
Vector<float> data = at.keys[i].data;
if (data.size() == 1) {
//push a float
value = data[0];
} else if (data.size() == 16) {
//matrix
print_line("value keys for matrices not supported");
} else {
print_line("don't know what to do with this amount of value keys: " + itos(data.size()));
}
animation->track_insert_key(track, time, value);
}
tracks_found = true;
}
}
if (tracks_found) {
animations.push_back(animation);
}
}
/*********************************************************************************/
/*************************************** SCENE ***********************************/
/*********************************************************************************/
#define DEBUG_ANIMATION
uint32_t EditorSceneImporterCollada::get_import_flags() const {
return IMPORT_SCENE | IMPORT_ANIMATION;
}
void EditorSceneImporterCollada::get_extensions(List<String> *r_extensions) const {
r_extensions->push_back("dae");
}
Node *EditorSceneImporterCollada::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps, Error *r_err) {
ColladaImport state;
uint32_t flags = Collada::IMPORT_FLAG_SCENE;
if (p_flags & IMPORT_ANIMATION)
flags |= Collada::IMPORT_FLAG_ANIMATION;
state.bake_fps = p_bake_fps;
Error err = state.load(p_path, flags, p_flags & EditorSceneImporter::IMPORT_GENERATE_TANGENT_ARRAYS);
ERR_FAIL_COND_V(err != OK, NULL);
if (state.missing_textures.size()) {
//for(int i=0;i<state.missing_textures.size();i++) {
// EditorNode::add_io_error("Texture Not Found: "+state.missing_textures[i]);
// }
if (r_missing_deps) {
for (int i = 0; i < state.missing_textures.size(); i++) {
//EditorNode::add_io_error("Texture Not Found: "+state.missing_textures[i]);
r_missing_deps->push_back(state.missing_textures[i]);
}
}
}
if (p_flags & IMPORT_ANIMATION) {
state.create_animations(p_flags & IMPORT_ANIMATION_FORCE_ALL_TRACKS_IN_ALL_CLIPS, p_flags & EditorSceneImporter::IMPORT_ANIMATION_KEEP_VALUE_TRACKS);
AnimationPlayer *ap = memnew(AnimationPlayer);
for (int i = 0; i < state.animations.size(); i++) {
String name;
if (state.animations[i]->get_name() == "")
name = "default";
else
name = state.animations[i]->get_name();
if (p_flags & IMPORT_ANIMATION_DETECT_LOOP) {
if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) {
state.animations[i]->set_loop(true);
}
}
ap->add_animation(name, state.animations[i]);
}
state.scene->add_child(ap);
ap->set_owner(state.scene);
}
return state.scene;
}
Ref<Animation> EditorSceneImporterCollada::import_animation(const String &p_path, uint32_t p_flags) {
ColladaImport state;
Error err = state.load(p_path, Collada::IMPORT_FLAG_ANIMATION, p_flags & EditorSceneImporter::IMPORT_GENERATE_TANGENT_ARRAYS);
ERR_FAIL_COND_V(err != OK, RES());
state.create_animations(p_flags & EditorSceneImporter::IMPORT_ANIMATION_FORCE_ALL_TRACKS_IN_ALL_CLIPS, p_flags & EditorSceneImporter::IMPORT_ANIMATION_KEEP_VALUE_TRACKS);
if (state.scene)
memdelete(state.scene);
if (state.animations.size() == 0)
return Ref<Animation>();
Ref<Animation> anim = state.animations[0];
anim = state.animations[0];
print_line("Anim Load OK");
String base = p_path.basename().to_lower();
if (p_flags & IMPORT_ANIMATION_DETECT_LOOP) {
if (base.begins_with("loop") || base.ends_with("loop") || base.begins_with("cycle") || base.ends_with("cycle")) {
anim->set_loop(true);
}
}
return anim;
}
EditorSceneImporterCollada::EditorSceneImporterCollada() {
}