godot/doc/classes/Vector3i.xml
Hugo Locurcio b68dd2e189
Add an XML schema for documentation
This makes it easier to spot syntax errors when editing the
class reference. The schema is referenced locally so validation
can still work offline.

Each class XML's schema conformance is also checked on GitHub Actions.
2022-02-15 00:03:31 +01:00

308 lines
13 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector3i" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Vector used for 3D math using integer coordinates.
</brief_description>
<description>
3-element structure that can be used to represent positions in 3D space or any other pair of numeric values.
It uses integer coordinates and is therefore preferable to [Vector3] when exact precision is required.
[b]Note:[/b] In a boolean context, a Vector3i will evaluate to [code]false[/code] if it's equal to [code]Vector3i(0, 0, 0)[/code]. Otherwise, a Vector3i will always evaluate to [code]true[/code].
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
</tutorials>
<constructors>
<constructor name="Vector3i">
<return type="Vector3i" />
<description>
Constructs a default-initialized [Vector3i] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector3i">
<return type="Vector3i" />
<argument index="0" name="from" type="Vector3i" />
<description>
Constructs a [Vector3i] as a copy of the given [Vector3i].
</description>
</constructor>
<constructor name="Vector3i">
<return type="Vector3i" />
<argument index="0" name="from" type="Vector3" />
<description>
Constructs a new [Vector3i] from [Vector3]. The floating point coordinates will be truncated.
</description>
</constructor>
<constructor name="Vector3i">
<return type="Vector3i" />
<argument index="0" name="x" type="int" />
<argument index="1" name="y" type="int" />
<argument index="2" name="z" type="int" />
<description>
Returns a [Vector3i] with the given components.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector3i" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="clamp" qualifiers="const">
<return type="Vector3i" />
<argument index="0" name="min" type="Vector3i" />
<argument index="1" name="max" type="Vector3i" />
<description>
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="length" qualifiers="const">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="int" />
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector3i" />
<description>
Returns the vector with each component set to one or negative one, depending on the signs of the components.
</description>
</method>
</methods>
<members>
<member name="x" type="int" setter="" getter="" default="0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="int" setter="" getter="" default="0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
<member name="z" type="int" setter="" getter="" default="0">
The vector's Z component. Also accessible by using the index position [code][2][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Z" value="2">
Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector3i(0, 0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector3i(1, 1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="LEFT" value="Vector3i(-1, 0, 0)">
Left unit vector. Represents the local direction of left, and the global direction of west.
</constant>
<constant name="RIGHT" value="Vector3i(1, 0, 0)">
Right unit vector. Represents the local direction of right, and the global direction of east.
</constant>
<constant name="UP" value="Vector3i(0, 1, 0)">
Up unit vector.
</constant>
<constant name="DOWN" value="Vector3i(0, -1, 0)">
Down unit vector.
</constant>
<constant name="FORWARD" value="Vector3i(0, 0, -1)">
Forward unit vector. Represents the local direction of forward, and the global direction of north.
</constant>
<constant name="BACK" value="Vector3i(0, 0, 1)">
Back unit vector. Represents the local direction of back, and the global direction of south.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator !=">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Returns [code]true[/code] if the vectors are not equal.
</description>
</operator>
<operator name="operator %">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Gets the remainder of each component of the [Vector3i] with the components of the given [Vector3i]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector3i(10, -20, 30) % Vector3i(7, 8, 9)) # Prints "(3, -4, 3)"
[/codeblock]
</description>
</operator>
<operator name="operator %">
<return type="Vector3i" />
<argument index="0" name="right" type="int" />
<description>
Gets the remainder of each component of the [Vector3i] with the the given [int]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector2i(10, -20, 30) % 7) # Prints "(3, -6, 2)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Multiplies each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) * Vector3i(3, 4, 5)) # Prints "(30, 80, 150)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<argument index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector3i] by the given [float]. Returns a [Vector3].
[codeblock]
print(Vector3i(10, 15, 20) * 0.9) # Prints "(9, 13.5, 18)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3i" />
<argument index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector3i] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Adds each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) + Vector3i(3, 4, 5)) # Prints "(13, 24, 35)"
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Subtracts each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) - Vector3i(3, 4, 5)) # Prints "(7, 16, 25)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3i" />
<argument index="0" name="right" type="Vector3i" />
<description>
Divides each component of the [Vector3i] by the components of the given [Vector3i].
[codeblock]
print(Vector3i(10, 20, 30) / Vector3i(2, 5, 3)) # Prints "(5, 4, 10)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3" />
<argument index="0" name="right" type="float" />
<description>
Divides each component of the [Vector3i] by the given [float]. Returns a [Vector3].
[codeblock]
print(Vector3i(10, 20, 30) / 2.9) # Prints "(5, 10, 15)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3i" />
<argument index="0" name="right" type="int" />
<description>
Divides each component of the [Vector3i] by the given [int].
</description>
</operator>
<operator name="operator &lt;">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &lt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Returns [code]true[/code] if the vectors are equal.
</description>
</operator>
<operator name="operator &gt;">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &gt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector3i" />
<description>
Compares two [Vector3i] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator []">
<return type="int" />
<argument index="0" name="index" type="int" />
<description>
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], and [code]v[2][/code] is equivalent to [code]v.z[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector3i" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector3i" />
<description>
Returns the negative value of the [Vector3i]. This is the same as writing [code]Vector3i(-v.x, -v.y, -v.z)[/code]. This operation flips the direction of the vector while keeping the same magnitude.
</description>
</operator>
</operators>
</class>