a69cc9f13d
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.
`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
(cherry picked from commit 767e374dce
)
338 lines
12 KiB
C++
338 lines
12 KiB
C++
// Copyright 2009-2021 Intel Corporation
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
#pragma once
|
|
|
|
#include "geometry.h"
|
|
#include "buffer.h"
|
|
|
|
namespace embree
|
|
{
|
|
/*! Quad Mesh */
|
|
struct QuadMesh : public Geometry
|
|
{
|
|
/*! type of this geometry */
|
|
static const Geometry::GTypeMask geom_type = Geometry::MTY_QUAD_MESH;
|
|
|
|
/*! triangle indices */
|
|
struct Quad
|
|
{
|
|
uint32_t v[4];
|
|
|
|
/*! outputs triangle indices */
|
|
__forceinline friend embree_ostream operator<<(embree_ostream cout, const Quad& q) {
|
|
return cout << "Quad {" << q.v[0] << ", " << q.v[1] << ", " << q.v[2] << ", " << q.v[3] << " }";
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
/*! quad mesh construction */
|
|
QuadMesh (Device* device);
|
|
|
|
/* geometry interface */
|
|
public:
|
|
void setMask(unsigned mask);
|
|
void setNumTimeSteps (unsigned int numTimeSteps);
|
|
void setVertexAttributeCount (unsigned int N);
|
|
void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
|
|
void* getBuffer(RTCBufferType type, unsigned int slot);
|
|
void updateBuffer(RTCBufferType type, unsigned int slot);
|
|
void commit();
|
|
bool verify();
|
|
void interpolate(const RTCInterpolateArguments* const args);
|
|
void addElementsToCount (GeometryCounts & counts) const;
|
|
|
|
template<int N>
|
|
void interpolate_impl(const RTCInterpolateArguments* const args)
|
|
{
|
|
unsigned int primID = args->primID;
|
|
float u = args->u;
|
|
float v = args->v;
|
|
RTCBufferType bufferType = args->bufferType;
|
|
unsigned int bufferSlot = args->bufferSlot;
|
|
float* P = args->P;
|
|
float* dPdu = args->dPdu;
|
|
float* dPdv = args->dPdv;
|
|
float* ddPdudu = args->ddPdudu;
|
|
float* ddPdvdv = args->ddPdvdv;
|
|
float* ddPdudv = args->ddPdudv;
|
|
unsigned int valueCount = args->valueCount;
|
|
|
|
/* calculate base pointer and stride */
|
|
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
|
|
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
|
|
const char* src = nullptr;
|
|
size_t stride = 0;
|
|
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
|
|
src = vertexAttribs[bufferSlot].getPtr();
|
|
stride = vertexAttribs[bufferSlot].getStride();
|
|
} else {
|
|
src = vertices[bufferSlot].getPtr();
|
|
stride = vertices[bufferSlot].getStride();
|
|
}
|
|
|
|
for (unsigned int i=0; i<valueCount; i+=N)
|
|
{
|
|
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount));
|
|
const size_t ofs = i*sizeof(float);
|
|
const Quad& tri = quad(primID);
|
|
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[0]*stride+ofs]);
|
|
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[1]*stride+ofs]);
|
|
const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[2]*stride+ofs]);
|
|
const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[3]*stride+ofs]);
|
|
const vbool<N> left = u+v <= 1.0f;
|
|
const vfloat<N> Q0 = select(left,p0,p2);
|
|
const vfloat<N> Q1 = select(left,p1,p3);
|
|
const vfloat<N> Q2 = select(left,p3,p1);
|
|
const vfloat<N> U = select(left,u,vfloat<N>(1.0f)-u);
|
|
const vfloat<N> V = select(left,v,vfloat<N>(1.0f)-v);
|
|
const vfloat<N> W = 1.0f-U-V;
|
|
if (P) {
|
|
mem<vfloat<N>>::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2)));
|
|
}
|
|
if (dPdu) {
|
|
assert(dPdu); mem<vfloat<N>>::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1));
|
|
assert(dPdv); mem<vfloat<N>>::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2));
|
|
}
|
|
if (ddPdudu) {
|
|
assert(ddPdudu); mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero));
|
|
assert(ddPdvdv); mem<vfloat<N>>::storeu(valid,ddPdvdv+i,vfloat<N>(zero));
|
|
assert(ddPdudv); mem<vfloat<N>>::storeu(valid,ddPdudv+i,vfloat<N>(zero));
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
/*! returns number of vertices */
|
|
__forceinline size_t numVertices() const {
|
|
return vertices[0].size();
|
|
}
|
|
|
|
/*! returns i'th quad */
|
|
__forceinline const Quad& quad(size_t i) const {
|
|
return quads[i];
|
|
}
|
|
|
|
/*! returns i'th vertex of itime'th timestep */
|
|
__forceinline const Vec3fa vertex(size_t i) const {
|
|
return vertices0[i];
|
|
}
|
|
|
|
/*! returns i'th vertex of itime'th timestep */
|
|
__forceinline const char* vertexPtr(size_t i) const {
|
|
return vertices0.getPtr(i);
|
|
}
|
|
|
|
/*! returns i'th vertex of itime'th timestep */
|
|
__forceinline const Vec3fa vertex(size_t i, size_t itime) const {
|
|
return vertices[itime][i];
|
|
}
|
|
|
|
/*! returns i'th vertex of itime'th timestep */
|
|
__forceinline const char* vertexPtr(size_t i, size_t itime) const {
|
|
return vertices[itime].getPtr(i);
|
|
}
|
|
|
|
/*! calculates the bounds of the i'th quad */
|
|
__forceinline BBox3fa bounds(size_t i) const
|
|
{
|
|
const Quad& q = quad(i);
|
|
const Vec3fa v0 = vertex(q.v[0]);
|
|
const Vec3fa v1 = vertex(q.v[1]);
|
|
const Vec3fa v2 = vertex(q.v[2]);
|
|
const Vec3fa v3 = vertex(q.v[3]);
|
|
return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3));
|
|
}
|
|
|
|
/*! calculates the bounds of the i'th quad at the itime'th timestep */
|
|
__forceinline BBox3fa bounds(size_t i, size_t itime) const
|
|
{
|
|
const Quad& q = quad(i);
|
|
const Vec3fa v0 = vertex(q.v[0],itime);
|
|
const Vec3fa v1 = vertex(q.v[1],itime);
|
|
const Vec3fa v2 = vertex(q.v[2],itime);
|
|
const Vec3fa v3 = vertex(q.v[3],itime);
|
|
return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3));
|
|
}
|
|
|
|
/*! check if the i'th primitive is valid at the itime'th timestep */
|
|
__forceinline bool valid(size_t i, size_t itime) const {
|
|
return valid(i, make_range(itime, itime));
|
|
}
|
|
|
|
/*! check if the i'th primitive is valid between the specified time range */
|
|
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
|
|
{
|
|
const Quad& q = quad(i);
|
|
if (unlikely(q.v[0] >= numVertices())) return false;
|
|
if (unlikely(q.v[1] >= numVertices())) return false;
|
|
if (unlikely(q.v[2] >= numVertices())) return false;
|
|
if (unlikely(q.v[3] >= numVertices())) return false;
|
|
|
|
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
|
|
{
|
|
if (!isvalid(vertex(q.v[0],itime))) return false;
|
|
if (!isvalid(vertex(q.v[1],itime))) return false;
|
|
if (!isvalid(vertex(q.v[2],itime))) return false;
|
|
if (!isvalid(vertex(q.v[3],itime))) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*! calculates the linear bounds of the i'th quad at the itimeGlobal'th time segment */
|
|
__forceinline LBBox3fa linearBounds(size_t i, size_t itime) const {
|
|
return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1));
|
|
}
|
|
|
|
/*! calculates the build bounds of the i'th primitive, if it's valid */
|
|
__forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
|
|
{
|
|
const Quad& q = quad(i);
|
|
if (q.v[0] >= numVertices()) return false;
|
|
if (q.v[1] >= numVertices()) return false;
|
|
if (q.v[2] >= numVertices()) return false;
|
|
if (q.v[3] >= numVertices()) return false;
|
|
|
|
for (unsigned int t=0; t<numTimeSteps; t++)
|
|
{
|
|
const Vec3fa v0 = vertex(q.v[0],t);
|
|
const Vec3fa v1 = vertex(q.v[1],t);
|
|
const Vec3fa v2 = vertex(q.v[2],t);
|
|
const Vec3fa v3 = vertex(q.v[3],t);
|
|
|
|
if (unlikely(!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3)))
|
|
return false;
|
|
}
|
|
|
|
if (bbox)
|
|
*bbox = bounds(i);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
|
|
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
|
|
{
|
|
const Quad& q = quad(i);
|
|
if (unlikely(q.v[0] >= numVertices())) return false;
|
|
if (unlikely(q.v[1] >= numVertices())) return false;
|
|
if (unlikely(q.v[2] >= numVertices())) return false;
|
|
if (unlikely(q.v[3] >= numVertices())) return false;
|
|
|
|
assert(itime+1 < numTimeSteps);
|
|
const Vec3fa a0 = vertex(q.v[0],itime+0); if (unlikely(!isvalid(a0))) return false;
|
|
const Vec3fa a1 = vertex(q.v[1],itime+0); if (unlikely(!isvalid(a1))) return false;
|
|
const Vec3fa a2 = vertex(q.v[2],itime+0); if (unlikely(!isvalid(a2))) return false;
|
|
const Vec3fa a3 = vertex(q.v[3],itime+0); if (unlikely(!isvalid(a3))) return false;
|
|
const Vec3fa b0 = vertex(q.v[0],itime+1); if (unlikely(!isvalid(b0))) return false;
|
|
const Vec3fa b1 = vertex(q.v[1],itime+1); if (unlikely(!isvalid(b1))) return false;
|
|
const Vec3fa b2 = vertex(q.v[2],itime+1); if (unlikely(!isvalid(b2))) return false;
|
|
const Vec3fa b3 = vertex(q.v[3],itime+1); if (unlikely(!isvalid(b3))) return false;
|
|
|
|
/* use bounds of first time step in builder */
|
|
bbox = BBox3fa(min(a0,a1,a2,a3),max(a0,a1,a2,a3));
|
|
return true;
|
|
}
|
|
|
|
/*! calculates the linear bounds of the i'th primitive for the specified time range */
|
|
__forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
|
|
return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
|
|
}
|
|
|
|
/*! calculates the linear bounds of the i'th primitive for the specified time range */
|
|
__forceinline bool linearBounds(size_t i, const BBox1f& dt, LBBox3fa& bbox) const
|
|
{
|
|
if (!valid(i, timeSegmentRange(dt))) return false;
|
|
bbox = linearBounds(i, dt);
|
|
return true;
|
|
}
|
|
|
|
/*! get fast access to first vertex buffer */
|
|
__forceinline float * getCompactVertexArray () const {
|
|
return (float*) vertices0.getPtr();
|
|
}
|
|
|
|
/* gets version info of topology */
|
|
unsigned int getTopologyVersion() const {
|
|
return quads.modCounter;
|
|
}
|
|
|
|
/* returns true if topology changed */
|
|
bool topologyChanged(unsigned int otherVersion) const {
|
|
return quads.isModified(otherVersion); // || numPrimitivesChanged;
|
|
}
|
|
|
|
/* returns the projected area */
|
|
__forceinline float projectedPrimitiveArea(const size_t i) const {
|
|
const Quad& q = quad(i);
|
|
const Vec3fa v0 = vertex(q.v[0]);
|
|
const Vec3fa v1 = vertex(q.v[1]);
|
|
const Vec3fa v2 = vertex(q.v[2]);
|
|
const Vec3fa v3 = vertex(q.v[3]);
|
|
return areaProjectedTriangle(v0,v1,v3) +
|
|
areaProjectedTriangle(v1,v2,v3);
|
|
}
|
|
|
|
public:
|
|
BufferView<Quad> quads; //!< array of quads
|
|
BufferView<Vec3fa> vertices0; //!< fast access to first vertex buffer
|
|
vector<BufferView<Vec3fa>> vertices; //!< vertex array for each timestep
|
|
vector<BufferView<char>> vertexAttribs; //!< vertex attribute buffers
|
|
};
|
|
|
|
namespace isa
|
|
{
|
|
struct QuadMeshISA : public QuadMesh
|
|
{
|
|
QuadMeshISA (Device* device)
|
|
: QuadMesh(device) {}
|
|
|
|
PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
|
|
{
|
|
PrimInfo pinfo(empty);
|
|
for (size_t j=r.begin(); j<r.end(); j++)
|
|
{
|
|
BBox3fa bounds = empty;
|
|
if (!buildBounds(j,&bounds)) continue;
|
|
const PrimRef prim(bounds,geomID,unsigned(j));
|
|
pinfo.add_center2(prim);
|
|
prims[k++] = prim;
|
|
}
|
|
return pinfo;
|
|
}
|
|
|
|
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
|
|
{
|
|
PrimInfo pinfo(empty);
|
|
for (size_t j=r.begin(); j<r.end(); j++)
|
|
{
|
|
BBox3fa bounds = empty;
|
|
if (!buildBounds(j,itime,bounds)) continue;
|
|
const PrimRef prim(bounds,geomID,unsigned(j));
|
|
pinfo.add_center2(prim);
|
|
prims[k++] = prim;
|
|
}
|
|
return pinfo;
|
|
}
|
|
|
|
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
|
|
{
|
|
PrimInfoMB pinfo(empty);
|
|
for (size_t j=r.begin(); j<r.end(); j++)
|
|
{
|
|
if (!valid(j, timeSegmentRange(t0t1))) continue;
|
|
const PrimRefMB prim(linearBounds(j,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j));
|
|
pinfo.add_primref(prim);
|
|
prims[k++] = prim;
|
|
}
|
|
return pinfo;
|
|
}
|
|
};
|
|
}
|
|
|
|
DECLARE_ISA_FUNCTION(QuadMesh*, createQuadMesh, Device*);
|
|
}
|