godot/servers/audio/audio_rb_resampler.cpp

303 lines
8.5 KiB
C++

/*************************************************************************/
/* audio_rb_resampler.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "audio_rb_resampler.h"
int AudioRBResampler::get_channel_count() const {
if (!rb)
return 0;
return channels;
}
template <int C>
uint32_t AudioRBResampler::_resample(int32_t *p_dest, int p_todo, int32_t p_increment) {
uint32_t read = offset & MIX_FRAC_MASK;
for (int i = 0; i < p_todo; i++) {
offset = (offset + p_increment) & (((1 << (rb_bits + MIX_FRAC_BITS)) - 1));
read += p_increment;
uint32_t pos = offset >> MIX_FRAC_BITS;
uint32_t frac = offset & MIX_FRAC_MASK;
#ifndef FAST_AUDIO
ERR_FAIL_COND_V(pos >= rb_len, 0);
#endif
uint32_t pos_next = (pos + 1) & rb_mask;
//printf("rb pos %i\n",pos);
// since this is a template with a known compile time value (C), conditionals go away when compiling.
if (C == 1) {
int32_t v0 = rb[pos];
int32_t v0n = rb[pos_next];
#ifndef FAST_AUDIO
v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS;
#endif
v0 <<= 16;
p_dest[i] = v0;
}
if (C == 2) {
int32_t v0 = rb[(pos << 1) + 0];
int32_t v1 = rb[(pos << 1) + 1];
int32_t v0n = rb[(pos_next << 1) + 0];
int32_t v1n = rb[(pos_next << 1) + 1];
#ifndef FAST_AUDIO
v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS;
v1 += (v1n - v1) * (int32_t)frac >> MIX_FRAC_BITS;
#endif
v0 <<= 16;
v1 <<= 16;
p_dest[(i << 1) + 0] = v0;
p_dest[(i << 1) + 1] = v1;
}
if (C == 4) {
int32_t v0 = rb[(pos << 2) + 0];
int32_t v1 = rb[(pos << 2) + 1];
int32_t v2 = rb[(pos << 2) + 2];
int32_t v3 = rb[(pos << 2) + 3];
int32_t v0n = rb[(pos_next << 2) + 0];
int32_t v1n = rb[(pos_next << 2) + 1];
int32_t v2n = rb[(pos_next << 2) + 2];
int32_t v3n = rb[(pos_next << 2) + 3];
#ifndef FAST_AUDIO
v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS;
v1 += (v1n - v1) * (int32_t)frac >> MIX_FRAC_BITS;
v2 += (v2n - v2) * (int32_t)frac >> MIX_FRAC_BITS;
v3 += (v3n - v3) * (int32_t)frac >> MIX_FRAC_BITS;
#endif
v0 <<= 16;
v1 <<= 16;
v2 <<= 16;
v3 <<= 16;
p_dest[(i << 2) + 0] = v0;
p_dest[(i << 2) + 1] = v1;
p_dest[(i << 2) + 2] = v2;
p_dest[(i << 2) + 3] = v3;
}
if (C == 6) {
int32_t v0 = rb[(pos * 6) + 0];
int32_t v1 = rb[(pos * 6) + 1];
int32_t v2 = rb[(pos * 6) + 2];
int32_t v3 = rb[(pos * 6) + 3];
int32_t v4 = rb[(pos * 6) + 4];
int32_t v5 = rb[(pos * 6) + 5];
int32_t v0n = rb[(pos_next * 6) + 0];
int32_t v1n = rb[(pos_next * 6) + 1];
int32_t v2n = rb[(pos_next * 6) + 2];
int32_t v3n = rb[(pos_next * 6) + 3];
int32_t v4n = rb[(pos_next * 6) + 4];
int32_t v5n = rb[(pos_next * 6) + 5];
#ifndef FAST_AUDIO
v0 += (v0n - v0) * (int32_t)frac >> MIX_FRAC_BITS;
v1 += (v1n - v1) * (int32_t)frac >> MIX_FRAC_BITS;
v2 += (v2n - v2) * (int32_t)frac >> MIX_FRAC_BITS;
v3 += (v3n - v3) * (int32_t)frac >> MIX_FRAC_BITS;
v4 += (v4n - v4) * (int32_t)frac >> MIX_FRAC_BITS;
v5 += (v5n - v5) * (int32_t)frac >> MIX_FRAC_BITS;
#endif
v0 <<= 16;
v1 <<= 16;
v2 <<= 16;
v3 <<= 16;
v4 <<= 16;
v5 <<= 16;
p_dest[(i * 6) + 0] = v0;
p_dest[(i * 6) + 1] = v1;
p_dest[(i * 6) + 2] = v2;
p_dest[(i * 6) + 3] = v3;
p_dest[(i * 6) + 4] = v4;
p_dest[(i * 6) + 5] = v5;
}
}
return read >> MIX_FRAC_BITS; //rb_read_pos=offset>>MIX_FRAC_BITS;
}
bool AudioRBResampler::mix(int32_t *p_dest, int p_frames) {
if (!rb)
return false;
int write_pos_cache = rb_write_pos;
int32_t increment = (src_mix_rate * MIX_FRAC_LEN) / target_mix_rate;
int rb_todo;
if (write_pos_cache == rb_read_pos) {
return false; //out of buffer
} else if (rb_read_pos < write_pos_cache) {
rb_todo = write_pos_cache - rb_read_pos; //-1?
} else {
rb_todo = (rb_len - rb_read_pos) + write_pos_cache; //-1?
}
int todo = MIN(((int64_t(rb_todo) << MIX_FRAC_BITS) / increment) + 1, p_frames);
{
uint32_t read = 0;
switch (channels) {
case 1: read = _resample<1>(p_dest, todo, increment); break;
case 2: read = _resample<2>(p_dest, todo, increment); break;
case 4: read = _resample<4>(p_dest, todo, increment); break;
case 6: read = _resample<6>(p_dest, todo, increment); break;
}
//end of stream, fadeout
int remaining = p_frames - todo;
if (remaining && todo > 0) {
//print_line("fadeout");
for (int c = 0; c < channels; c++) {
for (int i = 0; i < todo; i++) {
int32_t samp = p_dest[i * channels + c] >> 8;
uint32_t mul = (todo - i) * 256 / todo;
//print_line("mul: "+itos(i)+" "+itos(mul));
p_dest[i * channels + c] = samp * mul;
}
}
}
//zero out what remains there to avoid glitches
for (int i = todo * channels; i < int(p_frames) * channels; i++) {
p_dest[i] = 0;
}
if (read > rb_todo)
read = rb_todo;
rb_read_pos = (rb_read_pos + read) & rb_mask;
}
return true;
}
Error AudioRBResampler::setup(int p_channels, int p_src_mix_rate, int p_target_mix_rate, int p_buffer_msec, int p_minbuff_needed) {
ERR_FAIL_COND_V(p_channels != 1 && p_channels != 2 && p_channels != 4 && p_channels != 6, ERR_INVALID_PARAMETER);
//float buffering_sec = int(GLOBAL_DEF("audio/stream_buffering_ms",500))/1000.0;
int desired_rb_bits = nearest_shift(MAX((p_buffer_msec / 1000.0) * p_src_mix_rate, p_minbuff_needed));
bool recreate = !rb;
if (rb && (uint32_t(desired_rb_bits) != rb_bits || channels != uint32_t(p_channels))) {
//recreate
memdelete_arr(rb);
memdelete_arr(read_buf);
recreate = true;
}
if (recreate) {
channels = p_channels;
rb_bits = desired_rb_bits;
rb_len = (1 << rb_bits);
rb_mask = rb_len - 1;
rb = memnew_arr(int16_t, rb_len * p_channels);
read_buf = memnew_arr(int16_t, rb_len * p_channels);
}
src_mix_rate = p_src_mix_rate;
target_mix_rate = p_target_mix_rate;
offset = 0;
rb_read_pos = 0;
rb_write_pos = 0;
//avoid maybe strange noises upon load
for (int i = 0; i < (rb_len * channels); i++) {
rb[i] = 0;
read_buf[i] = 0;
}
return OK;
}
void AudioRBResampler::clear() {
if (!rb)
return;
//should be stopped at this point but just in case
if (rb) {
memdelete_arr(rb);
memdelete_arr(read_buf);
}
rb = NULL;
offset = 0;
rb_read_pos = 0;
rb_write_pos = 0;
read_buf = NULL;
}
AudioRBResampler::AudioRBResampler() {
rb = NULL;
offset = 0;
read_buf = NULL;
rb_read_pos = 0;
rb_write_pos = 0;
rb_bits = 0;
rb_len = 0;
rb_mask = 0;
read_buff_len = 0;
channels = 0;
src_mix_rate = 0;
target_mix_rate = 0;
}
AudioRBResampler::~AudioRBResampler() {
if (rb) {
memdelete_arr(rb);
memdelete_arr(read_buf);
}
}