godot/thirdparty/embree/kernels/builders/heuristic_binning_array_unaligned.h
2021-01-14 18:02:07 +01:00

303 lines
13 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "heuristic_binning.h"
namespace embree
{
namespace isa
{
/*! Performs standard object binning */
template<typename PrimRef, size_t BINS>
struct UnalignedHeuristicArrayBinningSAH
{
typedef BinSplit<BINS> Split;
typedef BinInfoT<BINS,PrimRef,BBox3fa> Binner;
typedef range<size_t> Set;
__forceinline UnalignedHeuristicArrayBinningSAH () // FIXME: required?
: scene(nullptr), prims(nullptr) {}
/*! remember prim array */
__forceinline UnalignedHeuristicArrayBinningSAH (Scene* scene, PrimRef* prims)
: scene(scene), prims(prims) {}
const LinearSpace3fa computeAlignedSpace(const range<size_t>& set)
{
Vec3fa axis(0,0,1);
uint64_t bestGeomPrimID = -1;
/*! find curve with minimum ID that defines valid direction */
for (size_t i=set.begin(); i<set.end(); i++)
{
const unsigned int geomID = prims[i].geomID();
const unsigned int primID = prims[i].primID();
const uint64_t geomprimID = prims[i].ID64();
if (geomprimID >= bestGeomPrimID) continue;
const Vec3fa axis1 = scene->get(geomID)->computeDirection(primID);
if (sqr_length(axis1) > 1E-18f) {
axis = normalize(axis1);
bestGeomPrimID = geomprimID;
}
}
return frame(axis).transposed();
}
const PrimInfo computePrimInfo(const range<size_t>& set, const LinearSpace3fa& space)
{
auto computeBounds = [&](const range<size_t>& r) -> CentGeomBBox3fa
{
CentGeomBBox3fa bounds(empty);
for (size_t i=r.begin(); i<r.end(); i++) {
Geometry* mesh = scene->get(prims[i].geomID());
bounds.extend(mesh->vbounds(space,prims[i].primID()));
}
return bounds;
};
const CentGeomBBox3fa bounds = parallel_reduce(set.begin(), set.end(), size_t(1024), size_t(4096),
CentGeomBBox3fa(empty), computeBounds, CentGeomBBox3fa::merge2);
return PrimInfo(set.begin(),set.end(),bounds);
}
struct BinBoundsAndCenter
{
__forceinline BinBoundsAndCenter(Scene* scene, const LinearSpace3fa& space)
: scene(scene), space(space) {}
/*! returns center for binning */
__forceinline Vec3fa binCenter(const PrimRef& ref) const
{
Geometry* mesh = (Geometry*) scene->get(ref.geomID());
BBox3fa bounds = mesh->vbounds(space,ref.primID());
return embree::center2(bounds);
}
/*! returns bounds and centroid used for binning */
__forceinline void binBoundsAndCenter(const PrimRef& ref, BBox3fa& bounds_o, Vec3fa& center_o) const
{
Geometry* mesh = (Geometry*) scene->get(ref.geomID());
BBox3fa bounds = mesh->vbounds(space,ref.primID());
bounds_o = bounds;
center_o = embree::center2(bounds);
}
private:
Scene* scene;
const LinearSpace3fa space;
};
/*! finds the best split */
__forceinline const Split find(const PrimInfoRange& pinfo, const size_t logBlockSize, const LinearSpace3fa& space)
{
if (likely(pinfo.size() < 10000))
return find_template<false>(pinfo,logBlockSize,space);
else
return find_template<true>(pinfo,logBlockSize,space);
}
/*! finds the best split */
template<bool parallel>
const Split find_template(const PrimInfoRange& set, const size_t logBlockSize, const LinearSpace3fa& space)
{
Binner binner(empty);
const BinMapping<BINS> mapping(set);
BinBoundsAndCenter binBoundsAndCenter(scene,space);
bin_serial_or_parallel<parallel>(binner,prims,set.begin(),set.end(),size_t(4096),mapping,binBoundsAndCenter);
return binner.best(mapping,logBlockSize);
}
/*! array partitioning */
__forceinline void split(const Split& split, const LinearSpace3fa& space, const Set& set, PrimInfoRange& lset, PrimInfoRange& rset)
{
if (likely(set.size() < 10000))
split_template<false>(split,space,set,lset,rset);
else
split_template<true>(split,space,set,lset,rset);
}
/*! array partitioning */
template<bool parallel>
__forceinline void split_template(const Split& split, const LinearSpace3fa& space, const Set& set, PrimInfoRange& lset, PrimInfoRange& rset)
{
if (!split.valid()) {
deterministic_order(set);
return splitFallback(set,lset,rset);
}
const size_t begin = set.begin();
const size_t end = set.end();
CentGeomBBox3fa local_left(empty);
CentGeomBBox3fa local_right(empty);
const int splitPos = split.pos;
const int splitDim = split.dim;
BinBoundsAndCenter binBoundsAndCenter(scene,space);
size_t center = 0;
if (likely(set.size() < 10000))
center = serial_partitioning(prims,begin,end,local_left,local_right,
[&] (const PrimRef& ref) { return split.mapping.bin_unsafe(ref,binBoundsAndCenter)[splitDim] < splitPos; },
[] (CentGeomBBox3fa& pinfo,const PrimRef& ref) { pinfo.extend_center2(ref); });
else
center = parallel_partitioning(prims,begin,end,EmptyTy(),local_left,local_right,
[&] (const PrimRef& ref) { return split.mapping.bin_unsafe(ref,binBoundsAndCenter)[splitDim] < splitPos; },
[] (CentGeomBBox3fa& pinfo,const PrimRef& ref) { pinfo.extend_center2(ref); },
[] (CentGeomBBox3fa& pinfo0,const CentGeomBBox3fa& pinfo1) { pinfo0.merge(pinfo1); },
128);
new (&lset) PrimInfoRange(begin,center,local_left);
new (&rset) PrimInfoRange(center,end,local_right);
assert(area(lset.geomBounds) >= 0.0f);
assert(area(rset.geomBounds) >= 0.0f);
}
void deterministic_order(const range<size_t>& set)
{
/* required as parallel partition destroys original primitive order */
std::sort(&prims[set.begin()],&prims[set.end()]);
}
void splitFallback(const range<size_t>& set, PrimInfoRange& lset, PrimInfoRange& rset)
{
const size_t begin = set.begin();
const size_t end = set.end();
const size_t center = (begin + end)/2;
CentGeomBBox3fa left(empty);
for (size_t i=begin; i<center; i++)
left.extend_center2(prims[i]);
new (&lset) PrimInfoRange(begin,center,left);
CentGeomBBox3fa right(empty);
for (size_t i=center; i<end; i++)
right.extend_center2(prims[i]);
new (&rset) PrimInfoRange(center,end,right);
}
private:
Scene* const scene;
PrimRef* const prims;
};
/*! Performs standard object binning */
template<typename PrimRefMB, size_t BINS>
struct UnalignedHeuristicArrayBinningMB
{
typedef BinSplit<BINS> Split;
typedef typename PrimRefMB::BBox BBox;
typedef BinInfoT<BINS,PrimRefMB,BBox> ObjectBinner;
static const size_t PARALLEL_THRESHOLD = 3 * 1024;
static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;
UnalignedHeuristicArrayBinningMB(Scene* scene)
: scene(scene) {}
const LinearSpace3fa computeAlignedSpaceMB(Scene* scene, const SetMB& set)
{
Vec3fa axis0(0,0,1);
uint64_t bestGeomPrimID = -1;
/*! find curve with minimum ID that defines valid direction */
for (size_t i=set.begin(); i<set.end(); i++)
{
const PrimRefMB& prim = (*set.prims)[i];
const unsigned int geomID = prim.geomID();
const unsigned int primID = prim.primID();
const uint64_t geomprimID = prim.ID64();
if (geomprimID >= bestGeomPrimID) continue;
const Geometry* mesh = scene->get(geomID);
const range<int> tbounds = mesh->timeSegmentRange(set.time_range);
if (tbounds.size() == 0) continue;
const size_t t = (tbounds.begin()+tbounds.end())/2;
const Vec3fa axis1 = mesh->computeDirection(primID,t);
if (sqr_length(axis1) > 1E-18f) {
axis0 = normalize(axis1);
bestGeomPrimID = geomprimID;
}
}
return frame(axis0).transposed();
}
struct BinBoundsAndCenter
{
__forceinline BinBoundsAndCenter(Scene* scene, BBox1f time_range, const LinearSpace3fa& space)
: scene(scene), time_range(time_range), space(space) {}
/*! returns center for binning */
template<typename PrimRef>
__forceinline Vec3fa binCenter(const PrimRef& ref) const
{
Geometry* mesh = scene->get(ref.geomID());
LBBox3fa lbounds = mesh->vlinearBounds(space,ref.primID(),time_range);
return center2(lbounds.interpolate(0.5f));
}
/*! returns bounds and centroid used for binning */
__noinline void binBoundsAndCenter (const PrimRefMB& ref, BBox3fa& bounds_o, Vec3fa& center_o) const // __noinline is workaround for ICC16 bug under MacOSX
{
Geometry* mesh = scene->get(ref.geomID());
LBBox3fa lbounds = mesh->vlinearBounds(space,ref.primID(),time_range);
bounds_o = lbounds.interpolate(0.5f);
center_o = center2(bounds_o);
}
/*! returns bounds and centroid used for binning */
__noinline void binBoundsAndCenter (const PrimRefMB& ref, LBBox3fa& bounds_o, Vec3fa& center_o) const // __noinline is workaround for ICC16 bug under MacOSX
{
Geometry* mesh = scene->get(ref.geomID());
LBBox3fa lbounds = mesh->vlinearBounds(space,ref.primID(),time_range);
bounds_o = lbounds;
center_o = center2(lbounds.interpolate(0.5f));
}
private:
Scene* scene;
BBox1f time_range;
const LinearSpace3fa space;
};
/*! finds the best split */
const Split find(const SetMB& set, const size_t logBlockSize, const LinearSpace3fa& space)
{
BinBoundsAndCenter binBoundsAndCenter(scene,set.time_range,space);
ObjectBinner binner(empty);
const BinMapping<BINS> mapping(set.size(),set.centBounds);
bin_parallel(binner,set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,mapping,binBoundsAndCenter);
Split osplit = binner.best(mapping,logBlockSize);
osplit.sah *= set.time_range.size();
if (!osplit.valid()) osplit.data = Split::SPLIT_FALLBACK; // use fallback split
return osplit;
}
/*! array partitioning */
__forceinline void split(const Split& split, const LinearSpace3fa& space, const SetMB& set, SetMB& lset, SetMB& rset)
{
BinBoundsAndCenter binBoundsAndCenter(scene,set.time_range,space);
const size_t begin = set.begin();
const size_t end = set.end();
PrimInfoMB left = empty;
PrimInfoMB right = empty;
const vint4 vSplitPos(split.pos);
const vbool4 vSplitMask(1 << split.dim);
auto isLeft = [&] (const PrimRefMB &ref) { return any(((vint4)split.mapping.bin_unsafe(ref,binBoundsAndCenter) < vSplitPos) & vSplitMask); };
auto reduction = [] (PrimInfoMB& pinfo, const PrimRefMB& ref) { pinfo.add_primref(ref); };
auto reduction2 = [] (PrimInfoMB& pinfo0,const PrimInfoMB& pinfo1) { pinfo0.merge(pinfo1); };
size_t center = parallel_partitioning(set.prims->data(),begin,end,EmptyTy(),left,right,isLeft,reduction,reduction2,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD);
new (&lset) SetMB(left,set.prims,range<size_t>(begin,center),set.time_range);
new (&rset) SetMB(right,set.prims,range<size_t>(center,end ),set.time_range);
}
private:
Scene* scene;
};
}
}