godot/drivers/gles2/rasterizer_canvas_gles2.h

396 lines
15 KiB
C++

/*************************************************************************/
/* rasterizer_canvas_gles2.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RASTERIZERCANVASGLES2_H
#define RASTERIZERCANVASGLES2_H
#include "rasterizer_canvas_base_gles2.h"
class RasterizerSceneGLES2;
class RasterizerCanvasGLES2 : public RasterizerCanvasBaseGLES2 {
// used to determine whether we use hardware transform (none)
// software transform all verts, or software transform just a translate
// (no rotate or scale)
enum TransformMode {
TM_NONE,
TM_ALL,
TM_TRANSLATE,
};
// pod versions of vector and color and RID, need to be 32 bit for vertex format
struct BatchVector2 {
float x, y;
void set(const Vector2 &p_o) {
x = p_o.x;
y = p_o.y;
}
void to(Vector2 &r_o) const {
r_o.x = x;
r_o.y = y;
}
};
struct BatchColor {
float r, g, b, a;
void set(const Color &p_c) {
r = p_c.r;
g = p_c.g;
b = p_c.b;
a = p_c.a;
}
bool operator==(const BatchColor &p_c) const {
return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a);
}
bool operator!=(const BatchColor &p_c) const { return (*this == p_c) == false; }
bool equals(const Color &p_c) const {
return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a);
}
const float *get_data() const { return &r; }
String to_string() const;
};
struct BatchVertex {
// must be 32 bit pod
BatchVector2 pos;
BatchVector2 uv;
};
struct BatchVertexColored : public BatchVertex {
// must be 32 bit pod
BatchColor col;
};
struct Batch {
enum CommandType : uint32_t {
BT_DEFAULT,
BT_RECT,
};
CommandType type;
uint32_t first_command; // also item reference number
uint32_t num_commands;
uint32_t first_quad;
uint32_t batch_texture_id;
BatchColor color;
};
struct BatchTex {
enum TileMode : uint32_t {
TILE_OFF,
TILE_NORMAL,
TILE_FORCE_REPEAT,
};
RID RID_texture;
RID RID_normal;
TileMode tile_mode;
BatchVector2 tex_pixel_size;
};
// batch item may represent 1 or more items
struct BItemJoined {
uint32_t first_item_ref;
uint32_t num_item_refs;
Rect2 bounding_rect;
// note the z_index may only be correct for the first of the joined item references
// this has implications for light culling with z ranged lights.
int z_index;
// we are always splitting items with lots of commands,
// and items with unhandled primitives (default)
bool use_hardware_transform() const { return num_item_refs == 1; }
};
struct BItemRef {
Item *item;
Color final_modulate;
};
struct BatchData {
BatchData();
void reset_flush() {
batches.reset();
batch_textures.reset();
vertices.reset();
total_quads = 0;
total_color_changes = 0;
}
GLuint gl_vertex_buffer;
GLuint gl_index_buffer;
uint32_t max_quads;
uint32_t vertex_buffer_size_units;
uint32_t vertex_buffer_size_bytes;
uint32_t index_buffer_size_units;
uint32_t index_buffer_size_bytes;
RasterizerArrayGLES2<BatchVertex> vertices;
RasterizerArrayGLES2<BatchVertexColored> vertices_colored;
RasterizerArrayGLES2<Batch> batches;
RasterizerArrayGLES2<Batch> batches_temp; // used for translating to colored vertex batches
RasterizerArray_non_pod_GLES2<BatchTex> batch_textures; // the only reason this is non-POD is because of RIDs
bool use_colored_vertices;
RasterizerArrayGLES2<BItemJoined> items_joined;
RasterizerArrayGLES2<BItemRef> item_refs;
// counts
int total_quads;
// we keep a record of how many color changes caused new batches
// if the colors are causing an excessive number of batches, we switch
// to alternate batching method and add color to the vertex format.
int total_color_changes;
// measured in pixels, recalculated each frame
float scissor_threshold_area;
// diagnose this frame, every nTh frame when settings_diagnose_frame is on
bool diagnose_frame;
String frame_string;
uint32_t next_diagnose_tick;
uint64_t diagnose_frame_number;
// whether to join items across z_indices - this can interfere with z ranged lights,
// so has to be disabled in some circumstances
bool join_across_z_indices;
// global settings
bool settings_use_batching; // the current use_batching (affected by flash)
bool settings_use_batching_original_choice; // the choice entered in project settings
bool settings_flash_batching; // for regression testing, flash between non-batched and batched renderer
bool settings_diagnose_frame; // print out batches to help optimize / regression test
int settings_max_join_item_commands;
float settings_colored_vertex_format_threshold;
int settings_batch_buffer_num_verts;
bool settings_scissor_lights;
float settings_scissor_threshold; // 0.0 to 1.0
} bdata;
struct RenderItemState {
RenderItemState() { reset(); }
void reset();
Item *current_clip;
RasterizerStorageGLES2::Shader *shader_cache;
bool rebind_shader;
bool prev_use_skeleton;
int last_blend_mode;
RID canvas_last_material;
Color final_modulate;
// used for joining items only
BItemJoined *joined_item;
bool join_batch_break;
// 'item group' is data over a single call to canvas_render_items
int item_group_z;
Color item_group_modulate;
Light *item_group_light;
Transform2D item_group_base_transform;
} _render_item_state;
struct FillState {
void reset() {
// don't reset members that need to be preserved after flushing
// half way through a list of commands
curr_batch = 0;
batch_tex_id = -1;
texpixel_size = Vector2(1, 1);
}
Batch *curr_batch;
int batch_tex_id;
bool use_hardware_transform;
Vector2 texpixel_size;
Color final_modulate;
TransformMode transform_mode;
TransformMode orig_transform_mode;
// support for extra matrices
bool extra_matrix_sent; // whether sent on this item (in which case sofware transform can't be used untl end of item)
int transform_extra_command_number_p1; // plus one to allow fast checking against zero
Transform2D transform_combined; // final * extra
};
public:
virtual void canvas_render_items_begin(const Color &p_modulate, Light *p_light, const Transform2D &p_base_transform);
virtual void canvas_render_items_end();
virtual void canvas_render_items(Item *p_item_list, int p_z, const Color &p_modulate, Light *p_light, const Transform2D &p_base_transform);
virtual void canvas_begin();
private:
// legacy codepath .. to remove after testing
void _canvas_render_item(Item *p_ci, RenderItemState &r_ris);
_FORCE_INLINE_ void _canvas_item_render_commands(Item *p_item, Item *p_current_clip, bool &r_reclip, RasterizerStorageGLES2::Material *p_material);
// high level batch funcs
void canvas_render_items_implementation(Item *p_item_list, int p_z, const Color &p_modulate, Light *p_light, const Transform2D &p_base_transform);
void render_joined_item(const BItemJoined &p_bij, RenderItemState &r_ris);
void join_items(Item *p_item_list, int p_z);
bool try_join_item(Item *p_ci, RenderItemState &r_ris, bool &r_batch_break);
void render_joined_item_commands(const BItemJoined &p_bij, Item *p_current_clip, bool &r_reclip, RasterizerStorageGLES2::Material *p_material);
void render_batches(Item::Command *const *p_commands, Item *p_current_clip, bool &r_reclip, RasterizerStorageGLES2::Material *p_material);
bool prefill_joined_item(FillState &r_fill_state, int &r_command_start, Item *p_item, Item *p_current_clip, bool &r_reclip, RasterizerStorageGLES2::Material *p_material);
void flush_render_batches(Item *p_first_item, Item *p_current_clip, bool &r_reclip, RasterizerStorageGLES2::Material *p_material);
// low level batch funcs
void _batch_translate_to_colored();
_FORCE_INLINE_ int _batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match);
RasterizerStorageGLES2::Texture *_get_canvas_texture(const RID &p_texture) const;
void _batch_upload_buffers();
void _batch_render_rects(const Batch &p_batch, RasterizerStorageGLES2::Material *p_material);
BatchVertex *_batch_vertex_request_new() { return bdata.vertices.request(); }
Batch *_batch_request_new(bool p_blank = true);
bool _detect_batch_break(Item *p_ci);
void _software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const;
void _software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const;
TransformMode _find_transform_mode(const Transform2D &p_tr) const;
_FORCE_INLINE_ void _prefill_default_batch(FillState &r_fill_state, int p_command_num, const Item &p_item);
// light scissoring
bool _light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const;
bool _light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const;
void _calculate_scissor_threshold_area();
// no need to compile these in in release, they are unneeded outside the editor and only add to executable size
#ifdef DEBUG_ENABLED
void diagnose_batches(Item::Command *const *p_commands);
String get_command_type_string(const Item::Command &p_command) const;
#endif
public:
void initialize();
RasterizerCanvasGLES2();
};
//////////////////////////////////////////////////////////////
// Default batches will not occur in software transform only items
// EXCEPT IN THE CASE OF SINGLE RECTS (and this may well not occur, check the logic in prefill_join_item TYPE_RECT)
// but can occur where transform commands have been sent during hardware batch
_FORCE_INLINE_ void RasterizerCanvasGLES2::_prefill_default_batch(FillState &r_fill_state, int p_command_num, const Item &p_item) {
if (r_fill_state.curr_batch->type == Batch::BT_DEFAULT) {
// don't need to flush an extra transform command?
if (!r_fill_state.transform_extra_command_number_p1) {
// another default command, just add to the existing batch
r_fill_state.curr_batch->num_commands++;
} else {
#ifdef DEBUG_ENABLED
if (r_fill_state.transform_extra_command_number_p1 != p_command_num) {
WARN_PRINT_ONCE("_prefill_default_batch : transform_extra_command_number_p1 != p_command_num");
}
#endif
// we do have a pending extra transform command to flush
// either the extra transform is in the prior command, or not, in which case we need 2 batches
r_fill_state.curr_batch->num_commands += 2;
r_fill_state.transform_extra_command_number_p1 = 0; // mark as sent
r_fill_state.extra_matrix_sent = true;
// the original mode should always be hardware transform ..
// test this assumption
//CRASH_COND(r_fill_state.orig_transform_mode != TM_NONE);
r_fill_state.transform_mode = r_fill_state.orig_transform_mode;
// do we need to restore anything else?
}
} else {
// end of previous different type batch, so start new default batch
// first consider whether there is a dirty extra matrix to send
if (r_fill_state.transform_extra_command_number_p1) {
// get which command the extra is in, and blank all the records as it no longer is stored CPU side
int extra_command = r_fill_state.transform_extra_command_number_p1 - 1; // plus 1 based
r_fill_state.transform_extra_command_number_p1 = 0;
r_fill_state.extra_matrix_sent = true;
// send the extra to the GPU in a batch
r_fill_state.curr_batch = _batch_request_new();
r_fill_state.curr_batch->type = Batch::BT_DEFAULT;
r_fill_state.curr_batch->first_command = extra_command;
r_fill_state.curr_batch->num_commands = 1;
// revert to the original transform mode
// e.g. go back to NONE if we were in hardware transform mode
r_fill_state.transform_mode = r_fill_state.orig_transform_mode;
// reset the original transform if we are going back to software mode,
// because the extra is now done on the GPU...
// (any subsequent extras are sent directly to the GPU, no deferring)
if (r_fill_state.orig_transform_mode != TM_NONE) {
r_fill_state.transform_combined = p_item.final_transform;
}
// can possibly combine batch with the next one in some cases
// this is more efficient than having an extra batch especially for the extra
if ((extra_command + 1) == p_command_num) {
r_fill_state.curr_batch->num_commands = 2;
return;
}
}
// start default batch
r_fill_state.curr_batch = _batch_request_new();
r_fill_state.curr_batch->type = Batch::BT_DEFAULT;
r_fill_state.curr_batch->first_command = p_command_num;
r_fill_state.curr_batch->num_commands = 1;
}
}
_FORCE_INLINE_ void RasterizerCanvasGLES2::_software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const {
Vector2 vc(r_v.x, r_v.y);
vc = p_tr.xform(vc);
r_v.set(vc);
}
_FORCE_INLINE_ void RasterizerCanvasGLES2::_software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const {
r_v = p_tr.xform(r_v);
}
_FORCE_INLINE_ RasterizerCanvasGLES2::TransformMode RasterizerCanvasGLES2::_find_transform_mode(const Transform2D &p_tr) const {
// decided whether to do translate only for software transform
if ((p_tr.elements[0].x == 1.0) &&
(p_tr.elements[0].y == 0.0) &&
(p_tr.elements[1].x == 0.0) &&
(p_tr.elements[1].y == 1.0)) {
return TM_TRANSLATE;
}
return TM_ALL;
}
#endif // RASTERIZERCANVASGLES2_H