godot/doc/classes/Crypto.xml

208 lines
8.3 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Crypto" inherits="Reference" version="4.0">
<brief_description>
Access to advanced cryptographic functionalities.
</brief_description>
<description>
The Crypto class allows you to access some more advanced cryptographic functionalities in Godot.
For now, this includes generating cryptographically secure random bytes, RSA keys and self-signed X509 certificates generation, asymmetric key encryption/decryption, and signing/verification.
[codeblocks]
[gdscript]
extends Node
var crypto = Crypto.new()
var key = CryptoKey.new()
var cert = X509Certificate.new()
func _ready():
# Generate new RSA key.
key = crypto.generate_rsa(4096)
# Generate new self-signed certificate with the given key.
cert = crypto.generate_self_signed_certificate(key, "CN=mydomain.com,O=My Game Company,C=IT")
# Save key and certificate in the user folder.
key.save("user://generated.key")
cert.save("user://generated.crt")
# Encryption
var data = "Some data"
var encrypted = crypto.encrypt(key, data.to_utf8())
# Decryption
var decrypted = crypto.decrypt(key, encrypted)
# Signing
var signature = crypto.sign(HashingContext.HASH_SHA256, data.sha256_buffer(), key)
# Verifying
var verified = crypto.verify(HashingContext.HASH_SHA256, data.sha256_buffer(), signature, key)
# Checks
assert(verified)
assert(data.to_utf8() == decrypted)
[/gdscript]
[csharp]
using Godot;
using System;
using System.Diagnostics;
public class CryptoNode : Node
{
public Crypto Crypto = new Crypto();
public CryptoKey Key = new CryptoKey();
public X509Certificate Cert = new X509Certificate();
public override void _Ready()
{
// Generate new RSA key.
Key = Crypto.GenerateRsa(4096);
// Generate new self-signed certificate with the given key.
Cert = Crypto.GenerateSelfSignedCertificate(Key, "CN=mydomain.com,O=My Game Company,C=IT");
// Save key and certificate in the user folder.
Key.Save("user://generated.key");
Cert.Save("user://generated.crt");
// Encryption
string data = "Some data";
byte[] encrypted = Crypto.Encrypt(Key, data.ToUTF8());
// Decryption
byte[] decrypted = Crypto.Decrypt(Key, encrypted);
// Signing
byte[] signature = Crypto.Sign(HashingContext.HashType.Sha256, Data.SHA256Buffer(), Key);
// Verifying
bool verified = Crypto.Verify(HashingContext.HashType.Sha256, Data.SHA256Buffer(), signature, Key);
// Checks
Debug.Assert(verified);
Debug.Assert(data.ToUTF8() == decrypted);
}
}
[/csharp]
[/codeblocks]
[b]Note:[/b] Not available in HTML5 exports.
</description>
<tutorials>
</tutorials>
<methods>
<method name="constant_time_compare">
<return type="bool">
</return>
<argument index="0" name="trusted" type="PackedByteArray">
</argument>
<argument index="1" name="received" type="PackedByteArray">
</argument>
<description>
Compares two [PackedByteArray]s for equality without leaking timing information in order to prevent timing attacks.
See [url=https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy]this blog post[/url] for more information.
</description>
</method>
<method name="decrypt">
<return type="PackedByteArray">
</return>
<argument index="0" name="key" type="CryptoKey">
</argument>
<argument index="1" name="ciphertext" type="PackedByteArray">
</argument>
<description>
Decrypt the given [code]ciphertext[/code] with the provided private [code]key[/code].
[b]Note[/b]: The maximum size of accepted ciphertext is limited by the key size.
</description>
</method>
<method name="encrypt">
<return type="PackedByteArray">
</return>
<argument index="0" name="key" type="CryptoKey">
</argument>
<argument index="1" name="plaintext" type="PackedByteArray">
</argument>
<description>
Encrypt the given [code]plaintext[/code] with the provided public [code]key[/code].
[b]Note[/b]: The maximum size of accepted plaintext is limited by the key size.
</description>
</method>
<method name="generate_random_bytes">
<return type="PackedByteArray">
</return>
<argument index="0" name="size" type="int">
</argument>
<description>
Generates a [PackedByteArray] of cryptographically secure random bytes with given [code]size[/code].
</description>
</method>
<method name="generate_rsa">
<return type="CryptoKey">
</return>
<argument index="0" name="size" type="int">
</argument>
<description>
Generates an RSA [CryptoKey] that can be used for creating self-signed certificates and passed to [method StreamPeerSSL.accept_stream].
</description>
</method>
<method name="generate_self_signed_certificate">
<return type="X509Certificate">
</return>
<argument index="0" name="key" type="CryptoKey">
</argument>
<argument index="1" name="issuer_name" type="String" default="&quot;CN=myserver,O=myorganisation,C=IT&quot;">
</argument>
<argument index="2" name="not_before" type="String" default="&quot;20140101000000&quot;">
</argument>
<argument index="3" name="not_after" type="String" default="&quot;20340101000000&quot;">
</argument>
<description>
Generates a self-signed [X509Certificate] from the given [CryptoKey] and [code]issuer_name[/code]. The certificate validity will be defined by [code]not_before[/code] and [code]not_after[/code] (first valid date and last valid date). The [code]issuer_name[/code] must contain at least "CN=" (common name, i.e. the domain name), "O=" (organization, i.e. your company name), "C=" (country, i.e. 2 lettered ISO-3166 code of the country the organization is based in).
A small example to generate an RSA key and a X509 self-signed certificate.
[codeblocks]
[gdscript]
var crypto = Crypto.new()
# Generate 4096 bits RSA key.
var key = crypto.generate_rsa(4096)
# Generate self-signed certificate using the given key.
var cert = crypto.generate_self_signed_certificate(key, "CN=example.com,O=A Game Company,C=IT")
[/gdscript]
[csharp]
var crypto = new Crypto();
// Generate 4096 bits RSA key.
CryptoKey key = crypto.GenerateRsa(4096);
// Generate self-signed certificate using the given key.
X509Certificate cert = crypto.GenerateSelfSignedCertificate(key, "CN=mydomain.com,O=My Game Company,C=IT");
[/csharp]
[/codeblocks]
</description>
</method>
<method name="hmac_digest">
<return type="PackedByteArray">
</return>
<argument index="0" name="hash_type" type="int" enum="HashingContext.HashType">
</argument>
<argument index="1" name="key" type="PackedByteArray">
</argument>
<argument index="2" name="msg" type="PackedByteArray">
</argument>
<description>
Generates an [url=https://en.wikipedia.org/wiki/HMAC]HMAC[/url] digest of [code]msg[/code] using [code]key[/code]. The [code]hash_type[/code] parameter is the hashing algorithm that is used for the inner and outer hashes.
Currently, only [constant HashingContext.HASH_SHA256] and [constant HashingContext.HASH_SHA1] are supported.
</description>
</method>
<method name="sign">
<return type="PackedByteArray">
</return>
<argument index="0" name="hash_type" type="int" enum="HashingContext.HashType">
</argument>
<argument index="1" name="hash" type="PackedByteArray">
</argument>
<argument index="2" name="key" type="CryptoKey">
</argument>
<description>
Sign a given [code]hash[/code] of type [code]hash_type[/code] with the provided private [code]key[/code].
</description>
</method>
<method name="verify">
<return type="bool">
</return>
<argument index="0" name="hash_type" type="int" enum="HashingContext.HashType">
</argument>
<argument index="1" name="hash" type="PackedByteArray">
</argument>
<argument index="2" name="signature" type="PackedByteArray">
</argument>
<argument index="3" name="key" type="CryptoKey">
</argument>
<description>
Verify that a given [code]signature[/code] for [code]hash[/code] of type [code]hash_type[/code] against the provided public [code]key[/code].
</description>
</method>
</methods>
<constants>
</constants>
</class>