godot/scene/3d/gi_probe.cpp
2017-10-22 01:58:02 +07:00

1504 lines
45 KiB
C++

/*************************************************************************/
/* gi_probe.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "gi_probe.h"
#include "mesh_instance.h"
void GIProbeData::set_bounds(const Rect3 &p_bounds) {
VS::get_singleton()->gi_probe_set_bounds(probe, p_bounds);
}
Rect3 GIProbeData::get_bounds() const {
return VS::get_singleton()->gi_probe_get_bounds(probe);
}
void GIProbeData::set_cell_size(float p_size) {
VS::get_singleton()->gi_probe_set_cell_size(probe, p_size);
}
float GIProbeData::get_cell_size() const {
return VS::get_singleton()->gi_probe_get_cell_size(probe);
}
void GIProbeData::set_to_cell_xform(const Transform &p_xform) {
VS::get_singleton()->gi_probe_set_to_cell_xform(probe, p_xform);
}
Transform GIProbeData::get_to_cell_xform() const {
return VS::get_singleton()->gi_probe_get_to_cell_xform(probe);
}
void GIProbeData::set_dynamic_data(const PoolVector<int> &p_data) {
VS::get_singleton()->gi_probe_set_dynamic_data(probe, p_data);
}
PoolVector<int> GIProbeData::get_dynamic_data() const {
return VS::get_singleton()->gi_probe_get_dynamic_data(probe);
}
void GIProbeData::set_dynamic_range(int p_range) {
VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range);
}
void GIProbeData::set_energy(float p_range) {
VS::get_singleton()->gi_probe_set_energy(probe, p_range);
}
float GIProbeData::get_energy() const {
return VS::get_singleton()->gi_probe_get_energy(probe);
}
void GIProbeData::set_bias(float p_range) {
VS::get_singleton()->gi_probe_set_bias(probe, p_range);
}
float GIProbeData::get_bias() const {
return VS::get_singleton()->gi_probe_get_bias(probe);
}
void GIProbeData::set_normal_bias(float p_range) {
VS::get_singleton()->gi_probe_set_normal_bias(probe, p_range);
}
float GIProbeData::get_normal_bias() const {
return VS::get_singleton()->gi_probe_get_normal_bias(probe);
}
void GIProbeData::set_propagation(float p_range) {
VS::get_singleton()->gi_probe_set_propagation(probe, p_range);
}
float GIProbeData::get_propagation() const {
return VS::get_singleton()->gi_probe_get_propagation(probe);
}
void GIProbeData::set_interior(bool p_enable) {
VS::get_singleton()->gi_probe_set_interior(probe, p_enable);
}
bool GIProbeData::is_interior() const {
return VS::get_singleton()->gi_probe_is_interior(probe);
}
bool GIProbeData::is_compressed() const {
return VS::get_singleton()->gi_probe_is_compressed(probe);
}
void GIProbeData::set_compress(bool p_enable) {
VS::get_singleton()->gi_probe_set_compress(probe, p_enable);
}
int GIProbeData::get_dynamic_range() const {
return VS::get_singleton()->gi_probe_get_dynamic_range(probe);
}
RID GIProbeData::get_rid() const {
return probe;
}
void GIProbeData::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &GIProbeData::set_bounds);
ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds);
ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &GIProbeData::set_cell_size);
ClassDB::bind_method(D_METHOD("get_cell_size"), &GIProbeData::get_cell_size);
ClassDB::bind_method(D_METHOD("set_to_cell_xform", "to_cell_xform"), &GIProbeData::set_to_cell_xform);
ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform);
ClassDB::bind_method(D_METHOD("set_dynamic_data", "dynamic_data"), &GIProbeData::set_dynamic_data);
ClassDB::bind_method(D_METHOD("get_dynamic_data"), &GIProbeData::get_dynamic_data);
ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range);
ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range);
ClassDB::bind_method(D_METHOD("set_energy", "energy"), &GIProbeData::set_energy);
ClassDB::bind_method(D_METHOD("get_energy"), &GIProbeData::get_energy);
ClassDB::bind_method(D_METHOD("set_bias", "bias"), &GIProbeData::set_bias);
ClassDB::bind_method(D_METHOD("get_bias"), &GIProbeData::get_bias);
ClassDB::bind_method(D_METHOD("set_normal_bias", "bias"), &GIProbeData::set_normal_bias);
ClassDB::bind_method(D_METHOD("get_normal_bias"), &GIProbeData::get_normal_bias);
ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation);
ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation);
ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior);
ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior);
ClassDB::bind_method(D_METHOD("set_compress", "compress"), &GIProbeData::set_compress);
ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbeData::is_compressed);
ADD_PROPERTY(PropertyInfo(Variant::RECT3, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "cell_size", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_size", "get_cell_size");
ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "to_cell_xform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_to_cell_xform", "get_to_cell_xform");
ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY, "dynamic_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_data", "get_dynamic_data");
ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_range", "get_dynamic_range");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_energy", "get_energy");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bias", "get_bias");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_normal_bias", "get_normal_bias");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_propagation", "get_propagation");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_interior", "is_interior");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_compress", "is_compressed");
}
GIProbeData::GIProbeData() {
probe = VS::get_singleton()->gi_probe_create();
}
GIProbeData::~GIProbeData() {
VS::get_singleton()->free(probe);
}
//////////////////////
//////////////////////
void GIProbe::set_probe_data(const Ref<GIProbeData> &p_data) {
if (p_data.is_valid()) {
VS::get_singleton()->instance_set_base(get_instance(), p_data->get_rid());
} else {
VS::get_singleton()->instance_set_base(get_instance(), RID());
}
probe_data = p_data;
}
Ref<GIProbeData> GIProbe::get_probe_data() const {
return probe_data;
}
void GIProbe::set_subdiv(Subdiv p_subdiv) {
ERR_FAIL_INDEX(p_subdiv, SUBDIV_MAX);
subdiv = p_subdiv;
update_gizmo();
}
GIProbe::Subdiv GIProbe::get_subdiv() const {
return subdiv;
}
void GIProbe::set_extents(const Vector3 &p_extents) {
extents = p_extents;
update_gizmo();
}
Vector3 GIProbe::get_extents() const {
return extents;
}
void GIProbe::set_dynamic_range(int p_dynamic_range) {
dynamic_range = p_dynamic_range;
}
int GIProbe::get_dynamic_range() const {
return dynamic_range;
}
void GIProbe::set_energy(float p_energy) {
energy = p_energy;
if (probe_data.is_valid()) {
probe_data->set_energy(energy);
}
}
float GIProbe::get_energy() const {
return energy;
}
void GIProbe::set_bias(float p_bias) {
bias = p_bias;
if (probe_data.is_valid()) {
probe_data->set_bias(bias);
}
}
float GIProbe::get_bias() const {
return bias;
}
void GIProbe::set_normal_bias(float p_normal_bias) {
normal_bias = p_normal_bias;
if (probe_data.is_valid()) {
probe_data->set_normal_bias(normal_bias);
}
}
float GIProbe::get_normal_bias() const {
return normal_bias;
}
void GIProbe::set_propagation(float p_propagation) {
propagation = p_propagation;
if (probe_data.is_valid()) {
probe_data->set_propagation(propagation);
}
}
float GIProbe::get_propagation() const {
return propagation;
}
void GIProbe::set_interior(bool p_enable) {
interior = p_enable;
if (probe_data.is_valid()) {
probe_data->set_interior(p_enable);
}
}
bool GIProbe::is_interior() const {
return interior;
}
void GIProbe::set_compress(bool p_enable) {
compress = p_enable;
if (probe_data.is_valid()) {
probe_data->set_compress(p_enable);
}
}
bool GIProbe::is_compressed() const {
return compress;
}
#include "math.h"
#define FINDMINMAX(x0, x1, x2, min, max) \
min = max = x0; \
if (x1 < min) min = x1; \
if (x1 > max) max = x1; \
if (x2 < min) min = x2; \
if (x2 > max) max = x2;
static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
int q;
Vector3 vmin, vmax;
for (q = 0; q <= 2; q++) {
if (normal[q] > 0.0f) {
vmin[q] = -maxbox[q];
vmax[q] = maxbox[q];
} else {
vmin[q] = maxbox[q];
vmax[q] = -maxbox[q];
}
}
if (normal.dot(vmin) + d > 0.0f) return false;
if (normal.dot(vmax) + d >= 0.0f) return true;
return false;
}
/*======================== X-tests ========================*/
#define AXISTEST_X01(a, b, fa, fb) \
p0 = a * v0.y - b * v0.z; \
p2 = a * v2.y - b * v2.z; \
if (p0 < p2) { \
min = p0; \
max = p2; \
} else { \
min = p2; \
max = p0; \
} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if (min > rad || max < -rad) return false;
#define AXISTEST_X2(a, b, fa, fb) \
p0 = a * v0.y - b * v0.z; \
p1 = a * v1.y - b * v1.z; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if (min > rad || max < -rad) return false;
/*======================== Y-tests ========================*/
#define AXISTEST_Y02(a, b, fa, fb) \
p0 = -a * v0.x + b * v0.z; \
p2 = -a * v2.x + b * v2.z; \
if (p0 < p2) { \
min = p0; \
max = p2; \
} else { \
min = p2; \
max = p0; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if (min > rad || max < -rad) return false;
#define AXISTEST_Y1(a, b, fa, fb) \
p0 = -a * v0.x + b * v0.z; \
p1 = -a * v1.x + b * v1.z; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if (min > rad || max < -rad) return false;
/*======================== Z-tests ========================*/
#define AXISTEST_Z12(a, b, fa, fb) \
p1 = a * v1.x - b * v1.y; \
p2 = a * v2.x - b * v2.y; \
if (p2 < p1) { \
min = p2; \
max = p1; \
} else { \
min = p1; \
max = p2; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if (min > rad || max < -rad) return false;
#define AXISTEST_Z0(a, b, fa, fb) \
p0 = a * v0.x - b * v0.y; \
p1 = a * v1.x - b * v1.y; \
if (p0 < p1) { \
min = p0; \
max = p1; \
} else { \
min = p1; \
max = p0; \
} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if (min > rad || max < -rad) return false;
static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
/* use separating axis theorem to test overlap between triangle and box */
/* need to test for overlap in these directions: */
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
/* we do not even need to test these) */
/* 2) normal of the triangle */
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
/* this gives 3x3=9 more tests */
Vector3 v0, v1, v2;
float min, max, d, p0, p1, p2, rad, fex, fey, fez;
Vector3 normal, e0, e1, e2;
/* This is the fastest branch on Sun */
/* move everything so that the boxcenter is in (0,0,0) */
v0 = triverts[0] - boxcenter;
v1 = triverts[1] - boxcenter;
v2 = triverts[2] - boxcenter;
/* compute triangle edges */
e0 = v1 - v0; /* tri edge 0 */
e1 = v2 - v1; /* tri edge 1 */
e2 = v0 - v2; /* tri edge 2 */
/* Bullet 3: */
/* test the 9 tests first (this was faster) */
fex = Math::abs(e0.x);
fey = Math::abs(e0.y);
fez = Math::abs(e0.z);
AXISTEST_X01(e0.z, e0.y, fez, fey);
AXISTEST_Y02(e0.z, e0.x, fez, fex);
AXISTEST_Z12(e0.y, e0.x, fey, fex);
fex = Math::abs(e1.x);
fey = Math::abs(e1.y);
fez = Math::abs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z0(e1.y, e1.x, fey, fex);
fex = Math::abs(e2.x);
fey = Math::abs(e2.y);
fez = Math::abs(e2.z);
AXISTEST_X2(e2.z, e2.y, fez, fey);
AXISTEST_Y1(e2.z, e2.x, fez, fex);
AXISTEST_Z12(e2.y, e2.x, fey, fex);
/* Bullet 1: */
/* first test overlap in the {x,y,z}-directions */
/* find min, max of the triangle each direction, and test for overlap in */
/* that direction -- this is equivalent to testing a minimal AABB around */
/* the triangle against the AABB */
/* test in X-direction */
FINDMINMAX(v0.x, v1.x, v2.x, min, max);
if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
/* test in Y-direction */
FINDMINMAX(v0.y, v1.y, v2.y, min, max);
if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
/* test in Z-direction */
FINDMINMAX(v0.z, v1.z, v2.z, min, max);
if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
/* Bullet 2: */
/* test if the box intersects the plane of the triangle */
/* compute plane equation of triangle: normal*x+d=0 */
normal = e0.cross(e1);
d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
if (!planeBoxOverlap(normal, d, boxhalfsize)) return false;
return true; /* box and triangle overlaps */
}
static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) {
if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2)
return p_uv[0];
if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2)
return p_uv[1];
if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2)
return p_uv[2];
Vector3 v0 = p_vtx[1] - p_vtx[0];
Vector3 v1 = p_vtx[2] - p_vtx[0];
Vector3 v2 = p_pos - p_vtx[0];
float d00 = v0.dot(v0);
float d01 = v0.dot(v1);
float d11 = v1.dot(v1);
float d20 = v2.dot(v0);
float d21 = v2.dot(v1);
float denom = (d00 * d11 - d01 * d01);
if (denom == 0)
return p_uv[0];
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
}
void GIProbe::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const Rect3 &p_aabb, Baker *p_baker) {
if (p_level == p_baker->cell_subdiv - 1) {
//plot the face by guessing it's albedo and emission value
//find best axis to map to, for scanning values
int closest_axis = 0;
float closest_dot = 0;
Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
Vector3 normal = plane.normal;
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
float dot = ABS(normal.dot(axis));
if (i == 0 || dot > closest_dot) {
closest_axis = i;
closest_dot = dot;
}
}
Vector3 axis;
axis[closest_axis] = 1.0;
Vector3 t1;
t1[(closest_axis + 1) % 3] = 1.0;
Vector3 t2;
t2[(closest_axis + 2) % 3] = 1.0;
t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
Color albedo_accum;
Color emission_accum;
Vector3 normal_accum;
float alpha = 0.0;
//map to a grid average in the best axis for this face
for (int i = 0; i < color_scan_cell_width; i++) {
Vector3 ofs_i = float(i) * t1;
for (int j = 0; j < color_scan_cell_width; j++) {
Vector3 ofs_j = float(j) * t2;
Vector3 from = p_aabb.position + ofs_i + ofs_j;
Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
Vector3 half = (to - from) * 0.5;
//is in this cell?
if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
continue; //face does not span this cell
}
//go from -size to +size*2 to avoid skipping collisions
Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
if (normal.dot(ray_from - ray_to) < 0) {
SWAP(ray_from, ray_to);
}
Vector3 intersection;
if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
intersection = plane.project(ray_from);
} else {
intersection = plane.project(ray_to);
}
}
intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
Vector2 uv = get_uv(intersection, p_vtx, p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
int ofs = uv_y * bake_texture_size + uv_x;
albedo_accum.r += p_material.albedo[ofs].r;
albedo_accum.g += p_material.albedo[ofs].g;
albedo_accum.b += p_material.albedo[ofs].b;
albedo_accum.a += p_material.albedo[ofs].a;
emission_accum.r += p_material.emission[ofs].r;
emission_accum.g += p_material.emission[ofs].g;
emission_accum.b += p_material.emission[ofs].b;
normal_accum += normal;
alpha += 1.0;
}
}
if (alpha == 0) {
//could not in any way get texture information.. so use closest point to center
Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
Vector2 uv = get_uv(inters, p_vtx, p_uv);
int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
int ofs = uv_y * bake_texture_size + uv_x;
alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
albedo_accum.r = p_material.albedo[ofs].r * alpha;
albedo_accum.g = p_material.albedo[ofs].g * alpha;
albedo_accum.b = p_material.albedo[ofs].b * alpha;
albedo_accum.a = p_material.albedo[ofs].a * alpha;
emission_accum.r = p_material.emission[ofs].r * alpha;
emission_accum.g = p_material.emission[ofs].g * alpha;
emission_accum.b = p_material.emission[ofs].b * alpha;
normal_accum *= alpha;
} else {
float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
alpha *= accdiv;
albedo_accum.r *= accdiv;
albedo_accum.g *= accdiv;
albedo_accum.b *= accdiv;
albedo_accum.a *= accdiv;
emission_accum.r *= accdiv;
emission_accum.g *= accdiv;
emission_accum.b *= accdiv;
normal_accum *= accdiv;
}
//put this temporarily here, corrected in a later step
p_baker->bake_cells[p_idx].albedo[0] += albedo_accum.r;
p_baker->bake_cells[p_idx].albedo[1] += albedo_accum.g;
p_baker->bake_cells[p_idx].albedo[2] += albedo_accum.b;
p_baker->bake_cells[p_idx].emission[0] += emission_accum.r;
p_baker->bake_cells[p_idx].emission[1] += emission_accum.g;
p_baker->bake_cells[p_idx].emission[2] += emission_accum.b;
p_baker->bake_cells[p_idx].normal[0] += normal_accum.x;
p_baker->bake_cells[p_idx].normal[1] += normal_accum.y;
p_baker->bake_cells[p_idx].normal[2] += normal_accum.z;
p_baker->bake_cells[p_idx].alpha += alpha;
} else {
//go down
int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1);
for (int i = 0; i < 8; i++) {
Rect3 aabb = p_aabb;
aabb.size *= 0.5;
int nx = p_x;
int ny = p_y;
int nz = p_z;
if (i & 1) {
aabb.position.x += aabb.size.x;
nx += half;
}
if (i & 2) {
aabb.position.y += aabb.size.y;
ny += half;
}
if (i & 4) {
aabb.position.z += aabb.size.z;
nz += half;
}
//make sure to not plot beyond limits
if (nx < 0 || nx >= p_baker->axis_cell_size[0] || ny < 0 || ny >= p_baker->axis_cell_size[1] || nz < 0 || nz >= p_baker->axis_cell_size[2])
continue;
{
Rect3 test_aabb = aabb;
//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
//does not fit in child, go on
continue;
}
}
if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY) {
//sub cell must be created
uint32_t child_idx = p_baker->bake_cells.size();
p_baker->bake_cells[p_idx].childs[i] = child_idx;
p_baker->bake_cells.resize(p_baker->bake_cells.size() + 1);
p_baker->bake_cells[child_idx].level = p_level + 1;
}
_plot_face(p_baker->bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb, p_baker);
}
}
}
void GIProbe::_fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker) {
if (p_level == p_baker->cell_subdiv - 1) {
p_baker->leaf_voxel_count++;
float alpha = p_baker->bake_cells[p_idx].alpha;
p_baker->bake_cells[p_idx].albedo[0] /= alpha;
p_baker->bake_cells[p_idx].albedo[1] /= alpha;
p_baker->bake_cells[p_idx].albedo[2] /= alpha;
//transfer emission to light
p_baker->bake_cells[p_idx].emission[0] /= alpha;
p_baker->bake_cells[p_idx].emission[1] /= alpha;
p_baker->bake_cells[p_idx].emission[2] /= alpha;
p_baker->bake_cells[p_idx].normal[0] /= alpha;
p_baker->bake_cells[p_idx].normal[1] /= alpha;
p_baker->bake_cells[p_idx].normal[2] /= alpha;
Vector3 n(p_baker->bake_cells[p_idx].normal[0], p_baker->bake_cells[p_idx].normal[1], p_baker->bake_cells[p_idx].normal[2]);
if (n.length() < 0.01) {
//too much fight over normal, zero it
p_baker->bake_cells[p_idx].normal[0] = 0;
p_baker->bake_cells[p_idx].normal[1] = 0;
p_baker->bake_cells[p_idx].normal[2] = 0;
} else {
n.normalize();
p_baker->bake_cells[p_idx].normal[0] = n.x;
p_baker->bake_cells[p_idx].normal[1] = n.y;
p_baker->bake_cells[p_idx].normal[2] = n.z;
}
p_baker->bake_cells[p_idx].alpha = 1.0;
/*
//remove neighbours from used sides
for(int n=0;n<6;n++) {
int ofs[3]={0,0,0};
ofs[n/2]=(n&1)?1:-1;
//convert to x,y,z on this level
int x=p_x;
int y=p_y;
int z=p_z;
x+=ofs[0];
y+=ofs[1];
z+=ofs[2];
int ofs_x=0;
int ofs_y=0;
int ofs_z=0;
int size = 1<<p_level;
int half=size/2;
if (x<0 || x>=size || y<0 || y>=size || z<0 || z>=size) {
//neighbour is out, can't use it
p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n));
continue;
}
uint32_t neighbour=0;
for(int i=0;i<p_baker->cell_subdiv-1;i++) {
Baker::Cell *bc = &p_baker->bake_cells[neighbour];
int child = 0;
if (x >= ofs_x + half) {
child|=1;
ofs_x+=half;
}
if (y >= ofs_y + half) {
child|=2;
ofs_y+=half;
}
if (z >= ofs_z + half) {
child|=4;
ofs_z+=half;
}
neighbour = bc->childs[child];
if (neighbour==Baker::CHILD_EMPTY) {
break;
}
half>>=1;
}
if (neighbour!=Baker::CHILD_EMPTY) {
p_baker->bake_cells[p_idx].used_sides&=~(1<<uint32_t(n));
}
}
*/
} else {
//go down
float alpha_average = 0;
int half = (1 << (p_baker->cell_subdiv - 1)) >> (p_level + 1);
for (int i = 0; i < 8; i++) {
uint32_t child = p_baker->bake_cells[p_idx].childs[i];
if (child == Baker::CHILD_EMPTY)
continue;
int nx = p_x;
int ny = p_y;
int nz = p_z;
if (i & 1)
nx += half;
if (i & 2)
ny += half;
if (i & 4)
nz += half;
_fixup_plot(child, p_level + 1, nx, ny, nz, p_baker);
alpha_average += p_baker->bake_cells[child].alpha;
}
p_baker->bake_cells[p_idx].alpha = alpha_average / 8.0;
p_baker->bake_cells[p_idx].emission[0] = 0;
p_baker->bake_cells[p_idx].emission[1] = 0;
p_baker->bake_cells[p_idx].emission[2] = 0;
p_baker->bake_cells[p_idx].normal[0] = 0;
p_baker->bake_cells[p_idx].normal[1] = 0;
p_baker->bake_cells[p_idx].normal[2] = 0;
p_baker->bake_cells[p_idx].albedo[0] = 0;
p_baker->bake_cells[p_idx].albedo[1] = 0;
p_baker->bake_cells[p_idx].albedo[2] = 0;
}
}
Vector<Color> GIProbe::_get_bake_texture(Ref<Image> p_image, const Color &p_color) {
Vector<Color> ret;
if (p_image.is_null() || p_image->empty()) {
ret.resize(bake_texture_size * bake_texture_size);
for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
ret[i] = p_color;
}
return ret;
}
p_image = p_image->duplicate();
if (p_image->is_compressed()) {
print_line("DECOMPRESSING!!!!");
p_image->decompress();
}
p_image->convert(Image::FORMAT_RGBA8);
p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
PoolVector<uint8_t>::Read r = p_image->get_data().read();
ret.resize(bake_texture_size * bake_texture_size);
for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
Color c;
c.r = (r[i * 4 + 0] / 255.0) * p_color.r;
c.g = (r[i * 4 + 1] / 255.0) * p_color.g;
c.b = (r[i * 4 + 2] / 255.0) * p_color.b;
c.a = r[i * 4 + 3] / 255.0;
ret[i] = c;
}
return ret;
}
GIProbe::Baker::MaterialCache GIProbe::_get_material_cache(Ref<Material> p_material, Baker *p_baker) {
//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
Ref<SpatialMaterial> mat = p_material;
Ref<Material> material = mat; //hack for now
if (p_baker->material_cache.has(material)) {
return p_baker->material_cache[material];
}
Baker::MaterialCache mc;
if (mat.is_valid()) {
Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
Ref<Image> img_albedo;
if (albedo_tex.is_valid()) {
img_albedo = albedo_tex->get_data();
} else {
}
mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo());
Ref<ImageTexture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION);
Color emission_col = mat->get_emission();
emission_col.r *= mat->get_emission_energy();
emission_col.g *= mat->get_emission_energy();
emission_col.b *= mat->get_emission_energy();
Ref<Image> img_emission;
if (emission_tex.is_valid()) {
img_emission = emission_tex->get_data();
}
mc.emission = _get_bake_texture(img_emission, emission_col);
} else {
Ref<Image> empty;
mc.albedo = _get_bake_texture(empty, Color(0.7, 0.7, 0.7));
mc.emission = _get_bake_texture(empty, Color(0, 0, 0));
}
p_baker->material_cache[p_material] = mc;
return mc;
}
void GIProbe::_plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
continue; //only triangles
Ref<Material> src_material;
if (p_override_material.is_valid()) {
src_material = p_override_material;
} else if (i < p_materials.size() && p_materials[i].is_valid()) {
src_material = p_materials[i];
} else {
src_material = p_mesh->surface_get_material(i);
}
Baker::MaterialCache material = _get_material_cache(src_material, p_baker);
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = vertices.read();
PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
PoolVector<Vector2>::Read uvr;
PoolVector<int> index = a[Mesh::ARRAY_INDEX];
bool read_uv = false;
if (uv.size()) {
uvr = uv.read();
read_uv = true;
}
if (index.size()) {
int facecount = index.size() / 3;
PoolVector<int>::Read ir = index.read();
for (int j = 0; j < facecount; j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for (int k = 0; k < 3; k++) {
vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
}
if (read_uv) {
for (int k = 0; k < 3; k++) {
uvs[k] = uvr[ir[j * 3 + k]];
}
}
//test against original bounds
if (!fast_tri_box_overlap(-extents, extents * 2, vtxs))
continue;
//plot
_plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker);
}
} else {
int facecount = vertices.size() / 3;
for (int j = 0; j < facecount; j++) {
Vector3 vtxs[3];
Vector2 uvs[3];
for (int k = 0; k < 3; k++) {
vtxs[k] = p_xform.xform(vr[j * 3 + k]);
}
if (read_uv) {
for (int k = 0; k < 3; k++) {
uvs[k] = uvr[j * 3 + k];
}
}
//test against original bounds
if (!fast_tri_box_overlap(-extents, extents * 2, vtxs))
continue;
//plot face
_plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, p_baker->po2_bounds, p_baker);
}
}
}
}
void GIProbe::_find_meshes(Node *p_at_node, Baker *p_baker) {
MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node);
if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) {
Ref<Mesh> mesh = mi->get_mesh();
if (mesh.is_valid()) {
Rect3 aabb = mesh->get_aabb();
Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform();
if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) {
Baker::PlotMesh pm;
pm.local_xform = xf;
pm.mesh = mesh;
for (int i = 0; i < mesh->get_surface_count(); i++) {
pm.instance_materials.push_back(mi->get_surface_material(i));
}
pm.override_material = mi->get_material_override();
p_baker->mesh_list.push_back(pm);
}
}
}
Spatial *s = Object::cast_to<Spatial>(p_at_node);
if (s) {
if (s->is_visible_in_tree()) {
Array meshes = p_at_node->call("get_meshes");
for (int i = 0; i < meshes.size(); i += 2) {
Transform mxf = meshes[i];
Ref<Mesh> mesh = meshes[i + 1];
if (!mesh.is_valid())
continue;
Rect3 aabb = mesh->get_aabb();
Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf);
if (Rect3(-extents, extents * 2).intersects(xf.xform(aabb))) {
Baker::PlotMesh pm;
pm.local_xform = xf;
pm.mesh = mesh;
p_baker->mesh_list.push_back(pm);
}
}
}
}
for (int i = 0; i < p_at_node->get_child_count(); i++) {
Node *child = p_at_node->get_child(i);
if (!child->get_owner())
continue; //maybe a helper
_find_meshes(child, p_baker);
}
}
void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
Baker baker;
static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 };
baker.cell_subdiv = subdiv_value[subdiv];
baker.bake_cells.resize(1);
//find out the actual real bounds, power of 2, which gets the highest subdivision
baker.po2_bounds = Rect3(-extents, extents * 2.0);
int longest_axis = baker.po2_bounds.get_longest_axis_index();
baker.axis_cell_size[longest_axis] = (1 << (baker.cell_subdiv - 1));
baker.leaf_voxel_count = 0;
for (int i = 0; i < 3; i++) {
if (i == longest_axis)
continue;
baker.axis_cell_size[i] = baker.axis_cell_size[longest_axis];
float axis_size = baker.po2_bounds.size[longest_axis];
//shrink until fit subdiv
while (axis_size / 2.0 >= baker.po2_bounds.size[i]) {
axis_size /= 2.0;
baker.axis_cell_size[i] >>= 1;
}
baker.po2_bounds.size[i] = baker.po2_bounds.size[longest_axis];
}
Transform to_bounds;
to_bounds.basis.scale(Vector3(baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis], baker.po2_bounds.size[longest_axis]));
to_bounds.origin = baker.po2_bounds.position;
Transform to_grid;
to_grid.basis.scale(Vector3(baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis], baker.axis_cell_size[longest_axis]));
baker.to_cell_space = to_grid * to_bounds.affine_inverse();
_find_meshes(p_from_node ? p_from_node : get_parent(), &baker);
int pmc = 0;
for (List<Baker::PlotMesh>::Element *E = baker.mesh_list.front(); E; E = E->next()) {
print_line("plotting mesh " + itos(pmc++) + "/" + itos(baker.mesh_list.size()));
_plot_mesh(E->get().local_xform, E->get().mesh, &baker, E->get().instance_materials, E->get().override_material);
}
_fixup_plot(0, 0, 0, 0, 0, &baker);
//create the data for visual server
PoolVector<int> data;
data.resize(16 + (8 + 1 + 1 + 1 + 1) * baker.bake_cells.size()); //4 for header, rest for rest.
{
PoolVector<int>::Write w = data.write();
uint32_t *w32 = (uint32_t *)w.ptr();
w32[0] = 0; //version
w32[1] = baker.cell_subdiv; //subdiv
w32[2] = baker.axis_cell_size[0];
w32[3] = baker.axis_cell_size[1];
w32[4] = baker.axis_cell_size[2];
w32[5] = baker.bake_cells.size();
w32[6] = baker.leaf_voxel_count;
int ofs = 16;
for (int i = 0; i < baker.bake_cells.size(); i++) {
for (int j = 0; j < 8; j++) {
w32[ofs++] = baker.bake_cells[i].childs[j];
}
{ //albedo
uint32_t rgba = uint32_t(CLAMP(baker.bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
rgba |= uint32_t(CLAMP(baker.bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
w32[ofs++] = rgba;
}
{ //emission
Vector3 e(baker.bake_cells[i].emission[0], baker.bake_cells[i].emission[1], baker.bake_cells[i].emission[2]);
float l = e.length();
if (l > 0) {
e.normalize();
l = CLAMP(l / 8.0, 0, 1.0);
}
uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
em |= uint32_t(CLAMP(l * 255, 0, 255));
w32[ofs++] = em;
}
//w32[ofs++]=baker.bake_cells[i].used_sides;
{ //normal
Vector3 n(baker.bake_cells[i].normal[0], baker.bake_cells[i].normal[1], baker.bake_cells[i].normal[2]);
n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
uint32_t norm = 0;
norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
w32[ofs++] = norm;
}
{
uint16_t alpha = CLAMP(uint32_t(baker.bake_cells[i].alpha * 65535.0), 0, 65535);
uint16_t level = baker.bake_cells[i].level;
w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
}
}
}
if (p_create_visual_debug) {
_create_debug_mesh(&baker);
} else {
Ref<GIProbeData> probe_data;
probe_data.instance();
probe_data->set_bounds(Rect3(-extents, extents * 2.0));
probe_data->set_cell_size(baker.po2_bounds.size[longest_axis] / baker.axis_cell_size[longest_axis]);
probe_data->set_dynamic_data(data);
probe_data->set_dynamic_range(dynamic_range);
probe_data->set_energy(energy);
probe_data->set_bias(bias);
probe_data->set_normal_bias(normal_bias);
probe_data->set_propagation(propagation);
probe_data->set_interior(interior);
probe_data->set_compress(compress);
probe_data->set_to_cell_xform(baker.to_cell_space);
set_probe_data(probe_data);
}
}
void GIProbe::_debug_mesh(int p_idx, int p_level, const Rect3 &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker) {
if (p_level == p_baker->cell_subdiv - 1) {
Vector3 center = p_aabb.position + p_aabb.size * 0.5;
Transform xform;
xform.origin = center;
xform.basis.scale(p_aabb.size * 0.5);
p_multimesh->set_instance_transform(idx, xform);
Color col = Color(p_baker->bake_cells[p_idx].albedo[0], p_baker->bake_cells[p_idx].albedo[1], p_baker->bake_cells[p_idx].albedo[2]);
//Color col = Color(p_baker->bake_cells[p_idx].emission[0], p_baker->bake_cells[p_idx].emission[1], p_baker->bake_cells[p_idx].emission[2]);
p_multimesh->set_instance_color(idx, col);
idx++;
} else {
for (int i = 0; i < 8; i++) {
if (p_baker->bake_cells[p_idx].childs[i] == Baker::CHILD_EMPTY)
continue;
Rect3 aabb = p_aabb;
aabb.size *= 0.5;
if (i & 1)
aabb.position.x += aabb.size.x;
if (i & 2)
aabb.position.y += aabb.size.y;
if (i & 4)
aabb.position.z += aabb.size.z;
_debug_mesh(p_baker->bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_baker);
}
}
}
void GIProbe::_create_debug_mesh(Baker *p_baker) {
Ref<MultiMesh> mm;
mm.instance();
mm->set_transform_format(MultiMesh::TRANSFORM_3D);
mm->set_color_format(MultiMesh::COLOR_8BIT);
print_line("leaf voxels: " + itos(p_baker->leaf_voxel_count));
mm->set_instance_count(p_baker->leaf_voxel_count);
Ref<ArrayMesh> mesh;
mesh.instance();
{
Array arr;
arr.resize(Mesh::ARRAY_MAX);
PoolVector<Vector3> vertices;
PoolVector<Color> colors;
int vtx_idx = 0;
#define ADD_VTX(m_idx) \
; \
vertices.push_back(face_points[m_idx]); \
colors.push_back(Color(1, 1, 1, 1)); \
vtx_idx++;
for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
for (int j = 0; j < 4; j++) {
float v[3];
v[0] = 1.0;
v[1] = 1 - 2 * ((j >> 1) & 1);
v[2] = v[1] * (1 - 2 * (j & 1));
for (int k = 0; k < 3; k++) {
if (i < 3)
face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
else
face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
}
}
//tri 1
ADD_VTX(0);
ADD_VTX(1);
ADD_VTX(2);
//tri 2
ADD_VTX(2);
ADD_VTX(3);
ADD_VTX(0);
}
arr[Mesh::ARRAY_VERTEX] = vertices;
arr[Mesh::ARRAY_COLOR] = colors;
mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
}
{
Ref<SpatialMaterial> fsm;
fsm.instance();
fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
fsm->set_albedo(Color(1, 1, 1, 1));
mesh->surface_set_material(0, fsm);
}
mm->set_mesh(mesh);
int idx = 0;
_debug_mesh(0, 0, p_baker->po2_bounds, mm, idx, p_baker);
MultiMeshInstance *mmi = memnew(MultiMeshInstance);
mmi->set_multimesh(mm);
add_child(mmi);
#ifdef TOOLS_ENABLED
if (get_tree()->get_edited_scene_root() == this) {
mmi->set_owner(this);
} else {
mmi->set_owner(get_owner());
}
#else
mmi->set_owner(get_owner());
#endif
}
void GIProbe::_debug_bake() {
bake(NULL, true);
}
Rect3 GIProbe::get_aabb() const {
return Rect3(-extents, extents * 2);
}
PoolVector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
void GIProbe::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_probe_data", "data"), &GIProbe::set_probe_data);
ClassDB::bind_method(D_METHOD("get_probe_data"), &GIProbe::get_probe_data);
ClassDB::bind_method(D_METHOD("set_subdiv", "subdiv"), &GIProbe::set_subdiv);
ClassDB::bind_method(D_METHOD("get_subdiv"), &GIProbe::get_subdiv);
ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents);
ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents);
ClassDB::bind_method(D_METHOD("set_dynamic_range", "max"), &GIProbe::set_dynamic_range);
ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbe::get_dynamic_range);
ClassDB::bind_method(D_METHOD("set_energy", "max"), &GIProbe::set_energy);
ClassDB::bind_method(D_METHOD("get_energy"), &GIProbe::get_energy);
ClassDB::bind_method(D_METHOD("set_bias", "max"), &GIProbe::set_bias);
ClassDB::bind_method(D_METHOD("get_bias"), &GIProbe::get_bias);
ClassDB::bind_method(D_METHOD("set_normal_bias", "max"), &GIProbe::set_normal_bias);
ClassDB::bind_method(D_METHOD("get_normal_bias"), &GIProbe::get_normal_bias);
ClassDB::bind_method(D_METHOD("set_propagation", "max"), &GIProbe::set_propagation);
ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbe::get_propagation);
ClassDB::bind_method(D_METHOD("set_interior", "enable"), &GIProbe::set_interior);
ClassDB::bind_method(D_METHOD("is_interior"), &GIProbe::is_interior);
ClassDB::bind_method(D_METHOD("set_compress", "enable"), &GIProbe::set_compress);
ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbe::is_compressed);
ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false));
ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake);
ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents");
ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "1,16,1"), "set_dynamic_range", "get_dynamic_range");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_energy", "get_energy");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_bias", "get_bias");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_normal_bias", "get_normal_bias");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress"), "set_compress", "is_compressed");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData"), "set_probe_data", "get_probe_data");
BIND_ENUM_CONSTANT(SUBDIV_64);
BIND_ENUM_CONSTANT(SUBDIV_128);
BIND_ENUM_CONSTANT(SUBDIV_256);
BIND_ENUM_CONSTANT(SUBDIV_512);
BIND_ENUM_CONSTANT(SUBDIV_MAX);
}
GIProbe::GIProbe() {
subdiv = SUBDIV_128;
dynamic_range = 4;
energy = 1.0;
bias = 1.5;
normal_bias = 0.0;
propagation = 1.0;
extents = Vector3(10, 10, 10);
color_scan_cell_width = 4;
bake_texture_size = 128;
interior = false;
compress = false;
gi_probe = VS::get_singleton()->gi_probe_create();
}
GIProbe::~GIProbe() {
}