godot/drivers/gles3/storage/light_storage.cpp
Marius Hanl a59819630d Replace Extents with Size in VoxelGI, ReflectionProbe, FogVolume, Decal and GPUParticles*3D
- Extents are replaced by Size (Size is Extents * 2)
- The UI text displays 'Size'
- Snapping is adjusted to work with Size
- _set and _get handle extents for compatibility

Co-authored-by: ator-dev <dominic.codedeveloper@gmail.com>
2023-01-31 20:04:11 +01:00

723 lines
22 KiB
C++

/**************************************************************************/
/* light_storage.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifdef GLES3_ENABLED
#include "light_storage.h"
#include "config.h"
#include "texture_storage.h"
using namespace GLES3;
LightStorage *LightStorage::singleton = nullptr;
LightStorage *LightStorage::get_singleton() {
return singleton;
}
LightStorage::LightStorage() {
singleton = this;
}
LightStorage::~LightStorage() {
singleton = nullptr;
}
/* Light API */
void LightStorage::_light_initialize(RID p_light, RS::LightType p_type) {
Light light;
light.type = p_type;
light.param[RS::LIGHT_PARAM_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5;
light.param[RS::LIGHT_PARAM_RANGE] = 1.0;
light.param[RS::LIGHT_PARAM_SIZE] = 0.0;
light.param[RS::LIGHT_PARAM_ATTENUATION] = 1.0;
light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45;
light.param[RS::LIGHT_PARAM_SPOT_ATTENUATION] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6;
light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8;
light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_OPACITY] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02;
light.param[RS::LIGHT_PARAM_SHADOW_BLUR] = 0;
light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0;
light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05;
light_owner.initialize_rid(p_light, light);
}
RID LightStorage::directional_light_allocate() {
return light_owner.allocate_rid();
}
void LightStorage::directional_light_initialize(RID p_rid) {
_light_initialize(p_rid, RS::LIGHT_DIRECTIONAL);
}
RID LightStorage::omni_light_allocate() {
return light_owner.allocate_rid();
}
void LightStorage::omni_light_initialize(RID p_rid) {
_light_initialize(p_rid, RS::LIGHT_OMNI);
}
RID LightStorage::spot_light_allocate() {
return light_owner.allocate_rid();
}
void LightStorage::spot_light_initialize(RID p_rid) {
_light_initialize(p_rid, RS::LIGHT_SPOT);
}
void LightStorage::light_free(RID p_rid) {
light_set_projector(p_rid, RID()); //clear projector
// delete the texture
Light *light = light_owner.get_or_null(p_rid);
light->dependency.deleted_notify(p_rid);
light_owner.free(p_rid);
}
void LightStorage::light_set_color(RID p_light, const Color &p_color) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->color = p_color;
}
void LightStorage::light_set_param(RID p_light, RS::LightParam p_param, float p_value) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX);
if (light->param[p_param] == p_value) {
return;
}
switch (p_param) {
case RS::LIGHT_PARAM_RANGE:
case RS::LIGHT_PARAM_SPOT_ANGLE:
case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE:
case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET:
case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET:
case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET:
case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS:
case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE:
case RS::LIGHT_PARAM_SHADOW_BIAS: {
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
} break;
case RS::LIGHT_PARAM_SIZE: {
if ((light->param[p_param] > CMP_EPSILON) != (p_value > CMP_EPSILON)) {
//changing from no size to size and the opposite
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR);
}
} break;
default: {
}
}
light->param[p_param] = p_value;
}
void LightStorage::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->shadow = p_enabled;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_projector(RID p_light, RID p_texture) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
if (light->projector == p_texture) {
return;
}
if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) {
texture_storage->texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
}
light->projector = p_texture;
if (light->type != RS::LIGHT_DIRECTIONAL) {
if (light->projector.is_valid()) {
texture_storage->texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
}
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR);
}
}
void LightStorage::light_set_negative(RID p_light, bool p_enable) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->negative = p_enable;
}
void LightStorage::light_set_cull_mask(RID p_light, uint32_t p_mask) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->cull_mask = p_mask;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->distance_fade = p_enabled;
light->distance_fade_begin = p_begin;
light->distance_fade_shadow = p_shadow;
light->distance_fade_length = p_length;
}
void LightStorage::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->reverse_cull = p_enabled;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->bake_mode = p_bake_mode;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_mode = p_mode;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE);
return light->omni_shadow_mode;
}
void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_mode = p_mode;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->directional_blend_splits = p_enable;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
bool LightStorage::light_directional_get_blend_splits(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, false);
return light->directional_blend_splits;
}
void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->directional_sky_mode = p_mode;
}
RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY);
return light->directional_sky_mode;
}
RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
RS::LightBakeMode LightStorage::light_get_bake_mode(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_BAKE_DISABLED);
return light->bake_mode;
}
uint64_t LightStorage::light_get_version(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->version;
}
AABB LightStorage::light_get_aabb(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case RS::LIGHT_SPOT: {
float len = light->param[RS::LIGHT_PARAM_RANGE];
float size = Math::tan(Math::deg_to_rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
};
case RS::LIGHT_OMNI: {
float r = light->param[RS::LIGHT_PARAM_RANGE];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
};
case RS::LIGHT_DIRECTIONAL: {
return AABB();
};
}
ERR_FAIL_V(AABB());
}
/* LIGHT INSTANCE API */
RID LightStorage::light_instance_create(RID p_light) {
RID li = light_instance_owner.make_rid(LightInstance());
LightInstance *light_instance = light_instance_owner.get_or_null(li);
light_instance->self = li;
light_instance->light = p_light;
light_instance->light_type = light_get_type(p_light);
return li;
}
void LightStorage::light_instance_free(RID p_light_instance) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance_owner.free(p_light_instance);
}
void LightStorage::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->transform = p_transform;
}
void LightStorage::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->aabb = p_aabb;
}
void LightStorage::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
}
void LightStorage::light_instance_mark_visible(RID p_light_instance) {
}
/* PROBE API */
RID LightStorage::reflection_probe_allocate() {
return RID();
}
void LightStorage::reflection_probe_initialize(RID p_rid) {
}
void LightStorage::reflection_probe_free(RID p_rid) {
}
void LightStorage::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {
}
void LightStorage::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
}
void LightStorage::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) {
}
void LightStorage::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) {
}
void LightStorage::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) {
}
void LightStorage::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
}
void LightStorage::reflection_probe_set_size(RID p_probe, const Vector3 &p_size) {
}
void LightStorage::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
}
void LightStorage::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
}
void LightStorage::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
}
void LightStorage::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
}
void LightStorage::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
}
void LightStorage::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
}
AABB LightStorage::reflection_probe_get_aabb(RID p_probe) const {
return AABB();
}
RS::ReflectionProbeUpdateMode LightStorage::reflection_probe_get_update_mode(RID p_probe) const {
return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE;
}
uint32_t LightStorage::reflection_probe_get_cull_mask(RID p_probe) const {
return 0;
}
Vector3 LightStorage::reflection_probe_get_size(RID p_probe) const {
return Vector3();
}
Vector3 LightStorage::reflection_probe_get_origin_offset(RID p_probe) const {
return Vector3();
}
float LightStorage::reflection_probe_get_origin_max_distance(RID p_probe) const {
return 0.0;
}
bool LightStorage::reflection_probe_renders_shadows(RID p_probe) const {
return false;
}
void LightStorage::reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) {
}
float LightStorage::reflection_probe_get_mesh_lod_threshold(RID p_probe) const {
return 0.0;
}
/* REFLECTION ATLAS */
RID LightStorage::reflection_atlas_create() {
return RID();
}
void LightStorage::reflection_atlas_free(RID p_ref_atlas) {
}
int LightStorage::reflection_atlas_get_size(RID p_ref_atlas) const {
return 0;
}
void LightStorage::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
}
/* REFLECTION PROBE INSTANCE */
RID LightStorage::reflection_probe_instance_create(RID p_probe) {
return RID();
}
void LightStorage::reflection_probe_instance_free(RID p_instance) {
}
void LightStorage::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
}
void LightStorage::reflection_probe_release_atlas_index(RID p_instance) {
}
bool LightStorage::reflection_probe_instance_needs_redraw(RID p_instance) {
return false;
}
bool LightStorage::reflection_probe_instance_has_reflection(RID p_instance) {
return false;
}
bool LightStorage::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
return false;
}
Ref<RenderSceneBuffers> LightStorage::reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) {
return Ref<RenderSceneBuffers>();
}
bool LightStorage::reflection_probe_instance_postprocess_step(RID p_instance) {
return true;
}
/* LIGHTMAP CAPTURE */
RID LightStorage::lightmap_allocate() {
return lightmap_owner.allocate_rid();
}
void LightStorage::lightmap_initialize(RID p_rid) {
lightmap_owner.initialize_rid(p_rid, Lightmap());
}
void LightStorage::lightmap_free(RID p_rid) {
Lightmap *lightmap = lightmap_owner.get_or_null(p_rid);
lightmap->dependency.deleted_notify(p_rid);
lightmap_owner.free(p_rid);
}
void LightStorage::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) {
}
void LightStorage::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) {
}
void LightStorage::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) {
}
void LightStorage::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
}
void LightStorage::lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) {
}
PackedVector3Array LightStorage::lightmap_get_probe_capture_points(RID p_lightmap) const {
return PackedVector3Array();
}
PackedColorArray LightStorage::lightmap_get_probe_capture_sh(RID p_lightmap) const {
return PackedColorArray();
}
PackedInt32Array LightStorage::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const {
return PackedInt32Array();
}
PackedInt32Array LightStorage::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const {
return PackedInt32Array();
}
AABB LightStorage::lightmap_get_aabb(RID p_lightmap) const {
return AABB();
}
void LightStorage::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) {
}
bool LightStorage::lightmap_is_interior(RID p_lightmap) const {
return false;
}
void LightStorage::lightmap_set_probe_capture_update_speed(float p_speed) {
}
float LightStorage::lightmap_get_probe_capture_update_speed() const {
return 0;
}
/* LIGHTMAP INSTANCE */
RID LightStorage::lightmap_instance_create(RID p_lightmap) {
return RID();
}
void LightStorage::lightmap_instance_free(RID p_lightmap) {
}
void LightStorage::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
}
/* LIGHT SHADOW MAPPING */
/*
RID LightStorage::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
return canvas_occluder_owner.make_rid(co);
}
void LightStorage::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
} if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
}
}
*/
/* SHADOW ATLAS API */
RID LightStorage::shadow_atlas_create() {
return RID();
}
void LightStorage::shadow_atlas_free(RID p_atlas) {
}
void LightStorage::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
}
void LightStorage::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
}
bool LightStorage::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
return false;
}
void LightStorage::shadow_atlas_update(RID p_atlas) {
}
void LightStorage::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
}
int LightStorage::get_directional_light_shadow_size(RID p_light_intance) {
return 0;
}
void LightStorage::set_directional_shadow_count(int p_count) {
}
#endif // !GLES3_ENABLED