godot/drivers/gles2/rasterizer_storage_gles2.cpp

6623 lines
210 KiB
C++

/**************************************************************************/
/* rasterizer_storage_gles2.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rasterizer_storage_gles2.h"
#include "core/math/transform.h"
#include "core/project_settings.h"
#include "rasterizer_canvas_gles2.h"
#include "rasterizer_scene_gles2.h"
#include "servers/visual/shader_language.h"
GLuint RasterizerStorageGLES2::system_fbo = 0;
/* TEXTURE API */
#define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB
#define _EXT_COMPRESSED_RED_RGTC1 0x8DBB
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC
#define _EXT_COMPRESSED_RG_RGTC2 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE
#define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC
#define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD
#define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE
#define _EXT_ETC1_RGB8_OES 0x8D64
#define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01
#define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03
#define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54
#define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56
#define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57
#define _EXT_COMPRESSED_RGBA_BPTC_UNORM 0x8E8C
#define _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM 0x8E8D
#define _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT 0x8E8E
#define _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 0x8E8F
#define _GL_TEXTURE_EXTERNAL_OES 0x8D65
#ifdef GLES_OVER_GL
#define _GL_HALF_FLOAT_OES 0x140B
#else
#define _GL_HALF_FLOAT_OES 0x8D61
#endif
#define _EXT_TEXTURE_CUBE_MAP_SEAMLESS 0x884F
#define _GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE
#define _GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF
#define _RED_OES 0x1903
#define _DEPTH_COMPONENT24_OES 0x81A6
#ifndef GLES_OVER_GL
#define glClearDepth glClearDepthf
// enable extensions manually for android and ios
#ifndef UWP_ENABLED
#include <dlfcn.h> // needed to load extensions
#endif
#ifdef IPHONE_ENABLED
#include <OpenGLES/ES2/glext.h>
//void *glRenderbufferStorageMultisampleAPPLE;
//void *glResolveMultisampleFramebufferAPPLE;
#define glRenderbufferStorageMultisample glRenderbufferStorageMultisampleAPPLE
#elif defined(ANDROID_ENABLED)
#include <GLES2/gl2ext.h>
PFNGLRENDERBUFFERSTORAGEMULTISAMPLEEXTPROC glRenderbufferStorageMultisampleEXT;
PFNGLFRAMEBUFFERTEXTURE2DMULTISAMPLEEXTPROC glFramebufferTexture2DMultisampleEXT;
#define glRenderbufferStorageMultisample glRenderbufferStorageMultisampleEXT
#define glFramebufferTexture2DMultisample glFramebufferTexture2DMultisampleEXT
#elif defined(UWP_ENABLED)
#include <GLES2/gl2ext.h>
#define glRenderbufferStorageMultisample glRenderbufferStorageMultisampleANGLE
#define glFramebufferTexture2DMultisample glFramebufferTexture2DMultisampleANGLE
#endif
#define GL_TEXTURE_3D 0x806F
#define GL_MAX_SAMPLES 0x8D57
#endif //!GLES_OVER_GL
void RasterizerStorageGLES2::bind_quad_array() const {
glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr);
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
}
Ref<Image> RasterizerStorageGLES2::_get_gl_image_and_format(const Ref<Image> &p_image, Image::Format p_format, uint32_t p_flags, Image::Format &r_real_format, GLenum &r_gl_format, GLenum &r_gl_internal_format, GLenum &r_gl_type, bool &r_compressed, bool p_force_decompress) const {
r_gl_format = 0;
Ref<Image> image = p_image;
r_compressed = false;
r_real_format = p_format;
bool need_decompress = false;
switch (p_format) {
case Image::FORMAT_L8: {
r_gl_internal_format = GL_LUMINANCE;
r_gl_format = GL_LUMINANCE;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_LA8: {
r_gl_internal_format = GL_LUMINANCE_ALPHA;
r_gl_format = GL_LUMINANCE_ALPHA;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_R8: {
r_gl_internal_format = GL_ALPHA;
r_gl_format = GL_ALPHA;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RG8: {
ERR_PRINT("RG texture not supported, converting to RGB8.");
if (image.is_valid()) {
image->convert(Image::FORMAT_RGB8);
}
r_real_format = Image::FORMAT_RGB8;
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RGB8: {
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RGBA8: {
r_gl_format = GL_RGBA;
r_gl_internal_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RGBA4444: {
r_gl_internal_format = GL_RGBA;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_SHORT_4_4_4_4;
} break;
case Image::FORMAT_RGBA5551: {
r_gl_internal_format = GL_RGB5_A1;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_SHORT_5_5_5_1;
} break;
case Image::FORMAT_RF: {
if (!config.float_texture_supported) {
ERR_PRINT("R float texture not supported, converting to RGB8.");
if (image.is_valid()) {
image->convert(Image::FORMAT_RGB8);
}
r_real_format = Image::FORMAT_RGB8;
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
} else {
r_gl_internal_format = GL_ALPHA;
r_gl_format = GL_ALPHA;
r_gl_type = GL_FLOAT;
}
} break;
case Image::FORMAT_RGF: {
ERR_PRINT("RG float texture not supported, converting to RGB8.");
if (image.is_valid()) {
image->convert(Image::FORMAT_RGB8);
}
r_real_format = Image::FORMAT_RGB8;
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
} break;
case Image::FORMAT_RGBF: {
if (!config.float_texture_supported) {
ERR_PRINT("RGB float texture not supported, converting to RGB8.");
if (image.is_valid()) {
image->convert(Image::FORMAT_RGB8);
}
r_real_format = Image::FORMAT_RGB8;
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
} else {
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
}
} break;
case Image::FORMAT_RGBAF: {
if (!config.float_texture_supported) {
ERR_PRINT("RGBA float texture not supported, converting to RGBA8.");
if (image.is_valid()) {
image->convert(Image::FORMAT_RGBA8);
}
r_real_format = Image::FORMAT_RGBA8;
r_gl_internal_format = GL_RGBA;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
} else {
r_gl_internal_format = GL_RGBA;
r_gl_format = GL_RGBA;
r_gl_type = GL_FLOAT;
}
} break;
case Image::FORMAT_RH: {
need_decompress = true;
} break;
case Image::FORMAT_RGH: {
need_decompress = true;
} break;
case Image::FORMAT_RGBH: {
need_decompress = true;
} break;
case Image::FORMAT_RGBAH: {
need_decompress = true;
} break;
case Image::FORMAT_RGBE9995: {
r_gl_internal_format = GL_RGB;
r_gl_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
if (image.is_valid()) {
image = image->rgbe_to_srgb();
}
return image;
} break;
case Image::FORMAT_DXT1: {
if (config.s3tc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_DXT3: {
if (config.s3tc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_DXT5: {
if (config.s3tc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_RGTC_R: {
if (config.rgtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RED_RGTC1_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_RGTC_RG: {
if (config.rgtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBA: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_BPTC_UNORM;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBF: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_BPTC_RGBFU: {
if (config.bptc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT;
r_gl_format = GL_RGB;
r_gl_type = GL_FLOAT;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC2: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC2A: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC4: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_PVRTC4A: {
if (config.pvrtc_supported) {
r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC: {
if (config.etc1_supported) {
r_gl_internal_format = _EXT_ETC1_RGB8_OES;
r_gl_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_compressed = true;
} else {
need_decompress = true;
}
} break;
case Image::FORMAT_ETC2_R11: {
need_decompress = true;
} break;
case Image::FORMAT_ETC2_R11S: {
need_decompress = true;
} break;
case Image::FORMAT_ETC2_RG11: {
need_decompress = true;
} break;
case Image::FORMAT_ETC2_RG11S: {
need_decompress = true;
} break;
case Image::FORMAT_ETC2_RGB8: {
need_decompress = true;
} break;
case Image::FORMAT_ETC2_RGBA8: {
need_decompress = true;
} break;
case Image::FORMAT_ETC2_RGB8A1: {
need_decompress = true;
} break;
default: {
ERR_FAIL_V(Ref<Image>());
}
}
if (need_decompress || p_force_decompress) {
if (!image.is_null()) {
image = image->duplicate();
image->decompress();
ERR_FAIL_COND_V(image->is_compressed(), image);
switch (image->get_format()) {
case Image::FORMAT_RGB8: {
r_gl_format = GL_RGB;
r_gl_internal_format = GL_RGB;
r_gl_type = GL_UNSIGNED_BYTE;
r_real_format = Image::FORMAT_RGB8;
r_compressed = false;
} break;
case Image::FORMAT_RGBA8: {
r_gl_format = GL_RGBA;
r_gl_internal_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_real_format = Image::FORMAT_RGBA8;
r_compressed = false;
} break;
default: {
image->convert(Image::FORMAT_RGBA8);
r_gl_format = GL_RGBA;
r_gl_internal_format = GL_RGBA;
r_gl_type = GL_UNSIGNED_BYTE;
r_real_format = Image::FORMAT_RGBA8;
r_compressed = false;
} break;
}
}
return image;
}
return p_image;
}
static const GLenum _cube_side_enum[6] = {
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
};
RID RasterizerStorageGLES2::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture, RID());
glGenTextures(1, &texture->tex_id);
texture->active = false;
texture->total_data_size = 0;
return texture_owner.make_rid(texture);
}
void RasterizerStorageGLES2::texture_allocate(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, VisualServer::TextureType p_type, uint32_t p_flags) {
GLenum format;
GLenum internal_format;
GLenum type;
bool compressed = false;
if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
p_flags &= ~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video
}
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
texture->width = p_width;
texture->height = p_height;
texture->format = p_format;
if (texture->width > config.max_texture_size || texture->height > config.max_texture_size) {
WARN_PRINT("Cannot create texture larger than maximum hardware supported size of " + itos(config.max_texture_size) + ". Setting size to maximum.");
texture->width = MIN(texture->width, config.max_texture_size);
texture->height = MIN(texture->height, config.max_texture_size);
}
texture->flags = p_flags;
texture->stored_cube_sides = 0;
texture->type = p_type;
switch (p_type) {
case VS::TEXTURE_TYPE_2D: {
texture->target = GL_TEXTURE_2D;
texture->images.resize(1);
} break;
case VS::TEXTURE_TYPE_EXTERNAL: {
#ifdef ANDROID_ENABLED
texture->target = _GL_TEXTURE_EXTERNAL_OES;
#else
texture->target = GL_TEXTURE_2D;
#endif
texture->images.resize(0);
} break;
case VS::TEXTURE_TYPE_CUBEMAP: {
texture->target = GL_TEXTURE_CUBE_MAP;
texture->images.resize(6);
} break;
case VS::TEXTURE_TYPE_2D_ARRAY:
case VS::TEXTURE_TYPE_3D: {
texture->target = GL_TEXTURE_3D;
ERR_PRINT("3D textures and Texture Arrays are not supported in GLES2. Please switch to the GLES3 backend.");
return;
} break;
default: {
ERR_PRINT("Unknown texture type!");
return;
}
}
if (p_type != VS::TEXTURE_TYPE_EXTERNAL) {
texture->alloc_width = texture->width;
texture->alloc_height = texture->height;
texture->resize_to_po2 = false;
if (!config.support_npot_repeat_mipmap) {
int po2_width = next_power_of_2(p_width);
int po2_height = next_power_of_2(p_height);
bool is_po2 = p_width == po2_width && p_height == po2_height;
if (!is_po2 && (p_flags & VS::TEXTURE_FLAG_REPEAT || p_flags & VS::TEXTURE_FLAG_MIPMAPS)) {
if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
//not supported
ERR_PRINT("Streaming texture for non power of 2 or has mipmaps on this hardware: " + texture->path + "'. Mipmaps and repeat disabled.");
texture->flags &= ~(VS::TEXTURE_FLAG_REPEAT | VS::TEXTURE_FLAG_MIPMAPS);
} else {
texture->alloc_height = po2_height;
texture->alloc_width = po2_width;
texture->resize_to_po2 = true;
}
}
}
Image::Format real_format;
_get_gl_image_and_format(Ref<Image>(),
texture->format,
texture->flags,
real_format,
format,
internal_format,
type,
compressed,
texture->resize_to_po2);
texture->gl_format_cache = format;
texture->gl_type_cache = type;
texture->gl_internal_format_cache = internal_format;
texture->data_size = 0;
texture->mipmaps = 1;
texture->compressed = compressed;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (p_type == VS::TEXTURE_TYPE_EXTERNAL) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
} else if (p_flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
//prealloc if video
glTexImage2D(texture->target, 0, internal_format, texture->alloc_width, texture->alloc_height, 0, format, type, nullptr);
}
texture->active = true;
}
void RasterizerStorageGLES2::texture_set_data(RID p_texture, const Ref<Image> &p_image, int p_layer) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
if (texture->target == GL_TEXTURE_3D) {
// Target is set to a 3D texture or array texture, exit early to avoid spamming errors
return;
}
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(texture->format != p_image->get_format());
ERR_FAIL_COND(p_image.is_null());
ERR_FAIL_COND(texture->type == VS::TEXTURE_TYPE_EXTERNAL);
GLenum type;
GLenum format;
GLenum internal_format;
bool compressed = false;
if (config.keep_original_textures && !(texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING)) {
texture->images.write[p_layer] = p_image;
}
Image::Format real_format;
Ref<Image> img = _get_gl_image_and_format(p_image, p_image->get_format(), texture->flags, real_format, format, internal_format, type, compressed, texture->resize_to_po2);
if (texture->resize_to_po2) {
if (p_image->is_compressed()) {
ERR_PRINT("Texture '" + texture->path + "' is required to be a power of 2 because it uses either mipmaps or repeat, so it was decompressed. This will hurt performance and memory usage.");
}
if (img == p_image) {
img = img->duplicate();
}
img->resize_to_po2(false, texture->flags & VS::TEXTURE_FLAG_FILTER ? Image::INTERPOLATE_BILINEAR : Image::INTERPOLATE_NEAREST);
}
if (config.shrink_textures_x2 && (p_image->has_mipmaps() || !p_image->is_compressed()) && !(texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING)) {
texture->alloc_height = MAX(1, texture->alloc_height / 2);
texture->alloc_width = MAX(1, texture->alloc_width / 2);
if (texture->alloc_width == img->get_width() / 2 && texture->alloc_height == img->get_height() / 2) {
img->shrink_x2();
} else if (img->get_format() <= Image::FORMAT_RGBA8) {
img->resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR);
}
}
GLenum blit_target = (texture->target == GL_TEXTURE_CUBE_MAP) ? _cube_side_enum[p_layer] : GL_TEXTURE_2D;
texture->data_size = img->get_data().size();
PoolVector<uint8_t>::Read read = img->get_data().read();
ERR_FAIL_COND(!read.ptr());
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
texture->ignore_mipmaps = compressed && !img->has_mipmaps();
if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR);
}
} else {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
if (((texture->flags & VS::TEXTURE_FLAG_REPEAT) || (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT)) && texture->target != GL_TEXTURE_CUBE_MAP) {
if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
} else {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
if (config.use_anisotropic_filter) {
if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, config.anisotropic_level);
} else {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1);
}
}
int mipmaps = ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && img->has_mipmaps()) ? img->get_mipmap_count() + 1 : 1;
int w = img->get_width();
int h = img->get_height();
int tsize = 0;
for (int i = 0; i < mipmaps; i++) {
int size, ofs;
img->get_mipmap_offset_and_size(i, ofs, size);
if (compressed) {
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
int bw = w;
int bh = h;
glCompressedTexImage2D(blit_target, i, internal_format, bw, bh, 0, size, &read[ofs]);
} else {
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if (texture->flags & VS::TEXTURE_FLAG_USED_FOR_STREAMING) {
glTexSubImage2D(blit_target, i, 0, 0, w, h, format, type, &read[ofs]);
} else {
glTexImage2D(blit_target, i, internal_format, w, h, 0, format, type, &read[ofs]);
}
}
tsize += size;
w = MAX(1, w >> 1);
h = MAX(1, h >> 1);
}
info.texture_mem -= texture->total_data_size;
texture->total_data_size = tsize;
info.texture_mem += texture->total_data_size;
// printf("texture: %i x %i - size: %i - total: %i\n", texture->width, texture->height, tsize, info.texture_mem);
texture->stored_cube_sides |= (1 << p_layer);
if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && mipmaps == 1 && !texture->ignore_mipmaps && (texture->type != VS::TEXTURE_TYPE_CUBEMAP || texture->stored_cube_sides == (1 << 6) - 1)) {
//generate mipmaps if they were requested and the image does not contain them
glGenerateMipmap(texture->target);
}
texture->mipmaps = mipmaps;
}
void RasterizerStorageGLES2::texture_set_data_partial(RID p_texture, const Ref<Image> &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_layer) {
// TODO
ERR_PRINT("Not implemented (ask Karroffel to do it :p)");
}
Ref<Image> RasterizerStorageGLES2::texture_get_data(RID p_texture, int p_layer) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, Ref<Image>());
ERR_FAIL_COND_V(!texture->active, Ref<Image>());
ERR_FAIL_COND_V(texture->data_size == 0 && !texture->render_target, Ref<Image>());
if (texture->type == VS::TEXTURE_TYPE_CUBEMAP && p_layer < 6 && p_layer >= 0 && !texture->images[p_layer].is_null()) {
return texture->images[p_layer];
}
#ifdef GLES_OVER_GL
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
_get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, false);
PoolVector<uint8_t> data;
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1);
data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
for (int i = 0; i < texture->mipmaps; i++) {
int ofs = Image::get_image_mipmap_offset(texture->alloc_width, texture->alloc_height, real_format, i);
if (texture->compressed) {
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glGetCompressedTexImage(texture->target, i, &wb[ofs]);
} else {
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(texture->target, i, texture->gl_format_cache, texture->gl_type_cache, &wb[ofs]);
}
}
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, texture->mipmaps > 1, real_format, data));
return Ref<Image>(img);
#else
Image::Format real_format;
GLenum gl_format;
GLenum gl_internal_format;
GLenum gl_type;
bool compressed;
_get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, texture->resize_to_po2);
PoolVector<uint8_t> data;
int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false);
data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers
PoolVector<uint8_t>::Write wb = data.write();
GLuint temp_framebuffer;
glGenFramebuffers(1, &temp_framebuffer);
GLuint temp_color_texture;
glGenTextures(1, &temp_color_texture);
glBindFramebuffer(GL_FRAMEBUFFER, temp_framebuffer);
glBindTexture(GL_TEXTURE_2D, temp_color_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temp_color_texture, 0);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1, 1, 1, 1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
glViewport(0, 0, texture->alloc_width, texture->alloc_height);
shaders.copy.bind();
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
bind_quad_array();
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]);
glDeleteTextures(1, &temp_color_texture);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &temp_framebuffer);
wb.release();
data.resize(data_size);
Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data));
if (!texture->compressed) {
img->convert(real_format);
}
return Ref<Image>(img);
#endif
}
void RasterizerStorageGLES2::texture_set_flags(RID p_texture, uint32_t p_flags) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
bool had_mipmaps = texture->flags & VS::TEXTURE_FLAG_MIPMAPS;
texture->flags = p_flags;
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
if (((texture->flags & VS::TEXTURE_FLAG_REPEAT) || (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT)) && texture->target != GL_TEXTURE_CUBE_MAP) {
if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
} else {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
if (config.use_anisotropic_filter) {
if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, config.anisotropic_level);
} else {
glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1);
}
}
if ((texture->flags & VS::TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) {
if (!had_mipmaps && texture->mipmaps == 1) {
glGenerateMipmap(texture->target);
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR);
}
} else {
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering
}
}
uint32_t RasterizerStorageGLES2::texture_get_flags(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->flags;
}
Image::Format RasterizerStorageGLES2::texture_get_format(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, Image::FORMAT_L8);
return texture->format;
}
VisualServer::TextureType RasterizerStorageGLES2::texture_get_type(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, VS::TEXTURE_TYPE_2D);
return texture->type;
}
uint32_t RasterizerStorageGLES2::texture_get_texid(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->tex_id;
}
void RasterizerStorageGLES2::texture_bind(RID p_texture, uint32_t p_texture_no) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0 + p_texture_no);
glBindTexture(texture->target, texture->tex_id);
}
uint32_t RasterizerStorageGLES2::texture_get_width(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->width;
}
uint32_t RasterizerStorageGLES2::texture_get_height(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->height;
}
uint32_t RasterizerStorageGLES2::texture_get_depth(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->depth;
}
void RasterizerStorageGLES2::texture_set_size_override(RID p_texture, int p_width, int p_height, int p_depth) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(texture->render_target);
ERR_FAIL_COND(p_width <= 0 || p_width > 16384);
ERR_FAIL_COND(p_height <= 0 || p_height > 16384);
//real texture size is in alloc width and height
texture->width = p_width;
texture->height = p_height;
}
void RasterizerStorageGLES2::texture_set_path(RID p_texture, const String &p_path) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
texture->path = p_path;
}
String RasterizerStorageGLES2::texture_get_path(RID p_texture) const {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, "");
return texture->path;
}
void RasterizerStorageGLES2::texture_debug_usage(List<VS::TextureInfo> *r_info) {
List<RID> textures;
texture_owner.get_owned_list(&textures);
for (List<RID>::Element *E = textures.front(); E; E = E->next()) {
Texture *t = texture_owner.getornull(E->get());
if (!t) {
continue;
}
VS::TextureInfo tinfo;
tinfo.texture = E->get();
tinfo.path = t->path;
tinfo.format = t->format;
tinfo.width = t->alloc_width;
tinfo.height = t->alloc_height;
tinfo.depth = 0;
tinfo.bytes = t->total_data_size;
r_info->push_back(tinfo);
}
}
void RasterizerStorageGLES2::texture_set_shrink_all_x2_on_set_data(bool p_enable) {
config.shrink_textures_x2 = p_enable;
}
void RasterizerStorageGLES2::textures_keep_original(bool p_enable) {
config.keep_original_textures = p_enable;
}
Size2 RasterizerStorageGLES2::texture_size_with_proxy(RID p_texture) const {
const Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND_V(!texture, Size2());
if (texture->proxy) {
return Size2(texture->proxy->width, texture->proxy->height);
} else {
return Size2(texture->width, texture->height);
}
}
void RasterizerStorageGLES2::texture_set_proxy(RID p_texture, RID p_proxy) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
if (texture->proxy) {
texture->proxy->proxy_owners.erase(texture);
texture->proxy = nullptr;
}
if (p_proxy.is_valid()) {
Texture *proxy = texture_owner.get(p_proxy);
ERR_FAIL_COND(!proxy);
ERR_FAIL_COND(proxy == texture);
proxy->proxy_owners.insert(texture);
texture->proxy = proxy;
}
}
void RasterizerStorageGLES2::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {
Texture *texture = texture_owner.getornull(p_texture);
ERR_FAIL_COND(!texture);
texture->redraw_if_visible = p_enable;
}
void RasterizerStorageGLES2::texture_set_detect_3d_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_3d = p_callback;
texture->detect_3d_ud = p_userdata;
}
void RasterizerStorageGLES2::texture_set_detect_srgb_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_srgb = p_callback;
texture->detect_srgb_ud = p_userdata;
}
void RasterizerStorageGLES2::texture_set_detect_normal_callback(RID p_texture, VisualServer::TextureDetectCallback p_callback, void *p_userdata) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->detect_normal = p_callback;
texture->detect_normal_ud = p_userdata;
}
RID RasterizerStorageGLES2::texture_create_radiance_cubemap(RID p_source, int p_resolution) const {
return RID();
}
RID RasterizerStorageGLES2::sky_create() {
Sky *sky = memnew(Sky);
sky->radiance = 0;
return sky_owner.make_rid(sky);
}
void RasterizerStorageGLES2::sky_set_texture(RID p_sky, RID p_panorama, int p_radiance_size) {
Sky *sky = sky_owner.getornull(p_sky);
ERR_FAIL_COND(!sky);
if (sky->panorama.is_valid()) {
sky->panorama = RID();
glDeleteTextures(1, &sky->radiance);
sky->radiance = 0;
}
sky->panorama = p_panorama;
if (!sky->panorama.is_valid()) {
return; // the panorama was cleared
}
Texture *texture = texture_owner.getornull(sky->panorama);
if (!texture) {
sky->panorama = RID();
ERR_FAIL_COND(!texture);
}
texture = texture->get_ptr(); //resolve for proxies
// glBindVertexArray(0) and more
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
glDisableVertexAttribArray(i);
}
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(texture->target, texture->tex_id);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //need this for proper sampling
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// New cubemap that will hold the mipmaps with different roughness values
glActiveTexture(GL_TEXTURE2);
glGenTextures(1, &sky->radiance);
glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance);
int size = p_radiance_size / 2; //divide by two because its a cubemap (this is an approximation because GLES3 uses a dual paraboloid)
GLenum internal_format = GL_RGB;
GLenum format = GL_RGB;
GLenum type = GL_UNSIGNED_BYTE;
// Set the initial (empty) mipmaps
// Mobile hardware (PowerVR specially) prefers this approach,
// the previous approach with manual lod levels kills the game.
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, nullptr);
}
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// No filters for now
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, resources.mipmap_blur_fbo);
int mipmaps = 6;
int lod = 0;
int mm_level = mipmaps;
size = p_radiance_size / 2;
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, true);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_DIRECT_WRITE, true);
shaders.cubemap_filter.bind();
// third, render to the framebuffer using separate textures, then copy to mipmaps
while (size >= 1) {
//make framebuffer size the texture size, need to use a separate texture for compatibility
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, resources.mipmap_blur_color);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, resources.mipmap_blur_color, 0);
if (lod == 1) {
// We set USE_DIRECT_WRITE to false for LOD levels 1 and up, so the shader will properly
// filter the roughness instead of just copying 1:1 from the source panorama.
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_DIRECT_WRITE, false);
shaders.cubemap_filter.bind();
}
glViewport(0, 0, size, size);
bind_quad_array();
glActiveTexture(GL_TEXTURE2); //back to panorama
for (int i = 0; i < 6; i++) {
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i);
float roughness = mm_level >= 0 ? lod / (float)(mipmaps - 1) : 1;
roughness = MIN(1.0, roughness); //keep max at 1
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness);
shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size);
}
size >>= 1;
mm_level--;
lod++;
}
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false);
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_DIRECT_WRITE, false);
// restore ranges
glActiveTexture(GL_TEXTURE2); //back to panorama
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE3); //back to panorama
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
//reset flags on Sky Texture that may have changed
texture_set_flags(sky->panorama, texture->flags);
// Framebuffer did its job. thank mr framebuffer
glActiveTexture(GL_TEXTURE0); //back to panorama
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
}
/* SHADER API */
RID RasterizerStorageGLES2::shader_create() {
Shader *shader = memnew(Shader);
shader->mode = VS::SHADER_SPATIAL;
shader->shader = &scene->state.scene_shader;
RID rid = shader_owner.make_rid(shader);
_shader_make_dirty(shader);
shader->self = rid;
return rid;
}
void RasterizerStorageGLES2::_shader_make_dirty(Shader *p_shader) {
if (p_shader->dirty_list.in_list()) {
return;
}
_shader_dirty_list.add(&p_shader->dirty_list);
}
void RasterizerStorageGLES2::shader_set_code(RID p_shader, const String &p_code) {
Shader *shader = shader_owner.getornull(p_shader);
ERR_FAIL_COND(!shader);
shader->code = p_code;
String mode_string = ShaderLanguage::get_shader_type(p_code);
VS::ShaderMode mode;
if (mode_string == "canvas_item") {
mode = VS::SHADER_CANVAS_ITEM;
} else if (mode_string == "particles") {
mode = VS::SHADER_PARTICLES;
} else {
mode = VS::SHADER_SPATIAL;
}
if (shader->custom_code_id && mode != shader->mode) {
shader->shader->free_custom_shader(shader->custom_code_id);
shader->custom_code_id = 0;
}
shader->mode = mode;
// TODO handle all shader types
if (mode == VS::SHADER_CANVAS_ITEM) {
shader->shader = &canvas->state.canvas_shader;
} else if (mode == VS::SHADER_SPATIAL) {
shader->shader = &scene->state.scene_shader;
} else {
return;
}
if (shader->custom_code_id == 0) {
shader->custom_code_id = shader->shader->create_custom_shader();
}
_shader_make_dirty(shader);
}
String RasterizerStorageGLES2::shader_get_code(RID p_shader) const {
const Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, "");
return shader->code;
}
void RasterizerStorageGLES2::_update_shader(Shader *p_shader) const {
_shader_dirty_list.remove(&p_shader->dirty_list);
p_shader->valid = false;
p_shader->uniforms.clear();
if (p_shader->code == String()) {
return; //just invalid, but no error
}
ShaderCompilerGLES2::GeneratedCode gen_code;
ShaderCompilerGLES2::IdentifierActions *actions = nullptr;
switch (p_shader->mode) {
case VS::SHADER_CANVAS_ITEM: {
p_shader->canvas_item.light_mode = Shader::CanvasItem::LIGHT_MODE_NORMAL;
p_shader->canvas_item.blend_mode = Shader::CanvasItem::BLEND_MODE_MIX;
p_shader->canvas_item.uses_screen_texture = false;
p_shader->canvas_item.uses_screen_uv = false;
p_shader->canvas_item.uses_time = false;
p_shader->canvas_item.uses_modulate = false;
p_shader->canvas_item.uses_color = false;
p_shader->canvas_item.uses_vertex = false;
p_shader->canvas_item.batch_flags = 0;
p_shader->canvas_item.uses_world_matrix = false;
p_shader->canvas_item.uses_extra_matrix = false;
p_shader->canvas_item.uses_projection_matrix = false;
p_shader->canvas_item.uses_instance_custom = false;
shaders.actions_canvas.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_ADD);
shaders.actions_canvas.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MIX);
shaders.actions_canvas.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_SUB);
shaders.actions_canvas.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MUL);
shaders.actions_canvas.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_PMALPHA);
shaders.actions_canvas.render_mode_values["unshaded"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_UNSHADED);
shaders.actions_canvas.render_mode_values["light_only"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_LIGHT_ONLY);
shaders.actions_canvas.usage_flag_pointers["SCREEN_UV"] = &p_shader->canvas_item.uses_screen_uv;
shaders.actions_canvas.usage_flag_pointers["SCREEN_PIXEL_SIZE"] = &p_shader->canvas_item.uses_screen_uv;
shaders.actions_canvas.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->canvas_item.uses_screen_texture;
shaders.actions_canvas.usage_flag_pointers["TIME"] = &p_shader->canvas_item.uses_time;
shaders.actions_canvas.usage_flag_pointers["MODULATE"] = &p_shader->canvas_item.uses_modulate;
shaders.actions_canvas.usage_flag_pointers["COLOR"] = &p_shader->canvas_item.uses_color;
shaders.actions_canvas.usage_flag_pointers["VERTEX"] = &p_shader->canvas_item.uses_vertex;
shaders.actions_canvas.usage_flag_pointers["WORLD_MATRIX"] = &p_shader->canvas_item.uses_world_matrix;
shaders.actions_canvas.usage_flag_pointers["EXTRA_MATRIX"] = &p_shader->canvas_item.uses_extra_matrix;
shaders.actions_canvas.usage_flag_pointers["PROJECTION_MATRIX"] = &p_shader->canvas_item.uses_projection_matrix;
shaders.actions_canvas.usage_flag_pointers["INSTANCE_CUSTOM"] = &p_shader->canvas_item.uses_instance_custom;
actions = &shaders.actions_canvas;
actions->uniforms = &p_shader->uniforms;
} break;
case VS::SHADER_SPATIAL: {
p_shader->spatial.blend_mode = Shader::Spatial::BLEND_MODE_MIX;
p_shader->spatial.depth_draw_mode = Shader::Spatial::DEPTH_DRAW_OPAQUE;
p_shader->spatial.cull_mode = Shader::Spatial::CULL_MODE_BACK;
p_shader->spatial.uses_alpha = false;
p_shader->spatial.uses_alpha_scissor = false;
p_shader->spatial.uses_discard = false;
p_shader->spatial.unshaded = false;
p_shader->spatial.no_depth_test = false;
p_shader->spatial.uses_sss = false;
p_shader->spatial.uses_time = false;
p_shader->spatial.uses_vertex_lighting = false;
p_shader->spatial.uses_screen_texture = false;
p_shader->spatial.uses_depth_texture = false;
p_shader->spatial.uses_vertex = false;
p_shader->spatial.uses_tangent = false;
p_shader->spatial.uses_ensure_correct_normals = false;
p_shader->spatial.writes_modelview_or_projection = false;
p_shader->spatial.uses_world_coordinates = false;
shaders.actions_scene.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_ADD);
shaders.actions_scene.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MIX);
shaders.actions_scene.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_SUB);
shaders.actions_scene.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MUL);
shaders.actions_scene.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_OPAQUE);
shaders.actions_scene.render_mode_values["depth_draw_always"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALWAYS);
shaders.actions_scene.render_mode_values["depth_draw_never"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_NEVER);
shaders.actions_scene.render_mode_values["depth_draw_alpha_prepass"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS);
shaders.actions_scene.render_mode_values["cull_front"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_FRONT);
shaders.actions_scene.render_mode_values["cull_back"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_BACK);
shaders.actions_scene.render_mode_values["cull_disabled"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_DISABLED);
shaders.actions_scene.render_mode_flags["unshaded"] = &p_shader->spatial.unshaded;
shaders.actions_scene.render_mode_flags["depth_test_disable"] = &p_shader->spatial.no_depth_test;
shaders.actions_scene.render_mode_flags["vertex_lighting"] = &p_shader->spatial.uses_vertex_lighting;
shaders.actions_scene.render_mode_flags["world_vertex_coords"] = &p_shader->spatial.uses_world_coordinates;
shaders.actions_scene.render_mode_flags["ensure_correct_normals"] = &p_shader->spatial.uses_ensure_correct_normals;
shaders.actions_scene.usage_flag_pointers["ALPHA"] = &p_shader->spatial.uses_alpha;
shaders.actions_scene.usage_flag_pointers["ALPHA_SCISSOR"] = &p_shader->spatial.uses_alpha_scissor;
shaders.actions_scene.usage_flag_pointers["SSS_STRENGTH"] = &p_shader->spatial.uses_sss;
shaders.actions_scene.usage_flag_pointers["DISCARD"] = &p_shader->spatial.uses_discard;
shaders.actions_scene.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->spatial.uses_screen_texture;
shaders.actions_scene.usage_flag_pointers["DEPTH_TEXTURE"] = &p_shader->spatial.uses_depth_texture;
shaders.actions_scene.usage_flag_pointers["TIME"] = &p_shader->spatial.uses_time;
// Use of any of these BUILTINS indicate the need for transformed tangents.
// This is needed to know when to transform tangents in software skinning.
shaders.actions_scene.usage_flag_pointers["TANGENT"] = &p_shader->spatial.uses_tangent;
shaders.actions_scene.usage_flag_pointers["NORMALMAP"] = &p_shader->spatial.uses_tangent;
shaders.actions_scene.write_flag_pointers["MODELVIEW_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection;
shaders.actions_scene.write_flag_pointers["PROJECTION_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection;
shaders.actions_scene.write_flag_pointers["VERTEX"] = &p_shader->spatial.uses_vertex;
actions = &shaders.actions_scene;
actions->uniforms = &p_shader->uniforms;
if (p_shader->spatial.uses_screen_texture && p_shader->spatial.uses_depth_texture) {
ERR_PRINT_ONCE("Using both SCREEN_TEXTURE and DEPTH_TEXTURE is not supported in GLES2");
}
if (p_shader->spatial.uses_depth_texture && !config.support_depth_texture) {
ERR_PRINT_ONCE("Using DEPTH_TEXTURE is not permitted on this hardware, operation will fail.");
}
} break;
default: {
return;
} break;
}
Error err = shaders.compiler.compile(p_shader->mode, p_shader->code, actions, p_shader->path, gen_code);
if (err != OK) {
return;
}
p_shader->shader->set_custom_shader_code(p_shader->custom_code_id, gen_code.vertex, gen_code.vertex_global, gen_code.fragment, gen_code.light, gen_code.fragment_global, gen_code.uniforms, gen_code.texture_uniforms, gen_code.custom_defines);
p_shader->texture_count = gen_code.texture_uniforms.size();
p_shader->texture_hints = gen_code.texture_hints;
p_shader->uses_vertex_time = gen_code.uses_vertex_time;
p_shader->uses_fragment_time = gen_code.uses_fragment_time;
// some logic for batching
if (p_shader->mode == VS::SHADER_CANVAS_ITEM) {
if (p_shader->canvas_item.uses_modulate | p_shader->canvas_item.uses_color) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_COLOR_BAKING;
}
if (p_shader->canvas_item.uses_vertex) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_VERTEX_BAKING;
}
if (p_shader->canvas_item.uses_world_matrix | p_shader->canvas_item.uses_extra_matrix | p_shader->canvas_item.uses_projection_matrix | p_shader->canvas_item.uses_instance_custom) {
p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_ITEM_JOINING;
}
}
p_shader->shader->set_custom_shader(p_shader->custom_code_id);
p_shader->shader->bind();
// cache uniform locations
for (SelfList<Material> *E = p_shader->materials.first(); E; E = E->next()) {
_material_make_dirty(E->self());
}
p_shader->valid = true;
p_shader->version++;
}
void RasterizerStorageGLES2::update_dirty_shaders() {
while (_shader_dirty_list.first()) {
_update_shader(_shader_dirty_list.first()->self());
}
}
void RasterizerStorageGLES2::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
if (shader->dirty_list.in_list()) {
_update_shader(shader);
}
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = shader->uniforms.front(); E; E = E->next()) {
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi;
ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[E->get()];
pi.name = E->get();
switch (u.type) {
case ShaderLanguage::TYPE_STRUCT: {
pi.type = Variant::ARRAY;
} break;
case ShaderLanguage::TYPE_VOID: {
pi.type = Variant::NIL;
} break;
case ShaderLanguage::TYPE_BOOL: {
pi.type = Variant::BOOL;
} break;
// bool vectors
case ShaderLanguage::TYPE_BVEC2: {
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y";
} break;
case ShaderLanguage::TYPE_BVEC3: {
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y,z";
} break;
case ShaderLanguage::TYPE_BVEC4: {
pi.type = Variant::INT;
pi.hint = PROPERTY_HINT_FLAGS;
pi.hint_string = "x,y,z,w";
} break;
// int stuff
case ShaderLanguage::TYPE_UINT:
case ShaderLanguage::TYPE_INT: {
pi.type = Variant::INT;
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) {
pi.hint = PROPERTY_HINT_RANGE;
pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]);
}
} break;
case ShaderLanguage::TYPE_IVEC2:
case ShaderLanguage::TYPE_UVEC2:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_UVEC3:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC4: {
pi.type = Variant::POOL_INT_ARRAY;
} break;
case ShaderLanguage::TYPE_FLOAT: {
pi.type = Variant::REAL;
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) {
pi.hint = PROPERTY_HINT_RANGE;
pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]);
}
} break;
case ShaderLanguage::TYPE_VEC2: {
pi.type = Variant::VECTOR2;
} break;
case ShaderLanguage::TYPE_VEC3: {
pi.type = Variant::VECTOR3;
} break;
case ShaderLanguage::TYPE_VEC4: {
if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) {
pi.type = Variant::COLOR;
} else {
pi.type = Variant::PLANE;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
pi.type = Variant::TRANSFORM2D;
} break;
case ShaderLanguage::TYPE_MAT3: {
pi.type = Variant::BASIS;
} break;
case ShaderLanguage::TYPE_MAT4: {
pi.type = Variant::TRANSFORM;
} break;
case ShaderLanguage::TYPE_SAMPLER2D:
case ShaderLanguage::TYPE_SAMPLEREXT:
case ShaderLanguage::TYPE_ISAMPLER2D:
case ShaderLanguage::TYPE_USAMPLER2D: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "Texture";
} break;
case ShaderLanguage::TYPE_SAMPLERCUBE: {
pi.type = Variant::OBJECT;
pi.hint = PROPERTY_HINT_RESOURCE_TYPE;
pi.hint_string = "CubeMap";
} break;
case ShaderLanguage::TYPE_SAMPLER2DARRAY:
case ShaderLanguage::TYPE_ISAMPLER2DARRAY:
case ShaderLanguage::TYPE_USAMPLER2DARRAY:
case ShaderLanguage::TYPE_SAMPLER3D:
case ShaderLanguage::TYPE_ISAMPLER3D:
case ShaderLanguage::TYPE_USAMPLER3D: {
// Not implemented in GLES2
} break;
default: {
}
}
p_param_list->push_back(pi);
}
}
void RasterizerStorageGLES2::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture));
if (p_texture.is_valid()) {
shader->default_textures[p_name] = p_texture;
} else {
shader->default_textures.erase(p_name);
}
_shader_make_dirty(shader);
}
RID RasterizerStorageGLES2::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const {
const Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND_V(!shader, RID());
const Map<StringName, RID>::Element *E = shader->default_textures.find(p_name);
if (!E) {
return RID();
}
return E->get();
}
void RasterizerStorageGLES2::shader_add_custom_define(RID p_shader, const String &p_define) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->add_custom_define(p_define);
_shader_make_dirty(shader);
}
void RasterizerStorageGLES2::shader_get_custom_defines(RID p_shader, Vector<String> *p_defines) const {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->get_custom_defines(p_defines);
}
void RasterizerStorageGLES2::shader_remove_custom_define(RID p_shader, const String &p_define) {
Shader *shader = shader_owner.get(p_shader);
ERR_FAIL_COND(!shader);
shader->shader->remove_custom_define(p_define);
_shader_make_dirty(shader);
}
/* COMMON MATERIAL API */
void RasterizerStorageGLES2::_material_make_dirty(Material *p_material) const {
if (p_material->dirty_list.in_list()) {
return;
}
_material_dirty_list.add(&p_material->dirty_list);
}
RID RasterizerStorageGLES2::material_create() {
Material *material = memnew(Material);
return material_owner.make_rid(material);
}
void RasterizerStorageGLES2::material_set_shader(RID p_material, RID p_shader) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
Shader *shader = shader_owner.getornull(p_shader);
if (material->shader) {
// if a shader is present, remove the old shader
material->shader->materials.remove(&material->list);
}
material->shader = shader;
if (shader) {
shader->materials.add(&material->list);
}
_material_make_dirty(material);
}
RID RasterizerStorageGLES2::material_get_shader(RID p_material) const {
const Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, RID());
if (material->shader) {
return material->shader->self;
}
return RID();
}
void RasterizerStorageGLES2::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type() == Variant::NIL) {
material->params.erase(p_param);
} else {
material->params[p_param] = p_value;
}
_material_make_dirty(material);
}
Variant RasterizerStorageGLES2::material_get_param(RID p_material, const StringName &p_param) const {
const Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, RID());
if (material->params.has(p_param)) {
return material->params[p_param];
}
return material_get_param_default(p_material, p_param);
}
Variant RasterizerStorageGLES2::material_get_param_default(RID p_material, const StringName &p_param) const {
const Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->shader) {
if (material->shader->uniforms.has(p_param)) {
ShaderLanguage::ShaderNode::Uniform uniform = material->shader->uniforms[p_param];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
}
return Variant();
}
void RasterizerStorageGLES2::material_set_line_width(RID p_material, float p_width) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
material->line_width = p_width;
}
void RasterizerStorageGLES2::material_set_next_pass(RID p_material, RID p_next_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->next_pass = p_next_material;
}
bool RasterizerStorageGLES2::material_is_animated(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->dirty_list.in_list()) {
_update_material(material);
}
bool animated = material->is_animated_cache;
if (!animated && material->next_pass.is_valid()) {
animated = material_is_animated(material->next_pass);
}
return animated;
}
bool RasterizerStorageGLES2::material_casts_shadows(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->dirty_list.in_list()) {
_update_material(material);
}
bool casts_shadows = material->can_cast_shadow_cache;
if (!casts_shadows && material->next_pass.is_valid()) {
casts_shadows = material_casts_shadows(material->next_pass);
}
return casts_shadows;
}
bool RasterizerStorageGLES2::material_uses_tangents(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (!material->shader) {
return false;
}
if (material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
return material->shader->spatial.uses_tangent;
}
bool RasterizerStorageGLES2::material_uses_ensure_correct_normals(RID p_material) {
Material *material = material_owner.get(p_material);
ERR_FAIL_COND_V(!material, false);
if (!material->shader) {
return false;
}
if (material->shader->dirty_list.in_list()) {
_update_shader(material->shader);
}
return material->shader->spatial.uses_ensure_correct_normals;
}
void RasterizerStorageGLES2::material_add_instance_owner(RID p_material, RasterizerScene::InstanceBase *p_instance) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
Map<RasterizerScene::InstanceBase *, int>::Element *E = material->instance_owners.find(p_instance);
if (E) {
E->get()++;
} else {
material->instance_owners[p_instance] = 1;
}
}
void RasterizerStorageGLES2::material_remove_instance_owner(RID p_material, RasterizerScene::InstanceBase *p_instance) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
Map<RasterizerScene::InstanceBase *, int>::Element *E = material->instance_owners.find(p_instance);
ERR_FAIL_COND(!E);
E->get()--;
if (E->get() == 0) {
material->instance_owners.erase(E);
}
}
void RasterizerStorageGLES2::material_set_render_priority(RID p_material, int priority) {
ERR_FAIL_COND(priority < VS::MATERIAL_RENDER_PRIORITY_MIN);
ERR_FAIL_COND(priority > VS::MATERIAL_RENDER_PRIORITY_MAX);
Material *material = material_owner.get(p_material);
ERR_FAIL_COND(!material);
material->render_priority = priority;
}
void RasterizerStorageGLES2::_update_material(Material *p_material) {
if (p_material->dirty_list.in_list()) {
_material_dirty_list.remove(&p_material->dirty_list);
}
if (p_material->shader && p_material->shader->dirty_list.in_list()) {
_update_shader(p_material->shader);
}
if (p_material->shader && !p_material->shader->valid) {
return;
}
{
bool can_cast_shadow = false;
bool is_animated = false;
if (p_material->shader && p_material->shader->mode == VS::SHADER_SPATIAL) {
if (p_material->shader->spatial.blend_mode == Shader::Spatial::BLEND_MODE_MIX &&
(!(p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.depth_draw_mode == Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) {
can_cast_shadow = true;
}
if (p_material->shader->spatial.uses_discard && p_material->shader->uses_fragment_time) {
is_animated = true;
}
if (p_material->shader->spatial.uses_vertex && p_material->shader->uses_vertex_time) {
is_animated = true;
}
if (can_cast_shadow != p_material->can_cast_shadow_cache || is_animated != p_material->is_animated_cache) {
p_material->can_cast_shadow_cache = can_cast_shadow;
p_material->is_animated_cache = is_animated;
for (Map<Geometry *, int>::Element *E = p_material->geometry_owners.front(); E; E = E->next()) {
E->key()->material_changed_notify();
}
for (Map<RasterizerScene::InstanceBase *, int>::Element *E = p_material->instance_owners.front(); E; E = E->next()) {
E->key()->base_changed(false, true);
}
}
}
}
// uniforms and other things will be set in the use_material method in ShaderGLES2
if (p_material->shader && p_material->shader->texture_count > 0) {
p_material->textures.resize(p_material->shader->texture_count);
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = p_material->shader->uniforms.front(); E; E = E->next()) {
if (E->get().texture_order < 0) {
continue; // not a texture, does not go here
}
RID texture;
Map<StringName, Variant>::Element *V = p_material->params.find(E->key());
if (V) {
texture = V->get();
}
if (!texture.is_valid()) {
Map<StringName, RID>::Element *W = p_material->shader->default_textures.find(E->key());
if (W) {
texture = W->get();
}
}
p_material->textures.write[E->get().texture_order] = Pair<StringName, RID>(E->key(), texture);
}
} else {
p_material->textures.clear();
}
}
void RasterizerStorageGLES2::_material_add_geometry(RID p_material, Geometry *p_geometry) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry);
if (I) {
I->get()++;
} else {
material->geometry_owners[p_geometry] = 1;
}
}
void RasterizerStorageGLES2::_material_remove_geometry(RID p_material, Geometry *p_geometry) {
Material *material = material_owner.getornull(p_material);
ERR_FAIL_COND(!material);
Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry);
ERR_FAIL_COND(!I);
I->get()--;
if (I->get() == 0) {
material->geometry_owners.erase(I);
}
}
void RasterizerStorageGLES2::update_dirty_materials() {
while (_material_dirty_list.first()) {
Material *material = _material_dirty_list.first()->self();
_update_material(material);
}
}
/* MESH API */
RID RasterizerStorageGLES2::mesh_create() {
Mesh *mesh = memnew(Mesh);
return mesh_owner.make_rid(mesh);
}
static PoolVector<uint8_t> _unpack_half_floats(const PoolVector<uint8_t> &array, uint32_t &format, int p_vertices) {
uint32_t p_format = format;
static int src_size[VS::ARRAY_MAX];
static int dst_size[VS::ARRAY_MAX];
static int to_convert[VS::ARRAY_MAX];
int src_stride = 0;
int dst_stride = 0;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
to_convert[i] = 0;
if (!(p_format & (1 << i))) {
src_size[i] = 0;
dst_size[i] = 0;
continue;
}
switch (i) {
case VS::ARRAY_VERTEX: {
if (p_format & VS::ARRAY_COMPRESS_VERTEX) {
if (p_format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
src_size[i] = 4;
dst_size[i] = 8;
to_convert[i] = 2;
} else {
src_size[i] = 8;
dst_size[i] = 12;
to_convert[i] = 3;
}
format &= ~VS::ARRAY_COMPRESS_VERTEX;
} else {
if (p_format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
src_size[i] = 8;
dst_size[i] = 8;
} else {
src_size[i] = 12;
dst_size[i] = 12;
}
}
} break;
case VS::ARRAY_NORMAL: {
if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
src_size[i] = 4;
dst_size[i] = 4;
} else {
if (p_format & VS::ARRAY_COMPRESS_NORMAL) {
src_size[i] = 4;
dst_size[i] = 4;
} else {
src_size[i] = 12;
dst_size[i] = 12;
}
}
} break;
case VS::ARRAY_TANGENT: {
if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if (!(p_format & VS::ARRAY_COMPRESS_TANGENT && p_format & VS::ARRAY_COMPRESS_NORMAL)) {
src_size[VS::ARRAY_NORMAL] = 8;
dst_size[VS::ARRAY_NORMAL] = 8;
// These must be incremented manually,
// as we are modifying a previous attribute size.
src_stride += 4;
dst_stride += 4;
}
src_size[i] = 0;
dst_size[i] = 0;
} else {
if (p_format & VS::ARRAY_COMPRESS_TANGENT) {
src_size[i] = 4;
dst_size[i] = 4;
} else {
src_size[i] = 16;
dst_size[i] = 16;
}
}
} break;
case VS::ARRAY_COLOR: {
if (p_format & VS::ARRAY_COMPRESS_COLOR) {
src_size[i] = 4;
dst_size[i] = 4;
} else {
src_size[i] = 16;
dst_size[i] = 16;
}
} break;
case VS::ARRAY_TEX_UV: {
if (p_format & VS::ARRAY_COMPRESS_TEX_UV) {
src_size[i] = 4;
to_convert[i] = 2;
format &= ~VS::ARRAY_COMPRESS_TEX_UV;
} else {
src_size[i] = 8;
}
dst_size[i] = 8;
} break;
case VS::ARRAY_TEX_UV2: {
if (p_format & VS::ARRAY_COMPRESS_TEX_UV2) {
src_size[i] = 4;
to_convert[i] = 2;
format &= ~VS::ARRAY_COMPRESS_TEX_UV2;
} else {
src_size[i] = 8;
}
dst_size[i] = 8;
} break;
case VS::ARRAY_BONES: {
if (p_format & VS::ARRAY_FLAG_USE_16_BIT_BONES) {
src_size[i] = 8;
dst_size[i] = 8;
} else {
src_size[i] = 4;
dst_size[i] = 4;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (p_format & VS::ARRAY_COMPRESS_WEIGHTS) {
src_size[i] = 8;
dst_size[i] = 8;
} else {
src_size[i] = 16;
dst_size[i] = 16;
}
} break;
case VS::ARRAY_INDEX: {
src_size[i] = 0;
dst_size[i] = 0;
} break;
}
src_stride += src_size[i];
dst_stride += dst_size[i];
}
PoolVector<uint8_t> ret;
ret.resize(p_vertices * dst_stride);
PoolVector<uint8_t>::Read r = array.read();
PoolVector<uint8_t>::Write w = ret.write();
int src_offset = 0;
int dst_offset = 0;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
if (src_size[i] == 0) {
continue; //no go
}
const uint8_t *rptr = r.ptr();
uint8_t *wptr = w.ptr();
if (to_convert[i]) { //converting
for (int j = 0; j < p_vertices; j++) {
const uint16_t *src = (const uint16_t *)&rptr[src_stride * j + src_offset];
float *dst = (float *)&wptr[dst_stride * j + dst_offset];
for (int k = 0; k < to_convert[i]; k++) {
dst[k] = Math::half_to_float(src[k]);
}
}
} else {
//just copy
for (int j = 0; j < p_vertices; j++) {
for (int k = 0; k < src_size[i]; k++) {
wptr[dst_stride * j + dst_offset + k] = rptr[src_stride * j + src_offset + k];
}
}
}
src_offset += src_size[i];
dst_offset += dst_size[i];
}
r.release();
w.release();
return ret;
}
void RasterizerStorageGLES2::mesh_add_surface(RID p_mesh, uint32_t p_format, VS::PrimitiveType p_primitive, const PoolVector<uint8_t> &p_array, int p_vertex_count, const PoolVector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<PoolVector<uint8_t>> &p_blend_shapes, const Vector<AABB> &p_bone_aabbs) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND(!(p_format & VS::ARRAY_FORMAT_VERTEX));
//must have index and bones, both.
{
uint32_t bones_weight = VS::ARRAY_FORMAT_BONES | VS::ARRAY_FORMAT_WEIGHTS;
ERR_FAIL_COND_MSG((p_format & bones_weight) && (p_format & bones_weight) != bones_weight, "Array must have both bones and weights in format or none.");
}
//bool has_morph = p_blend_shapes.size();
bool use_split_stream = GLOBAL_GET("rendering/misc/mesh_storage/split_stream") && !(p_format & VS::ARRAY_FLAG_USE_DYNAMIC_UPDATE);
Surface::Attrib attribs[VS::ARRAY_MAX];
int attributes_base_offset = 0;
int attributes_stride = 0;
int positions_stride = 0;
bool uses_half_float = false;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
attribs[i].index = i;
if (!(p_format & (1 << i))) {
attribs[i].enabled = false;
attribs[i].integer = false;
continue;
}
attribs[i].enabled = true;
attribs[i].offset = attributes_base_offset + attributes_stride;
attribs[i].integer = false;
switch (i) {
case VS::ARRAY_VERTEX: {
if (p_format & VS::ARRAY_FLAG_USE_2D_VERTICES) {
attribs[i].size = 2;
} else {
attribs[i].size = (p_format & VS::ARRAY_COMPRESS_VERTEX) ? 4 : 3;
}
if (p_format & VS::ARRAY_COMPRESS_VERTEX) {
attribs[i].type = _GL_HALF_FLOAT_OES;
positions_stride += attribs[i].size * 2;
uses_half_float = true;
} else {
attribs[i].type = GL_FLOAT;
positions_stride += attribs[i].size * 4;
}
attribs[i].normalized = GL_FALSE;
if (use_split_stream) {
attributes_base_offset = positions_stride * p_vertex_count;
} else {
attributes_base_offset = positions_stride;
}
} break;
case VS::ARRAY_NORMAL: {
if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
// Always pack normal and tangent into vec4
// normal will be xy tangent will be zw
// normal will always be oct32 encoded
// UNLESS tangent exists and is also compressed
// then it will be oct16 encoded along with tangent
attribs[i].normalized = GL_TRUE;
attribs[i].size = 2;
attribs[i].type = GL_SHORT;
attributes_stride += 4;
} else {
attribs[i].size = 3;
if (p_format & VS::ARRAY_COMPRESS_NORMAL) {
attribs[i].type = GL_BYTE;
attributes_stride += 4; //pad extra byte
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 12;
attribs[i].normalized = GL_FALSE;
}
}
} break;
case VS::ARRAY_TANGENT: {
if (p_format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
attribs[i].enabled = false;
attribs[VS::ARRAY_NORMAL].size = 4;
if (p_format & VS::ARRAY_COMPRESS_TANGENT && p_format & VS::ARRAY_COMPRESS_NORMAL) {
// normal and tangent will each be oct16 (2 bytes each)
// pack into single vec4<GL_BYTE> for memory bandwidth
// savings while keeping 4 byte alignment
attribs[VS::ARRAY_NORMAL].type = GL_BYTE;
} else {
// normal and tangent will each be oct32 (4 bytes each)
attributes_stride += 4;
}
} else {
attribs[i].size = 4;
if (p_format & VS::ARRAY_COMPRESS_TANGENT) {
attribs[i].type = GL_BYTE;
attributes_stride += 4;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 16;
attribs[i].normalized = GL_FALSE;
}
}
} break;
case VS::ARRAY_COLOR: {
attribs[i].size = 4;
if (p_format & VS::ARRAY_COMPRESS_COLOR) {
attribs[i].type = GL_UNSIGNED_BYTE;
attributes_stride += 4;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 16;
attribs[i].normalized = GL_FALSE;
}
} break;
case VS::ARRAY_TEX_UV: {
attribs[i].size = 2;
if (p_format & VS::ARRAY_COMPRESS_TEX_UV) {
attribs[i].type = _GL_HALF_FLOAT_OES;
attributes_stride += 4;
uses_half_float = true;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 8;
}
attribs[i].normalized = GL_FALSE;
} break;
case VS::ARRAY_TEX_UV2: {
attribs[i].size = 2;
if (p_format & VS::ARRAY_COMPRESS_TEX_UV2) {
attribs[i].type = _GL_HALF_FLOAT_OES;
attributes_stride += 4;
uses_half_float = true;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 8;
}
attribs[i].normalized = GL_FALSE;
} break;
case VS::ARRAY_BONES: {
attribs[i].size = 4;
if (p_format & VS::ARRAY_FLAG_USE_16_BIT_BONES) {
attribs[i].type = GL_UNSIGNED_SHORT;
attributes_stride += 8;
} else {
attribs[i].type = GL_UNSIGNED_BYTE;
attributes_stride += 4;
}
attribs[i].normalized = GL_FALSE;
attribs[i].integer = true;
} break;
case VS::ARRAY_WEIGHTS: {
attribs[i].size = 4;
if (p_format & VS::ARRAY_COMPRESS_WEIGHTS) {
attribs[i].type = GL_UNSIGNED_SHORT;
attributes_stride += 8;
attribs[i].normalized = GL_TRUE;
} else {
attribs[i].type = GL_FLOAT;
attributes_stride += 16;
attribs[i].normalized = GL_FALSE;
}
} break;
case VS::ARRAY_INDEX: {
attribs[i].size = 1;
if (p_vertex_count >= (1 << 16)) {
attribs[i].type = GL_UNSIGNED_INT;
attribs[i].stride = 4;
} else {
attribs[i].type = GL_UNSIGNED_SHORT;
attribs[i].stride = 2;
}
attribs[i].normalized = GL_FALSE;
} break;
}
}
if (use_split_stream) {
attribs[VS::ARRAY_VERTEX].stride = positions_stride;
for (int i = 1; i < VS::ARRAY_MAX - 1; i++) {
attribs[i].stride = attributes_stride;
}
} else {
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
attribs[i].stride = positions_stride + attributes_stride;
}
}
//validate sizes
PoolVector<uint8_t> array = p_array;
int stride = positions_stride + attributes_stride;
int array_size = stride * p_vertex_count;
int index_array_size = 0;
if (array.size() != array_size && array.size() + p_vertex_count * 2 == array_size) {
//old format, convert
array = PoolVector<uint8_t>();
array.resize(p_array.size() + p_vertex_count * 2);
PoolVector<uint8_t>::Write w = array.write();
PoolVector<uint8_t>::Read r = p_array.read();
uint16_t *w16 = (uint16_t *)w.ptr();
const uint16_t *r16 = (uint16_t *)r.ptr();
uint16_t one = Math::make_half_float(1);
for (int i = 0; i < p_vertex_count; i++) {
*w16++ = *r16++;
*w16++ = *r16++;
*w16++ = *r16++;
*w16++ = one;
for (int j = 0; j < (stride / 2) - 4; j++) {
*w16++ = *r16++;
}
}
}
ERR_FAIL_COND(array.size() != array_size);
if (!config.support_half_float_vertices && uses_half_float) {
uint32_t new_format = p_format;
PoolVector<uint8_t> unpacked_array = _unpack_half_floats(array, new_format, p_vertex_count);
Vector<PoolVector<uint8_t>> unpacked_blend_shapes;
for (int i = 0; i < p_blend_shapes.size(); i++) {
uint32_t temp_format = p_format; // Just throw this away as it will be the same as new_format
unpacked_blend_shapes.push_back(_unpack_half_floats(p_blend_shapes[i], temp_format, p_vertex_count));
}
mesh_add_surface(p_mesh, new_format, p_primitive, unpacked_array, p_vertex_count, p_index_array, p_index_count, p_aabb, unpacked_blend_shapes, p_bone_aabbs);
return; //do not go any further, above function used unpacked stuff will be used instead.
}
if (p_format & VS::ARRAY_FORMAT_INDEX) {
index_array_size = attribs[VS::ARRAY_INDEX].stride * p_index_count;
}
ERR_FAIL_COND(p_index_array.size() != index_array_size);
ERR_FAIL_COND(p_blend_shapes.size() != mesh->blend_shape_count);
for (int i = 0; i < p_blend_shapes.size(); i++) {
ERR_FAIL_COND(p_blend_shapes[i].size() != array_size);
}
// all valid, create stuff
Surface *surface = memnew(Surface);
surface->active = true;
surface->array_len = p_vertex_count;
surface->index_array_len = p_index_count;
surface->array_byte_size = array.size();
surface->index_array_byte_size = p_index_array.size();
surface->primitive = p_primitive;
surface->mesh = mesh;
surface->format = p_format;
surface->skeleton_bone_aabb = p_bone_aabbs;
surface->skeleton_bone_used.resize(surface->skeleton_bone_aabb.size());
surface->aabb = p_aabb;
surface->max_bone = p_bone_aabbs.size();
surface->blend_shape_data = p_blend_shapes;
surface->data = array;
surface->index_data = p_index_array;
surface->total_data_size += surface->array_byte_size + surface->index_array_byte_size;
for (int i = 0; i < surface->skeleton_bone_used.size(); i++) {
surface->skeleton_bone_used.write[i] = !(surface->skeleton_bone_aabb[i].size.x < 0 || surface->skeleton_bone_aabb[i].size.y < 0 || surface->skeleton_bone_aabb[i].size.z < 0);
}
for (int i = 0; i < VS::ARRAY_MAX; i++) {
surface->attribs[i] = attribs[i];
}
// Okay, now the OpenGL stuff, wheeeeey \o/
{
PoolVector<uint8_t>::Read vr = array.read();
glGenBuffers(1, &surface->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER, array_size, vr.ptr(), (p_format & VS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (p_format & VS::ARRAY_FORMAT_INDEX) {
PoolVector<uint8_t>::Read ir = p_index_array.read();
glGenBuffers(1, &surface->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_array_size, ir.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
surface->index_id = 0;
}
// TODO generate wireframes
// Make one blend shape buffer per surface
{
surface->blend_shape_buffer_size = 0;
glGenBuffers(1, &surface->blend_shape_buffer_id);
}
}
mesh->surfaces.push_back(surface);
mesh->instance_change_notify(true, true);
info.vertex_mem += surface->total_data_size;
}
void RasterizerStorageGLES2::mesh_set_blend_shape_count(RID p_mesh, int p_amount) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND(mesh->surfaces.size() != 0);
ERR_FAIL_COND(p_amount < 0);
mesh->blend_shape_count = p_amount;
mesh->instance_change_notify(true, false);
if (!mesh->update_list.in_list()) {
blend_shapes_update_list.add(&mesh->update_list);
}
}
int RasterizerStorageGLES2::mesh_get_blend_shape_count(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
return mesh->blend_shape_count;
}
void RasterizerStorageGLES2::mesh_set_blend_shape_mode(RID p_mesh, VS::BlendShapeMode p_mode) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->blend_shape_mode = p_mode;
if (!mesh->update_list.in_list()) {
blend_shapes_update_list.add(&mesh->update_list);
}
}
VS::BlendShapeMode RasterizerStorageGLES2::mesh_get_blend_shape_mode(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::BLEND_SHAPE_MODE_NORMALIZED);
return mesh->blend_shape_mode;
}
void RasterizerStorageGLES2::mesh_set_blend_shape_values(RID p_mesh, PoolVector<float> p_values) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->blend_shape_values = p_values;
if (!mesh->update_list.in_list()) {
blend_shapes_update_list.add(&mesh->update_list);
}
}
PoolVector<float> RasterizerStorageGLES2::mesh_get_blend_shape_values(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, PoolVector<float>());
return mesh->blend_shape_values;
}
void RasterizerStorageGLES2::mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const PoolVector<uint8_t> &p_data) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
int total_size = p_data.size();
ERR_FAIL_COND(p_offset + total_size > mesh->surfaces[p_surface]->array_byte_size);
PoolVector<uint8_t>::Read r = p_data.read();
glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, p_offset, total_size, r.ptr());
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
void RasterizerStorageGLES2::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
if (mesh->surfaces[p_surface]->material == p_material) {
return;
}
if (mesh->surfaces[p_surface]->material.is_valid()) {
_material_remove_geometry(mesh->surfaces[p_surface]->material, mesh->surfaces[p_surface]);
}
mesh->surfaces[p_surface]->material = p_material;
if (mesh->surfaces[p_surface]->material.is_valid()) {
_material_add_geometry(mesh->surfaces[p_surface]->material, mesh->surfaces[p_surface]);
}
mesh->instance_change_notify(false, true);
}
RID RasterizerStorageGLES2::mesh_surface_get_material(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID());
return mesh->surfaces[p_surface]->material;
}
int RasterizerStorageGLES2::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
return mesh->surfaces[p_surface]->array_len;
}
int RasterizerStorageGLES2::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
return mesh->surfaces[p_surface]->index_array_len;
}
PoolVector<uint8_t> RasterizerStorageGLES2::mesh_surface_get_array(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, PoolVector<uint8_t>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), PoolVector<uint8_t>());
Surface *surface = mesh->surfaces[p_surface];
return surface->data;
}
PoolVector<uint8_t> RasterizerStorageGLES2::mesh_surface_get_index_array(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, PoolVector<uint8_t>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), PoolVector<uint8_t>());
Surface *surface = mesh->surfaces[p_surface];
return surface->index_data;
}
uint32_t RasterizerStorageGLES2::mesh_surface_get_format(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
return mesh->surfaces[p_surface]->format;
}
VS::PrimitiveType RasterizerStorageGLES2::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_MAX);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_MAX);
return mesh->surfaces[p_surface]->primitive;
}
AABB RasterizerStorageGLES2::mesh_surface_get_aabb(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), AABB());
return mesh->surfaces[p_surface]->aabb;
}
Vector<PoolVector<uint8_t>> RasterizerStorageGLES2::mesh_surface_get_blend_shapes(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, Vector<PoolVector<uint8_t>>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Vector<PoolVector<uint8_t>>());
return mesh->surfaces[p_surface]->blend_shape_data;
}
Vector<AABB> RasterizerStorageGLES2::mesh_surface_get_skeleton_aabb(RID p_mesh, int p_surface) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, Vector<AABB>());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Vector<AABB>());
return mesh->surfaces[p_surface]->skeleton_bone_aabb;
}
void RasterizerStorageGLES2::mesh_remove_surface(RID p_mesh, int p_surface) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
Surface *surface = mesh->surfaces[p_surface];
if (surface->material.is_valid()) {
_material_remove_geometry(surface->material, mesh->surfaces[p_surface]);
}
glDeleteBuffers(1, &surface->vertex_id);
if (surface->index_id) {
glDeleteBuffers(1, &surface->index_id);
}
glDeleteBuffers(1, &surface->blend_shape_buffer_id);
info.vertex_mem -= surface->total_data_size;
memdelete(surface);
mesh->surfaces.remove(p_surface);
mesh->instance_change_notify(true, true);
}
int RasterizerStorageGLES2::mesh_get_surface_count(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
return mesh->surfaces.size();
}
void RasterizerStorageGLES2::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
mesh->custom_aabb = p_aabb;
mesh->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES2::mesh_get_custom_aabb(RID p_mesh) const {
const Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
return mesh->custom_aabb;
}
AABB RasterizerStorageGLES2::mesh_get_aabb(RID p_mesh, RID p_skeleton) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
if (mesh->custom_aabb != AABB()) {
return mesh->custom_aabb;
}
Skeleton *sk = nullptr;
if (p_skeleton.is_valid()) {
sk = skeleton_owner.get(p_skeleton);
}
AABB aabb;
if (sk && sk->size != 0) {
for (int i = 0; i < mesh->surfaces.size(); i++) {
AABB laabb;
if ((mesh->surfaces[i]->format & VS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->skeleton_bone_aabb.size()) {
int bs = mesh->surfaces[i]->skeleton_bone_aabb.size();
const AABB *skbones = mesh->surfaces[i]->skeleton_bone_aabb.ptr();
const bool *skused = mesh->surfaces[i]->skeleton_bone_used.ptr();
int sbs = sk->size;
ERR_CONTINUE(bs > sbs);
const float *texture = sk->bone_data.ptr();
bool first = true;
if (sk->use_2d) {
for (int j = 0; j < bs; j++) {
if (!skused[j]) {
continue;
}
int base_ofs = j * 2 * 4;
Transform mtx;
mtx.basis[0].x = texture[base_ofs + 0];
mtx.basis[0].y = texture[base_ofs + 1];
mtx.origin.x = texture[base_ofs + 3];
base_ofs += 4;
mtx.basis[1].x = texture[base_ofs + 0];
mtx.basis[1].y = texture[base_ofs + 1];
mtx.origin.y = texture[base_ofs + 3];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
} else {
for (int j = 0; j < bs; j++) {
if (!skused[j]) {
continue;
}
int base_ofs = j * 3 * 4;
Transform mtx;
mtx.basis[0].x = texture[base_ofs + 0];
mtx.basis[0].y = texture[base_ofs + 1];
mtx.basis[0].z = texture[base_ofs + 2];
mtx.origin.x = texture[base_ofs + 3];
base_ofs += 4;
mtx.basis[1].x = texture[base_ofs + 0];
mtx.basis[1].y = texture[base_ofs + 1];
mtx.basis[1].z = texture[base_ofs + 2];
mtx.origin.y = texture[base_ofs + 3];
base_ofs += 4;
mtx.basis[2].x = texture[base_ofs + 0];
mtx.basis[2].y = texture[base_ofs + 1];
mtx.basis[2].z = texture[base_ofs + 2];
mtx.origin.z = texture[base_ofs + 3];
AABB baabb = mtx.xform(skbones[j]);
if (first) {
laabb = baabb;
first = false;
} else {
laabb.merge_with(baabb);
}
}
}
} else {
laabb = mesh->surfaces[i]->aabb;
}
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
} else {
for (int i = 0; i < mesh->surfaces.size(); i++) {
if (i == 0) {
aabb = mesh->surfaces[i]->aabb;
} else {
aabb.merge_with(mesh->surfaces[i]->aabb);
}
}
}
return aabb;
}
void RasterizerStorageGLES2::mesh_clear(RID p_mesh) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
ERR_FAIL_COND(!mesh);
while (mesh->surfaces.size()) {
mesh_remove_surface(p_mesh, 0);
}
}
/* MULTIMESH API */
RID RasterizerStorageGLES2::_multimesh_create() {
MultiMesh *multimesh = memnew(MultiMesh);
return multimesh_owner.make_rid(multimesh);
}
void RasterizerStorageGLES2::_multimesh_allocate(RID p_multimesh, int p_instances, VS::MultimeshTransformFormat p_transform_format, VS::MultimeshColorFormat p_color_format, VS::MultimeshCustomDataFormat p_data) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (multimesh->size == p_instances && multimesh->transform_format == p_transform_format && multimesh->color_format == p_color_format && multimesh->custom_data_format == p_data) {
return;
}
multimesh->size = p_instances;
multimesh->color_format = p_color_format;
multimesh->transform_format = p_transform_format;
multimesh->custom_data_format = p_data;
if (multimesh->size) {
multimesh->data.resize(0);
}
if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) {
multimesh->xform_floats = 8;
} else {
multimesh->xform_floats = 12;
}
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
multimesh->color_floats = 1;
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
multimesh->color_floats = 4;
} else {
multimesh->color_floats = 0;
}
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
multimesh->custom_data_floats = 1;
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
multimesh->custom_data_floats = 4;
} else {
multimesh->custom_data_floats = 0;
}
int format_floats = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
multimesh->data.resize(format_floats * p_instances);
for (int i = 0; i < p_instances * format_floats; i += format_floats) {
int color_from = 0;
int custom_data_from = 0;
if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) {
multimesh->data.write[i + 0] = 1.0;
multimesh->data.write[i + 1] = 0.0;
multimesh->data.write[i + 2] = 0.0;
multimesh->data.write[i + 3] = 0.0;
multimesh->data.write[i + 4] = 0.0;
multimesh->data.write[i + 5] = 1.0;
multimesh->data.write[i + 6] = 0.0;
multimesh->data.write[i + 7] = 0.0;
color_from = 8;
custom_data_from = 8;
} else {
multimesh->data.write[i + 0] = 1.0;
multimesh->data.write[i + 1] = 0.0;
multimesh->data.write[i + 2] = 0.0;
multimesh->data.write[i + 3] = 0.0;
multimesh->data.write[i + 4] = 0.0;
multimesh->data.write[i + 5] = 1.0;
multimesh->data.write[i + 6] = 0.0;
multimesh->data.write[i + 7] = 0.0;
multimesh->data.write[i + 8] = 0.0;
multimesh->data.write[i + 9] = 0.0;
multimesh->data.write[i + 10] = 1.0;
multimesh->data.write[i + 11] = 0.0;
color_from = 12;
custom_data_from = 12;
}
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colu = 0xFFFFFFFF;
multimesh->data.write[i + color_from + 0] = cu.colf;
custom_data_from = color_from + 1;
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
multimesh->data.write[i + color_from + 0] = 1.0;
multimesh->data.write[i + color_from + 1] = 1.0;
multimesh->data.write[i + color_from + 2] = 1.0;
multimesh->data.write[i + color_from + 3] = 1.0;
custom_data_from = color_from + 4;
}
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colu = 0;
multimesh->data.write[i + custom_data_from + 0] = cu.colf;
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
multimesh->data.write[i + custom_data_from + 0] = 0.0;
multimesh->data.write[i + custom_data_from + 1] = 0.0;
multimesh->data.write[i + custom_data_from + 2] = 0.0;
multimesh->data.write[i + custom_data_from + 3] = 0.0;
}
}
multimesh->dirty_aabb = true;
multimesh->dirty_data = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
int RasterizerStorageGLES2::_multimesh_get_instance_count(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, 0);
return multimesh->size;
}
void RasterizerStorageGLES2::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.getornull(multimesh->mesh);
if (mesh) {
mesh->multimeshes.remove(&multimesh->mesh_list);
}
}
multimesh->mesh = p_mesh;
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.getornull(multimesh->mesh);
if (mesh) {
mesh->multimeshes.add(&multimesh->mesh_list);
}
}
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES2::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D);
int stride = multimesh->color_floats + multimesh->custom_data_floats + multimesh->xform_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
dataptr[0] = p_transform.basis.elements[0][0];
dataptr[1] = p_transform.basis.elements[0][1];
dataptr[2] = p_transform.basis.elements[0][2];
dataptr[3] = p_transform.origin.x;
dataptr[4] = p_transform.basis.elements[1][0];
dataptr[5] = p_transform.basis.elements[1][1];
dataptr[6] = p_transform.basis.elements[1][2];
dataptr[7] = p_transform.origin.y;
dataptr[8] = p_transform.basis.elements[2][0];
dataptr[9] = p_transform.basis.elements[2][1];
dataptr[10] = p_transform.basis.elements[2][2];
dataptr[11] = p_transform.origin.z;
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES2::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_3D);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
dataptr[0] = p_transform.elements[0][0];
dataptr[1] = p_transform.elements[1][0];
dataptr[2] = 0;
dataptr[3] = p_transform.elements[2][0];
dataptr[4] = p_transform.elements[0][1];
dataptr[5] = p_transform.elements[1][1];
dataptr[6] = 0;
dataptr[7] = p_transform.elements[2][1];
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES2::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->color_format == VS::MULTIMESH_COLOR_NONE);
ERR_FAIL_INDEX(multimesh->color_format, VS::MULTIMESH_COLOR_MAX);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats];
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
uint8_t *data8 = (uint8_t *)dataptr;
data8[0] = CLAMP(p_color.r * 255.0, 0, 255);
data8[1] = CLAMP(p_color.g * 255.0, 0, 255);
data8[2] = CLAMP(p_color.b * 255.0, 0, 255);
data8[3] = CLAMP(p_color.a * 255.0, 0, 255);
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
dataptr[0] = p_color.r;
dataptr[1] = p_color.g;
dataptr[2] = p_color.b;
dataptr[3] = p_color.a;
}
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES2::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_custom_data) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_INDEX(p_index, multimesh->size);
ERR_FAIL_COND(multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE);
ERR_FAIL_INDEX(multimesh->custom_data_format, VS::MULTIMESH_CUSTOM_DATA_MAX);
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats + multimesh->color_floats];
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
uint8_t *data8 = (uint8_t *)dataptr;
data8[0] = CLAMP(p_custom_data.r * 255.0, 0, 255);
data8[1] = CLAMP(p_custom_data.g * 255.0, 0, 255);
data8[2] = CLAMP(p_custom_data.b * 255.0, 0, 255);
data8[3] = CLAMP(p_custom_data.a * 255.0, 0, 255);
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
dataptr[0] = p_custom_data.r;
dataptr[1] = p_custom_data.g;
dataptr[2] = p_custom_data.b;
dataptr[3] = p_custom_data.a;
}
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
RID RasterizerStorageGLES2::_multimesh_get_mesh(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, RID());
return multimesh->mesh;
}
Transform RasterizerStorageGLES2::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Transform());
ERR_FAIL_COND_V(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D, Transform());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
Transform xform;
xform.basis.elements[0][0] = dataptr[0];
xform.basis.elements[0][1] = dataptr[1];
xform.basis.elements[0][2] = dataptr[2];
xform.origin.x = dataptr[3];
xform.basis.elements[1][0] = dataptr[4];
xform.basis.elements[1][1] = dataptr[5];
xform.basis.elements[1][2] = dataptr[6];
xform.origin.y = dataptr[7];
xform.basis.elements[2][0] = dataptr[8];
xform.basis.elements[2][1] = dataptr[9];
xform.basis.elements[2][2] = dataptr[10];
xform.origin.z = dataptr[11];
return xform;
}
Transform2D RasterizerStorageGLES2::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Transform2D());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Transform2D());
ERR_FAIL_COND_V(multimesh->transform_format == VS::MULTIMESH_TRANSFORM_3D, Transform2D());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index];
Transform2D xform;
xform.elements[0][0] = dataptr[0];
xform.elements[1][0] = dataptr[1];
xform.elements[2][0] = dataptr[3];
xform.elements[0][1] = dataptr[4];
xform.elements[1][1] = dataptr[5];
xform.elements[2][1] = dataptr[7];
return xform;
}
Color RasterizerStorageGLES2::_multimesh_instance_get_color(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Color());
ERR_FAIL_COND_V(multimesh->color_format == VS::MULTIMESH_COLOR_NONE, Color());
ERR_FAIL_INDEX_V(multimesh->color_format, VS::MULTIMESH_COLOR_MAX, Color());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats];
if (multimesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colf = dataptr[0];
return Color::hex(BSWAP32(cu.colu));
} else if (multimesh->color_format == VS::MULTIMESH_COLOR_FLOAT) {
Color c;
c.r = dataptr[0];
c.g = dataptr[1];
c.b = dataptr[2];
c.a = dataptr[3];
return c;
}
return Color();
}
Color RasterizerStorageGLES2::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, Color());
ERR_FAIL_INDEX_V(p_index, multimesh->size, Color());
ERR_FAIL_COND_V(multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_NONE, Color());
ERR_FAIL_INDEX_V(multimesh->custom_data_format, VS::MULTIMESH_CUSTOM_DATA_MAX, Color());
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
float *dataptr = &multimesh->data.write[stride * p_index + multimesh->xform_floats + multimesh->color_floats];
if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
union {
uint32_t colu;
float colf;
} cu;
cu.colf = dataptr[0];
return Color::hex(BSWAP32(cu.colu));
} else if (multimesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_FLOAT) {
Color c;
c.r = dataptr[0];
c.g = dataptr[1];
c.b = dataptr[2];
c.a = dataptr[3];
return c;
}
return Color();
}
void RasterizerStorageGLES2::_multimesh_set_as_bulk_array(RID p_multimesh, const PoolVector<float> &p_array) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
ERR_FAIL_COND(!multimesh->data.ptr());
int dsize = multimesh->data.size();
ERR_FAIL_COND(dsize != p_array.size());
PoolVector<float>::Read r = p_array.read();
ERR_FAIL_COND(!r.ptr());
memcpy(multimesh->data.ptrw(), r.ptr(), dsize * sizeof(float));
multimesh->dirty_data = true;
multimesh->dirty_aabb = true;
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
void RasterizerStorageGLES2::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND(!multimesh);
multimesh->visible_instances = p_visible;
}
int RasterizerStorageGLES2::_multimesh_get_visible_instances(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, -1);
return multimesh->visible_instances;
}
AABB RasterizerStorageGLES2::_multimesh_get_aabb(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, AABB());
const_cast<RasterizerStorageGLES2 *>(this)->update_dirty_multimeshes();
return multimesh->aabb;
}
RasterizerStorage::MMInterpolator *RasterizerStorageGLES2::_multimesh_get_interpolator(RID p_multimesh) const {
MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh);
ERR_FAIL_COND_V(!multimesh, nullptr);
return &multimesh->interpolator;
}
void RasterizerStorageGLES2::update_dirty_multimeshes() {
while (multimesh_update_list.first()) {
MultiMesh *multimesh = multimesh_update_list.first()->self();
if (multimesh->size && multimesh->dirty_aabb) {
AABB mesh_aabb;
if (multimesh->mesh.is_valid()) {
mesh_aabb = mesh_get_aabb(multimesh->mesh, RID());
}
mesh_aabb.size += Vector3(0.001, 0.001, 0.001); //in case mesh is empty in one of the sides
int stride = multimesh->color_floats + multimesh->xform_floats + multimesh->custom_data_floats;
int count = multimesh->data.size();
float *data = multimesh->data.ptrw();
AABB aabb;
if (multimesh->transform_format == VS::MULTIMESH_TRANSFORM_2D) {
for (int i = 0; i < count; i += stride) {
float *dataptr = &data[i];
Transform xform;
xform.basis[0][0] = dataptr[0];
xform.basis[0][1] = dataptr[1];
xform.origin[0] = dataptr[3];
xform.basis[1][0] = dataptr[4];
xform.basis[1][1] = dataptr[5];
xform.origin[1] = dataptr[7];
AABB laabb = xform.xform(mesh_aabb);
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
} else {
for (int i = 0; i < count; i += stride) {
float *dataptr = &data[i];
Transform xform;
xform.basis.elements[0][0] = dataptr[0];
xform.basis.elements[0][1] = dataptr[1];
xform.basis.elements[0][2] = dataptr[2];
xform.origin.x = dataptr[3];
xform.basis.elements[1][0] = dataptr[4];
xform.basis.elements[1][1] = dataptr[5];
xform.basis.elements[1][2] = dataptr[6];
xform.origin.y = dataptr[7];
xform.basis.elements[2][0] = dataptr[8];
xform.basis.elements[2][1] = dataptr[9];
xform.basis.elements[2][2] = dataptr[10];
xform.origin.z = dataptr[11];
AABB laabb = xform.xform(mesh_aabb);
if (i == 0) {
aabb = laabb;
} else {
aabb.merge_with(laabb);
}
}
}
multimesh->aabb = aabb;
}
multimesh->dirty_aabb = false;
multimesh->dirty_data = false;
multimesh->instance_change_notify(true, false);
multimesh_update_list.remove(multimesh_update_list.first());
}
}
/* IMMEDIATE API */
RID RasterizerStorageGLES2::immediate_create() {
Immediate *im = memnew(Immediate);
return immediate_owner.make_rid(im);
}
void RasterizerStorageGLES2::immediate_begin(RID p_immediate, VS::PrimitiveType p_primitive, RID p_texture) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
Immediate::Chunk ic;
ic.texture = p_texture;
ic.primitive = p_primitive;
im->chunks.push_back(ic);
im->mask = 0;
im->building = true;
}
void RasterizerStorageGLES2::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
Immediate::Chunk *c = &im->chunks.back()->get();
if (c->vertices.empty() && im->chunks.size() == 1) {
im->aabb.position = p_vertex;
im->aabb.size = Vector3();
} else {
im->aabb.expand_to(p_vertex);
}
if (im->mask & VS::ARRAY_FORMAT_NORMAL) {
c->normals.push_back(chunk_normal);
}
if (im->mask & VS::ARRAY_FORMAT_TANGENT) {
c->tangents.push_back(chunk_tangent);
}
if (im->mask & VS::ARRAY_FORMAT_COLOR) {
c->colors.push_back(chunk_color);
}
if (im->mask & VS::ARRAY_FORMAT_TEX_UV) {
c->uvs.push_back(chunk_uv);
}
if (im->mask & VS::ARRAY_FORMAT_TEX_UV2) {
c->uv2s.push_back(chunk_uv2);
}
im->mask |= VS::ARRAY_FORMAT_VERTEX;
c->vertices.push_back(p_vertex);
}
void RasterizerStorageGLES2::immediate_normal(RID p_immediate, const Vector3 &p_normal) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_NORMAL;
chunk_normal = p_normal;
}
void RasterizerStorageGLES2::immediate_tangent(RID p_immediate, const Plane &p_tangent) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TANGENT;
chunk_tangent = p_tangent;
}
void RasterizerStorageGLES2::immediate_color(RID p_immediate, const Color &p_color) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_COLOR;
chunk_color = p_color;
}
void RasterizerStorageGLES2::immediate_uv(RID p_immediate, const Vector2 &tex_uv) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TEX_UV;
chunk_uv = tex_uv;
}
void RasterizerStorageGLES2::immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->mask |= VS::ARRAY_FORMAT_TEX_UV2;
chunk_uv2 = tex_uv;
}
void RasterizerStorageGLES2::immediate_end(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(!im->building);
im->building = false;
im->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::immediate_clear(RID p_immediate) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
ERR_FAIL_COND(im->building);
im->chunks.clear();
im->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES2::immediate_get_aabb(RID p_immediate) const {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im, AABB());
return im->aabb;
}
void RasterizerStorageGLES2::immediate_set_material(RID p_immediate, RID p_material) {
Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND(!im);
im->material = p_material;
im->instance_change_notify(false, true);
}
RID RasterizerStorageGLES2::immediate_get_material(RID p_immediate) const {
const Immediate *im = immediate_owner.get(p_immediate);
ERR_FAIL_COND_V(!im, RID());
return im->material;
}
/* SKELETON API */
RID RasterizerStorageGLES2::skeleton_create() {
Skeleton *skeleton = memnew(Skeleton);
glGenTextures(1, &skeleton->tex_id);
return skeleton_owner.make_rid(skeleton);
}
void RasterizerStorageGLES2::skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_COND(p_bones < 0);
if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
return;
}
skeleton->size = p_bones;
skeleton->use_2d = p_2d_skeleton;
if (!config.use_skeleton_software) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, skeleton->tex_id);
#ifdef GLES_OVER_GL
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, p_bones * (skeleton->use_2d ? 2 : 3), 1, 0, GL_RGBA, GL_FLOAT, nullptr);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_bones * (skeleton->use_2d ? 2 : 3), 1, 0, GL_RGBA, GL_FLOAT, NULL);
#endif
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
}
if (skeleton->use_2d) {
skeleton->bone_data.resize(p_bones * 4 * 2);
} else {
skeleton->bone_data.resize(p_bones * 4 * 3);
}
}
int RasterizerStorageGLES2::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, 0);
return skeleton->size;
}
void RasterizerStorageGLES2::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(skeleton->use_2d);
float *bone_data = skeleton->bone_data.ptrw();
int base_offset = p_bone * 4 * 3;
bone_data[base_offset + 0] = p_transform.basis[0].x;
bone_data[base_offset + 1] = p_transform.basis[0].y;
bone_data[base_offset + 2] = p_transform.basis[0].z;
bone_data[base_offset + 3] = p_transform.origin.x;
bone_data[base_offset + 4] = p_transform.basis[1].x;
bone_data[base_offset + 5] = p_transform.basis[1].y;
bone_data[base_offset + 6] = p_transform.basis[1].z;
bone_data[base_offset + 7] = p_transform.origin.y;
bone_data[base_offset + 8] = p_transform.basis[2].x;
bone_data[base_offset + 9] = p_transform.basis[2].y;
bone_data[base_offset + 10] = p_transform.basis[2].z;
bone_data[base_offset + 11] = p_transform.origin.z;
if (!skeleton->update_list.in_list()) {
skeleton_update_list.add(&skeleton->update_list);
}
}
Transform RasterizerStorageGLES2::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform());
ERR_FAIL_COND_V(skeleton->use_2d, Transform());
const float *bone_data = skeleton->bone_data.ptr();
Transform ret;
int base_offset = p_bone * 4 * 3;
ret.basis[0].x = bone_data[base_offset + 0];
ret.basis[0].y = bone_data[base_offset + 1];
ret.basis[0].z = bone_data[base_offset + 2];
ret.origin.x = bone_data[base_offset + 3];
ret.basis[1].x = bone_data[base_offset + 4];
ret.basis[1].y = bone_data[base_offset + 5];
ret.basis[1].z = bone_data[base_offset + 6];
ret.origin.y = bone_data[base_offset + 7];
ret.basis[2].x = bone_data[base_offset + 8];
ret.basis[2].y = bone_data[base_offset + 9];
ret.basis[2].z = bone_data[base_offset + 10];
ret.origin.z = bone_data[base_offset + 11];
return ret;
}
void RasterizerStorageGLES2::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->size);
ERR_FAIL_COND(!skeleton->use_2d);
float *bone_data = skeleton->bone_data.ptrw();
int base_offset = p_bone * 4 * 2;
bone_data[base_offset + 0] = p_transform[0][0];
bone_data[base_offset + 1] = p_transform[1][0];
bone_data[base_offset + 2] = 0;
bone_data[base_offset + 3] = p_transform[2][0];
bone_data[base_offset + 4] = p_transform[0][1];
bone_data[base_offset + 5] = p_transform[1][1];
bone_data[base_offset + 6] = 0;
bone_data[base_offset + 7] = p_transform[2][1];
if (!skeleton->update_list.in_list()) {
skeleton_update_list.add(&skeleton->update_list);
}
skeleton->revision++;
}
Transform2D RasterizerStorageGLES2::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform2D());
ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
const float *bone_data = skeleton->bone_data.ptr();
Transform2D ret;
int base_offset = p_bone * 4 * 2;
ret[0][0] = bone_data[base_offset + 0];
ret[1][0] = bone_data[base_offset + 1];
ret[2][0] = bone_data[base_offset + 3];
ret[0][1] = bone_data[base_offset + 4];
ret[1][1] = bone_data[base_offset + 5];
ret[2][1] = bone_data[base_offset + 7];
return ret;
}
void RasterizerStorageGLES2::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
skeleton->base_transform_2d = p_base_transform;
}
uint32_t RasterizerStorageGLES2::skeleton_get_revision(RID p_skeleton) const {
const Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND_V(!skeleton, 0);
return skeleton->revision;
}
void RasterizerStorageGLES2::update_dirty_blend_shapes() {
while (blend_shapes_update_list.first()) {
Mesh *mesh = blend_shapes_update_list.first()->self();
for (int is = 0; is < mesh->surfaces.size(); is++) {
RasterizerStorageGLES2::Surface *s = mesh->surfaces[is];
if (!s->blend_shape_data.empty()) {
PoolVector<float> &transform_buffer = resources.blend_shape_transform_cpu_buffer;
size_t buffer_size = s->array_len * 8 * 4;
if (resources.blend_shape_transform_cpu_buffer_size < buffer_size) {
resources.blend_shape_transform_cpu_buffer_size = buffer_size;
transform_buffer.resize(buffer_size);
}
PoolVector<uint8_t>::Read read = s->data.read();
PoolVector<float>::Write write = transform_buffer.write();
float base_weight = 1.0;
if (s->mesh->blend_shape_mode == VS::BLEND_SHAPE_MODE_NORMALIZED) {
for (int ti = 0; ti < mesh->blend_shape_values.size(); ti++) {
base_weight -= mesh->blend_shape_values.get(ti);
}
}
for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
if (s->attribs[i].enabled) {
// Read all attributes
for (int j = 0; j < s->array_len; j++) {
size_t offset = s->attribs[i].offset + (j * s->attribs[i].stride);
const float *rd = (const float *)(read.ptr() + offset);
size_t offset_write = i * 4 + (j * 8 * 4);
float *wr = (float *)(write.ptr() + offset_write);
// Set the base
switch (i) {
case VS::ARRAY_VERTEX: {
if (s->format & VS::ARRAY_COMPRESS_VERTEX) {
wr[0] = Math::halfptr_to_float(&((uint16_t *)rd)[0]) * base_weight;
wr[1] = Math::halfptr_to_float(&((uint16_t *)rd)[1]) * base_weight;
wr[2] = Math::halfptr_to_float(&((uint16_t *)rd)[2]) * base_weight;
wr[3] = 1.0f;
} else {
float a[3] = { 0 };
a[0] = wr[0] = rd[0] * base_weight;
a[1] = wr[1] = rd[1] * base_weight;
a[2] = wr[2] = rd[2] * base_weight;
memcpy(&write[offset_write], a, sizeof(float) * s->attribs[i].size);
}
} break;
case VS::ARRAY_NORMAL: {
if (s->format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if (s->format & VS::ARRAY_COMPRESS_NORMAL && s->format & VS::ARRAY_FORMAT_TANGENT && s->format & VS::ARRAY_COMPRESS_TANGENT) {
Vector2 oct(((int8_t *)rd)[0] / 127.0, ((int8_t *)rd)[1] / 127.0);
Vector3 vec = VS::oct_to_norm(oct);
wr[0] = vec.x * base_weight;
wr[1] = vec.y * base_weight;
wr[2] = vec.z * base_weight;
} else {
Vector2 oct(((int16_t *)rd)[0] / 32767.0, ((int16_t *)rd)[1] / 32767.0);
Vector3 vec = VS::oct_to_norm(oct);
wr[0] = vec.x * base_weight;
wr[1] = vec.y * base_weight;
wr[2] = vec.z * base_weight;
}
} else {
if (s->format & VS::ARRAY_COMPRESS_NORMAL) {
wr[0] = (((int8_t *)rd)[0] / 127.0) * base_weight;
wr[1] = (((int8_t *)rd)[1] / 127.0) * base_weight;
wr[2] = (((int8_t *)rd)[2] / 127.0) * base_weight;
} else {
wr[0] = rd[0] * base_weight;
wr[1] = rd[1] * base_weight;
wr[2] = rd[2] * base_weight;
}
}
} break;
case VS::ARRAY_TANGENT: {
if (s->format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if (s->format & VS::ARRAY_COMPRESS_TANGENT && s->format & VS::ARRAY_FORMAT_NORMAL && s->format & VS::ARRAY_COMPRESS_NORMAL) {
Vector2 oct(((int8_t *)rd)[0] / 127.0, ((int8_t *)rd)[1] / 127.0);
float sign;
Vector3 vec = VS::oct_to_tangent(oct, &sign);
wr[0] = vec.x * base_weight;
wr[1] = vec.y * base_weight;
wr[2] = vec.z * base_weight;
wr[3] = sign * base_weight;
} else {
Vector2 oct(((int16_t *)rd)[0] / 32767.0, ((int16_t *)rd)[1] / 32767.0);
float sign;
Vector3 vec = VS::oct_to_tangent(oct, &sign);
wr[0] = vec.x * base_weight;
wr[1] = vec.y * base_weight;
wr[2] = vec.z * base_weight;
wr[3] = sign * base_weight;
}
} else {
if (s->format & VS::ARRAY_COMPRESS_TANGENT) {
wr[0] = (((int8_t *)rd)[0] / 127.0) * base_weight;
wr[1] = (((int8_t *)rd)[1] / 127.0) * base_weight;
wr[2] = (((int8_t *)rd)[2] / 127.0) * base_weight;
wr[3] = (((int8_t *)rd)[3] / 127.0) * base_weight;
} else {
wr[0] = rd[0] * base_weight;
wr[1] = rd[1] * base_weight;
wr[2] = rd[2] * base_weight;
wr[3] = rd[3] * base_weight;
}
}
} break;
case VS::ARRAY_COLOR: {
if (s->format & VS::ARRAY_COMPRESS_COLOR) {
wr[0] = (((uint8_t *)rd)[0] / 255.0) * base_weight;
wr[1] = (((uint8_t *)rd)[1] / 255.0) * base_weight;
wr[2] = (((uint8_t *)rd)[2] / 255.0) * base_weight;
wr[3] = (((uint8_t *)rd)[3] / 255.0) * base_weight;
} else {
wr[0] = rd[0] * base_weight;
wr[1] = rd[1] * base_weight;
wr[2] = rd[2] * base_weight;
wr[3] = rd[3] * base_weight;
}
} break;
case VS::ARRAY_TEX_UV: {
if (s->format & VS::ARRAY_COMPRESS_TEX_UV) {
wr[0] = Math::halfptr_to_float(&((uint16_t *)rd)[0]) * base_weight;
wr[1] = Math::halfptr_to_float(&((uint16_t *)rd)[1]) * base_weight;
} else {
wr[0] = rd[0] * base_weight;
wr[1] = rd[1] * base_weight;
}
} break;
case VS::ARRAY_TEX_UV2: {
if (s->format & VS::ARRAY_COMPRESS_TEX_UV2) {
wr[0] = Math::halfptr_to_float(&((uint16_t *)rd)[0]) * base_weight;
wr[1] = Math::halfptr_to_float(&((uint16_t *)rd)[1]) * base_weight;
} else {
wr[0] = rd[0] * base_weight;
wr[1] = rd[1] * base_weight;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (s->format & VS::ARRAY_COMPRESS_WEIGHTS) {
wr[0] = (((uint16_t *)rd)[0] / 65535.0) * base_weight;
wr[1] = (((uint16_t *)rd)[1] / 65535.0) * base_weight;
wr[2] = (((uint16_t *)rd)[2] / 65535.0) * base_weight;
wr[3] = (((uint16_t *)rd)[3] / 65535.0) * base_weight;
} else {
wr[0] = rd[0] * base_weight;
wr[1] = rd[1] * base_weight;
wr[2] = rd[2] * base_weight;
wr[3] = rd[3] * base_weight;
}
} break;
}
// Add all blend shapes
for (int ti = 0; ti < mesh->blend_shape_values.size(); ti++) {
PoolVector<uint8_t>::Read blend = s->blend_shape_data[ti].read();
const float *br = (const float *)(blend.ptr() + offset);
float weight = mesh->blend_shape_values.get(ti);
if (Math::is_zero_approx(weight)) {
continue;
}
switch (i) {
case VS::ARRAY_VERTEX: {
if (s->format & VS::ARRAY_COMPRESS_VERTEX) {
wr[0] += Math::halfptr_to_float(&((uint16_t *)br)[0]) * weight;
wr[1] += Math::halfptr_to_float(&((uint16_t *)br)[1]) * weight;
wr[2] += Math::halfptr_to_float(&((uint16_t *)br)[2]) * weight;
wr[3] = 1.0f;
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
wr[2] += br[2] * weight;
}
} break;
case VS::ARRAY_NORMAL: {
if (s->format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if (s->format & VS::ARRAY_COMPRESS_NORMAL && s->format & VS::ARRAY_FORMAT_TANGENT && s->format & VS::ARRAY_COMPRESS_TANGENT) {
Vector2 oct(((int8_t *)br)[0] / 127.0, ((int8_t *)br)[1] / 127.0);
Vector3 vec = VS::oct_to_norm(oct);
wr[0] += vec.x * weight;
wr[1] += vec.y * weight;
wr[2] += vec.z * weight;
} else {
Vector2 oct(((int16_t *)br)[0] / 32767.0, ((int16_t *)br)[1] / 32767.0);
Vector3 vec = VS::oct_to_norm(oct);
wr[0] += vec.x * weight;
wr[1] += vec.y * weight;
wr[2] += vec.z * weight;
}
} else {
if (s->format & VS::ARRAY_COMPRESS_NORMAL) {
wr[0] += (float(((int8_t *)br)[0]) / 127.0) * weight;
wr[1] += (float(((int8_t *)br)[1]) / 127.0) * weight;
wr[2] += (float(((int8_t *)br)[2]) / 127.0) * weight;
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
wr[2] += br[2] * weight;
}
}
} break;
case VS::ARRAY_TANGENT: {
if (s->format & VS::ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if (s->format & VS::ARRAY_COMPRESS_TANGENT && s->format & VS::ARRAY_FORMAT_NORMAL && s->format & VS::ARRAY_COMPRESS_NORMAL) {
Vector2 oct(((int8_t *)br)[0] / 127.0, ((int8_t *)br)[1] / 127.0);
float sign;
Vector3 vec = VS::oct_to_tangent(oct, &sign);
wr[0] += vec.x * weight;
wr[1] += vec.y * weight;
wr[2] += vec.z * weight;
wr[3] = sign * weight;
} else {
Vector2 oct(((int16_t *)rd)[0] / 32767.0, ((int16_t *)rd)[1] / 32767.0);
float sign;
Vector3 vec = VS::oct_to_tangent(oct, &sign);
wr[0] += vec.x * weight;
wr[1] += vec.y * weight;
wr[2] += vec.z * weight;
wr[3] = sign * weight;
}
} else {
if (s->format & VS::ARRAY_COMPRESS_TANGENT) {
wr[0] += (float(((int8_t *)br)[0]) / 127.0) * weight;
wr[1] += (float(((int8_t *)br)[1]) / 127.0) * weight;
wr[2] += (float(((int8_t *)br)[2]) / 127.0) * weight;
wr[3] = (float(((int8_t *)br)[3]) / 127.0);
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
wr[2] += br[2] * weight;
wr[3] = br[3];
}
}
} break;
case VS::ARRAY_COLOR: {
if (s->format & VS::ARRAY_COMPRESS_COLOR) {
wr[0] += (((uint8_t *)br)[0] / 255.0) * weight;
wr[1] += (((uint8_t *)br)[1] / 255.0) * weight;
wr[2] += (((uint8_t *)br)[2] / 255.0) * weight;
wr[3] += (((uint8_t *)br)[3] / 255.0) * weight;
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
wr[2] += br[2] * weight;
wr[3] += br[3] * weight;
}
} break;
case VS::ARRAY_TEX_UV: {
if (s->format & VS::ARRAY_COMPRESS_TEX_UV) {
wr[0] += Math::halfptr_to_float(&((uint16_t *)br)[0]) * weight;
wr[1] += Math::halfptr_to_float(&((uint16_t *)br)[1]) * weight;
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
}
} break;
case VS::ARRAY_TEX_UV2: {
if (s->format & VS::ARRAY_COMPRESS_TEX_UV2) {
wr[0] += Math::halfptr_to_float(&((uint16_t *)br)[0]) * weight;
wr[1] += Math::halfptr_to_float(&((uint16_t *)br)[1]) * weight;
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
}
} break;
case VS::ARRAY_WEIGHTS: {
if (s->format & VS::ARRAY_COMPRESS_WEIGHTS) {
wr[0] += (((uint16_t *)br)[0] / 65535.0) * weight;
wr[1] += (((uint16_t *)br)[1] / 65535.0) * weight;
wr[2] += (((uint16_t *)br)[2] / 65535.0) * weight;
wr[3] += (((uint16_t *)br)[3] / 65535.0) * weight;
} else {
wr[0] += br[0] * weight;
wr[1] += br[1] * weight;
wr[2] += br[2] * weight;
wr[3] += br[3] * weight;
}
} break;
}
}
}
}
}
// Store size and send changed blend shape render to GL
glBindBuffer(GL_ARRAY_BUFFER, s->blend_shape_buffer_id);
if (buffer_size > s->blend_shape_buffer_size) {
s->blend_shape_buffer_size = buffer_size;
glBufferData(GL_ARRAY_BUFFER, buffer_size * sizeof(float), transform_buffer.read().ptr(), GL_DYNAMIC_DRAW);
} else {
buffer_orphan_and_upload(s->blend_shape_buffer_size * sizeof(float), 0, buffer_size * sizeof(float), transform_buffer.read().ptr(), GL_ARRAY_BUFFER, true);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
}
blend_shapes_update_list.remove(blend_shapes_update_list.first());
}
}
void RasterizerStorageGLES2::_update_skeleton_transform_buffer(const PoolVector<float> &p_data, size_t p_size) {
glBindBuffer(GL_ARRAY_BUFFER, resources.skeleton_transform_buffer);
uint32_t buffer_size = p_size * sizeof(float);
if (p_size > resources.skeleton_transform_buffer_size) {
// new requested buffer is bigger, so resizing the GPU buffer
resources.skeleton_transform_buffer_size = p_size;
glBufferData(GL_ARRAY_BUFFER, buffer_size, p_data.read().ptr(), GL_DYNAMIC_DRAW);
} else {
// this may not be best, it could be better to use glBufferData in both cases.
buffer_orphan_and_upload(resources.skeleton_transform_buffer_size * sizeof(float), 0, buffer_size, p_data.read().ptr(), GL_ARRAY_BUFFER, true);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void RasterizerStorageGLES2::update_dirty_skeletons() {
if (config.use_skeleton_software) {
return;
}
glActiveTexture(GL_TEXTURE0);
while (skeleton_update_list.first()) {
Skeleton *skeleton = skeleton_update_list.first()->self();
if (skeleton->size) {
glBindTexture(GL_TEXTURE_2D, skeleton->tex_id);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, skeleton->size * (skeleton->use_2d ? 2 : 3), 1, GL_RGBA, GL_FLOAT, skeleton->bone_data.ptr());
}
for (Set<RasterizerScene::InstanceBase *>::Element *E = skeleton->instances.front(); E; E = E->next()) {
E->get()->base_changed(true, false);
}
skeleton_update_list.remove(skeleton_update_list.first());
}
}
/* Light API */
RID RasterizerStorageGLES2::light_create(VS::LightType p_type) {
Light *light = memnew(Light);
light->type = p_type;
light->param[VS::LIGHT_PARAM_ENERGY] = 1.0;
light->param[VS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
light->param[VS::LIGHT_PARAM_SIZE] = 0.0;
light->param[VS::LIGHT_PARAM_SPECULAR] = 0.5;
light->param[VS::LIGHT_PARAM_RANGE] = 1.0;
light->param[VS::LIGHT_PARAM_SPOT_ANGLE] = 45;
light->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] = 45;
light->param[VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;
light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3;
light->param[VS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6;
light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 0.1;
light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE] = 0.1;
light->color = Color(1, 1, 1, 1);
light->shadow = false;
light->negative = false;
light->cull_mask = 0xFFFFFFFF;
light->directional_shadow_mode = VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL;
light->omni_shadow_mode = VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
light->omni_shadow_detail = VS::LIGHT_OMNI_SHADOW_DETAIL_VERTICAL;
light->directional_blend_splits = false;
light->directional_range_mode = VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE;
light->reverse_cull = false;
light->bake_mode = VS::LIGHT_BAKE_INDIRECT;
light->version = 0;
return light_owner.make_rid(light);
}
void RasterizerStorageGLES2::light_set_color(RID p_light, const Color &p_color) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->color = p_color;
}
void RasterizerStorageGLES2::light_set_param(RID p_light, VS::LightParam p_param, float p_value) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_param, VS::LIGHT_PARAM_MAX);
switch (p_param) {
case VS::LIGHT_PARAM_RANGE:
case VS::LIGHT_PARAM_SPOT_ANGLE:
case VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE:
case VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET:
case VS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET:
case VS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET:
case VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS:
case VS::LIGHT_PARAM_SHADOW_BIAS: {
light->version++;
light->instance_change_notify(true, false);
} break;
default: {
}
}
light->param[p_param] = p_value;
}
void RasterizerStorageGLES2::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->shadow = p_enabled;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::light_set_shadow_color(RID p_light, const Color &p_color) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->shadow_color = p_color;
}
void RasterizerStorageGLES2::light_set_projector(RID p_light, RID p_texture) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->projector = p_texture;
}
void RasterizerStorageGLES2::light_set_negative(RID p_light, bool p_enable) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->negative = p_enable;
}
void RasterizerStorageGLES2::light_set_cull_mask(RID p_light, uint32_t p_mask) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->cull_mask = p_mask;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->reverse_cull = p_enabled;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::light_set_use_gi(RID p_light, bool p_enabled) {
WARN_DEPRECATED_MSG("'VisualServer.light_set_use_gi' is deprecated and will be removed in a future version. Use 'VisualServer.light_set_bake_mode' instead.");
light_set_bake_mode(p_light, p_enabled ? VS::LightBakeMode::LIGHT_BAKE_INDIRECT : VS::LightBakeMode::LIGHT_BAKE_DISABLED);
}
void RasterizerStorageGLES2::light_set_bake_mode(RID p_light, VS::LightBakeMode p_bake_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->bake_mode = p_bake_mode;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::light_omni_set_shadow_mode(RID p_light, VS::LightOmniShadowMode p_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_mode = p_mode;
light->version++;
light->instance_change_notify(true, false);
}
VS::LightOmniShadowMode RasterizerStorageGLES2::light_omni_get_shadow_mode(RID p_light) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI_SHADOW_CUBE);
return light->omni_shadow_mode;
}
void RasterizerStorageGLES2::light_omni_set_shadow_detail(RID p_light, VS::LightOmniShadowDetail p_detail) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_detail = p_detail;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::light_directional_set_shadow_mode(RID p_light, VS::LightDirectionalShadowMode p_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_mode = p_mode;
light->version++;
light->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::light_directional_set_blend_splits(RID p_light, bool p_enable) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_blend_splits = p_enable;
light->version++;
light->instance_change_notify(true, false);
}
bool RasterizerStorageGLES2::light_directional_get_blend_splits(RID p_light) const {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, false);
return light->directional_blend_splits;
}
VS::LightDirectionalShadowMode RasterizerStorageGLES2::light_directional_get_shadow_mode(RID p_light) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
void RasterizerStorageGLES2::light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND(!light);
light->directional_range_mode = p_range_mode;
}
VS::LightDirectionalShadowDepthRangeMode RasterizerStorageGLES2::light_directional_get_shadow_depth_range_mode(RID p_light) const {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE);
return light->directional_range_mode;
}
VS::LightType RasterizerStorageGLES2::light_get_type(RID p_light) const {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL);
return light->type;
}
float RasterizerStorageGLES2::light_get_param(RID p_light, VS::LightParam p_param) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
ERR_FAIL_INDEX_V(p_param, VS::LIGHT_PARAM_MAX, 0.0);
return light->param[p_param];
}
Color RasterizerStorageGLES2::light_get_color(RID p_light) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, Color());
return light->color;
}
bool RasterizerStorageGLES2::light_get_use_gi(RID p_light) {
return light_get_bake_mode(p_light) != VS::LightBakeMode::LIGHT_BAKE_DISABLED;
}
VS::LightBakeMode RasterizerStorageGLES2::light_get_bake_mode(RID p_light) {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, VS::LightBakeMode::LIGHT_BAKE_DISABLED);
return light->bake_mode;
}
bool RasterizerStorageGLES2::light_has_shadow(RID p_light) const {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, false);
return light->shadow;
}
uint64_t RasterizerStorageGLES2::light_get_version(RID p_light) const {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->version;
}
AABB RasterizerStorageGLES2::light_get_aabb(RID p_light) const {
Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case VS::LIGHT_SPOT: {
float len = light->param[VS::LIGHT_PARAM_RANGE];
float size = Math::tan(Math::deg2rad(light->param[VS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
};
case VS::LIGHT_OMNI: {
float r = light->param[VS::LIGHT_PARAM_RANGE];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
};
case VS::LIGHT_DIRECTIONAL: {
return AABB();
};
}
ERR_FAIL_V(AABB());
}
/* PROBE API */
RID RasterizerStorageGLES2::reflection_probe_create() {
ReflectionProbe *reflection_probe = memnew(ReflectionProbe);
reflection_probe->intensity = 1.0;
reflection_probe->interior_ambient = Color();
reflection_probe->interior_ambient_energy = 1.0;
reflection_probe->interior_ambient_probe_contrib = 0.0;
reflection_probe->max_distance = 0;
reflection_probe->extents = Vector3(1, 1, 1);
reflection_probe->origin_offset = Vector3(0, 0, 0);
reflection_probe->interior = false;
reflection_probe->box_projection = false;
reflection_probe->enable_shadows = false;
reflection_probe->cull_mask = (1 << 20) - 1;
reflection_probe->update_mode = VS::REFLECTION_PROBE_UPDATE_ONCE;
reflection_probe->resolution = 128;
return reflection_probe_owner.make_rid(reflection_probe);
}
void RasterizerStorageGLES2::reflection_probe_set_update_mode(RID p_probe, VS::ReflectionProbeUpdateMode p_mode) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->update_mode = p_mode;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->intensity = p_intensity;
}
void RasterizerStorageGLES2::reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior_ambient = p_ambient;
}
void RasterizerStorageGLES2::reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior_ambient_energy = p_energy;
}
void RasterizerStorageGLES2::reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior_ambient_probe_contrib = p_contrib;
}
void RasterizerStorageGLES2::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->max_distance = p_distance;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->extents = p_extents;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->origin_offset = p_offset;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->interior = p_enable;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->box_projection = p_enable;
}
void RasterizerStorageGLES2::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->enable_shadows = p_enable;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->cull_mask = p_layers;
reflection_probe->instance_change_notify(true, false);
}
void RasterizerStorageGLES2::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND(!reflection_probe);
reflection_probe->resolution = p_resolution;
}
AABB RasterizerStorageGLES2::reflection_probe_get_aabb(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, AABB());
AABB aabb;
aabb.position = -reflection_probe->extents;
aabb.size = reflection_probe->extents * 2.0;
return aabb;
}
VS::ReflectionProbeUpdateMode RasterizerStorageGLES2::reflection_probe_get_update_mode(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, VS::REFLECTION_PROBE_UPDATE_ALWAYS);
return reflection_probe->update_mode;
}
uint32_t RasterizerStorageGLES2::reflection_probe_get_cull_mask(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->cull_mask;
}
Vector3 RasterizerStorageGLES2::reflection_probe_get_extents(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Vector3());
return reflection_probe->extents;
}
Vector3 RasterizerStorageGLES2::reflection_probe_get_origin_offset(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, Vector3());
return reflection_probe->origin_offset;
}
bool RasterizerStorageGLES2::reflection_probe_renders_shadows(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, false);
return reflection_probe->enable_shadows;
}
float RasterizerStorageGLES2::reflection_probe_get_origin_max_distance(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->max_distance;
}
int RasterizerStorageGLES2::reflection_probe_get_resolution(RID p_probe) const {
const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!reflection_probe, 0);
return reflection_probe->resolution;
}
RID RasterizerStorageGLES2::gi_probe_create() {
return RID();
}
void RasterizerStorageGLES2::gi_probe_set_bounds(RID p_probe, const AABB &p_bounds) {
}
AABB RasterizerStorageGLES2::gi_probe_get_bounds(RID p_probe) const {
return AABB();
}
void RasterizerStorageGLES2::gi_probe_set_cell_size(RID p_probe, float p_size) {
}
float RasterizerStorageGLES2::gi_probe_get_cell_size(RID p_probe) const {
return 0.0;
}
void RasterizerStorageGLES2::gi_probe_set_to_cell_xform(RID p_probe, const Transform &p_xform) {
}
Transform RasterizerStorageGLES2::gi_probe_get_to_cell_xform(RID p_probe) const {
return Transform();
}
void RasterizerStorageGLES2::gi_probe_set_dynamic_data(RID p_probe, const PoolVector<int> &p_data) {
}
PoolVector<int> RasterizerStorageGLES2::gi_probe_get_dynamic_data(RID p_probe) const {
return PoolVector<int>();
}
void RasterizerStorageGLES2::gi_probe_set_dynamic_range(RID p_probe, int p_range) {
}
int RasterizerStorageGLES2::gi_probe_get_dynamic_range(RID p_probe) const {
return 0;
}
void RasterizerStorageGLES2::gi_probe_set_energy(RID p_probe, float p_range) {
}
void RasterizerStorageGLES2::gi_probe_set_bias(RID p_probe, float p_range) {
}
void RasterizerStorageGLES2::gi_probe_set_normal_bias(RID p_probe, float p_range) {
}
void RasterizerStorageGLES2::gi_probe_set_propagation(RID p_probe, float p_range) {
}
void RasterizerStorageGLES2::gi_probe_set_interior(RID p_probe, bool p_enable) {
}
bool RasterizerStorageGLES2::gi_probe_is_interior(RID p_probe) const {
return false;
}
void RasterizerStorageGLES2::gi_probe_set_compress(RID p_probe, bool p_enable) {
}
bool RasterizerStorageGLES2::gi_probe_is_compressed(RID p_probe) const {
return false;
}
float RasterizerStorageGLES2::gi_probe_get_energy(RID p_probe) const {
return 0;
}
float RasterizerStorageGLES2::gi_probe_get_bias(RID p_probe) const {
return 0;
}
float RasterizerStorageGLES2::gi_probe_get_normal_bias(RID p_probe) const {
return 0;
}
float RasterizerStorageGLES2::gi_probe_get_propagation(RID p_probe) const {
return 0;
}
uint32_t RasterizerStorageGLES2::gi_probe_get_version(RID p_probe) {
return 0;
}
RID RasterizerStorageGLES2::gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression) {
return RID();
}
void RasterizerStorageGLES2::gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data) {
}
///////
RID RasterizerStorageGLES2::lightmap_capture_create() {
LightmapCapture *capture = memnew(LightmapCapture);
return lightmap_capture_data_owner.make_rid(capture);
}
void RasterizerStorageGLES2::lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->bounds = p_bounds;
capture->instance_change_notify(true, false);
}
AABB RasterizerStorageGLES2::lightmap_capture_get_bounds(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, AABB());
return capture->bounds;
}
void RasterizerStorageGLES2::lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
ERR_FAIL_COND(p_octree.size() == 0 || (p_octree.size() % sizeof(LightmapCaptureOctree)) != 0);
capture->octree.resize(p_octree.size() / sizeof(LightmapCaptureOctree));
if (p_octree.size()) {
PoolVector<LightmapCaptureOctree>::Write w = capture->octree.write();
PoolVector<uint8_t>::Read r = p_octree.read();
memcpy(w.ptr(), r.ptr(), p_octree.size());
}
capture->instance_change_notify(true, false);
}
PoolVector<uint8_t> RasterizerStorageGLES2::lightmap_capture_get_octree(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, PoolVector<uint8_t>());
if (capture->octree.size() == 0) {
return PoolVector<uint8_t>();
}
PoolVector<uint8_t> ret;
ret.resize(capture->octree.size() * sizeof(LightmapCaptureOctree));
{
PoolVector<LightmapCaptureOctree>::Read r = capture->octree.read();
PoolVector<uint8_t>::Write w = ret.write();
memcpy(w.ptr(), r.ptr(), ret.size());
}
return ret;
}
void RasterizerStorageGLES2::lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->cell_xform = p_xform;
}
Transform RasterizerStorageGLES2::lightmap_capture_get_octree_cell_transform(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, Transform());
return capture->cell_xform;
}
void RasterizerStorageGLES2::lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->cell_subdiv = p_subdiv;
}
int RasterizerStorageGLES2::lightmap_capture_get_octree_cell_subdiv(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, 0);
return capture->cell_subdiv;
}
void RasterizerStorageGLES2::lightmap_capture_set_energy(RID p_capture, float p_energy) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->energy = p_energy;
if (!capture->update_list.in_list()) {
capture_update_list.add(&capture->update_list);
}
}
float RasterizerStorageGLES2::lightmap_capture_get_energy(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, 0);
return capture->energy;
}
void RasterizerStorageGLES2::lightmap_capture_set_interior(RID p_capture, bool p_interior) {
LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND(!capture);
capture->interior = p_interior;
if (!capture->update_list.in_list()) {
capture_update_list.add(&capture->update_list);
}
}
bool RasterizerStorageGLES2::lightmap_capture_is_interior(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, false);
return capture->interior;
}
void RasterizerStorageGLES2::update_dirty_captures() {
while (capture_update_list.first()) {
LightmapCapture *capture = capture_update_list.first()->self();
capture->instance_change_notify(false, true);
capture_update_list.remove(capture_update_list.first());
}
}
const PoolVector<RasterizerStorage::LightmapCaptureOctree> *RasterizerStorageGLES2::lightmap_capture_get_octree_ptr(RID p_capture) const {
const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
ERR_FAIL_COND_V(!capture, nullptr);
return &capture->octree;
}
///////
RID RasterizerStorageGLES2::particles_create() {
return RID();
}
void RasterizerStorageGLES2::particles_set_emitting(RID p_particles, bool p_emitting) {
}
bool RasterizerStorageGLES2::particles_get_emitting(RID p_particles) {
return false;
}
void RasterizerStorageGLES2::particles_set_amount(RID p_particles, int p_amount) {
}
void RasterizerStorageGLES2::particles_set_lifetime(RID p_particles, float p_lifetime) {
}
void RasterizerStorageGLES2::particles_set_one_shot(RID p_particles, bool p_one_shot) {
}
void RasterizerStorageGLES2::particles_set_pre_process_time(RID p_particles, float p_time) {
}
void RasterizerStorageGLES2::particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {
}
void RasterizerStorageGLES2::particles_set_randomness_ratio(RID p_particles, float p_ratio) {
}
void RasterizerStorageGLES2::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
}
void RasterizerStorageGLES2::particles_set_speed_scale(RID p_particles, float p_scale) {
}
void RasterizerStorageGLES2::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES2::particles_set_fixed_fps(RID p_particles, int p_fps) {
}
void RasterizerStorageGLES2::particles_set_fractional_delta(RID p_particles, bool p_enable) {
}
void RasterizerStorageGLES2::particles_set_process_material(RID p_particles, RID p_material) {
}
void RasterizerStorageGLES2::particles_set_draw_order(RID p_particles, VS::ParticlesDrawOrder p_order) {
}
void RasterizerStorageGLES2::particles_set_draw_passes(RID p_particles, int p_passes) {
}
void RasterizerStorageGLES2::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
}
void RasterizerStorageGLES2::particles_restart(RID p_particles) {
}
void RasterizerStorageGLES2::particles_request_process(RID p_particles) {
}
AABB RasterizerStorageGLES2::particles_get_current_aabb(RID p_particles) {
return AABB();
}
AABB RasterizerStorageGLES2::particles_get_aabb(RID p_particles) const {
return AABB();
}
void RasterizerStorageGLES2::particles_set_emission_transform(RID p_particles, const Transform &p_transform) {
}
int RasterizerStorageGLES2::particles_get_draw_passes(RID p_particles) const {
return 0;
}
RID RasterizerStorageGLES2::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
return RID();
}
void RasterizerStorageGLES2::update_particles() {
}
bool RasterizerStorageGLES2::particles_is_inactive(RID p_particles) const {
return true;
}
////////
void RasterizerStorageGLES2::instance_add_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
skeleton->instances.insert(p_instance);
}
void RasterizerStorageGLES2::instance_remove_skeleton(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) {
Skeleton *skeleton = skeleton_owner.getornull(p_skeleton);
ERR_FAIL_COND(!skeleton);
skeleton->instances.erase(p_instance);
}
void RasterizerStorageGLES2::instance_add_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {
Instantiable *inst = nullptr;
switch (p_instance->base_type) {
case VS::INSTANCE_MESH: {
inst = mesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_MULTIMESH: {
inst = multimesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_IMMEDIATE: {
inst = immediate_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
/*case VS::INSTANCE_PARTICLES: {
inst = particles_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;*/
case VS::INSTANCE_REFLECTION_PROBE: {
inst = reflection_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_LIGHT: {
inst = light_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
/*case VS::INSTANCE_GI_PROBE: {
inst = gi_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;*/
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
inst = lightmap_capture_data_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
default: {
ERR_FAIL();
}
}
inst->instance_list.add(&p_instance->dependency_item);
}
void RasterizerStorageGLES2::instance_remove_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {
Instantiable *inst = nullptr;
switch (p_instance->base_type) {
case VS::INSTANCE_MESH: {
inst = mesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_MULTIMESH: {
inst = multimesh_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_IMMEDIATE: {
inst = immediate_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
/*case VS::INSTANCE_PARTICLES: {
inst = particles_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;*/
case VS::INSTANCE_REFLECTION_PROBE: {
inst = reflection_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
case VS::INSTANCE_LIGHT: {
inst = light_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
/*case VS::INSTANCE_GI_PROBE: {
inst = gi_probe_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break; */
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
inst = lightmap_capture_data_owner.getornull(p_base);
ERR_FAIL_COND(!inst);
} break;
default: {
ERR_FAIL();
}
}
inst->instance_list.remove(&p_instance->dependency_item);
}
/* RENDER TARGET */
void RasterizerStorageGLES2::_render_target_allocate(RenderTarget *rt) {
// do not allocate a render target with no size
if (rt->width <= 0 || rt->height <= 0) {
return;
}
// do not allocate a render target that is attached to the screen
if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
rt->fbo = RasterizerStorageGLES2::system_fbo;
return;
}
if (rt->width > config.max_viewport_dimensions[0] || rt->height > config.max_viewport_dimensions[1]) {
WARN_PRINT("Cannot create render target larger than maximum hardware supported size of (" + itos(config.max_viewport_dimensions[0]) + ", " + itos(config.max_viewport_dimensions[1]) + "). Setting size to maximum.");
rt->width = MIN(rt->width, config.max_viewport_dimensions[0]);
rt->height = MIN(rt->height, config.max_viewport_dimensions[1]);
}
GLuint color_internal_format;
GLuint color_format;
GLuint color_type = GL_UNSIGNED_BYTE;
Image::Format image_format;
if (rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
#ifdef GLES_OVER_GL
color_internal_format = GL_RGBA8;
#else
color_internal_format = GL_RGBA;
#endif
color_format = GL_RGBA;
image_format = Image::FORMAT_RGBA8;
} else {
#ifdef GLES_OVER_GL
color_internal_format = GL_RGB8;
#else
color_internal_format = GL_RGB;
#endif
color_format = GL_RGB;
image_format = Image::FORMAT_RGB8;
}
rt->used_dof_blur_near = false;
rt->mip_maps_allocated = false;
{
/* Front FBO */
Texture *texture = texture_owner.getornull(rt->texture);
ERR_FAIL_COND(!texture);
// framebuffer
glGenFramebuffers(1, &rt->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo);
// color
glGenTextures(1, &rt->color);
glBindTexture(GL_TEXTURE_2D, rt->color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, nullptr);
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0);
// depth
if (config.support_depth_texture) {
glGenTextures(1, &rt->depth);
glBindTexture(GL_TEXTURE_2D, rt->depth);
glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, rt->width, rt->height, 0, GL_DEPTH_COMPONENT, config.depth_type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glGenRenderbuffers(1, &rt->depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->depth);
glRenderbufferStorage(GL_RENDERBUFFER, config.depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1, &rt->fbo);
if (config.support_depth_texture) {
glDeleteTextures(1, &rt->depth);
} else {
glDeleteRenderbuffers(1, &rt->depth);
}
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
rt->width = 0;
rt->height = 0;
rt->color = 0;
rt->depth = 0;
texture->tex_id = 0;
texture->active = false;
WARN_PRINT("Could not create framebuffer!!");
return;
}
texture->format = image_format;
texture->gl_format_cache = color_format;
texture->gl_type_cache = GL_UNSIGNED_BYTE;
texture->gl_internal_format_cache = color_internal_format;
texture->tex_id = rt->color;
texture->width = rt->width;
texture->alloc_width = rt->width;
texture->height = rt->height;
texture->alloc_height = rt->height;
texture->active = true;
texture_set_flags(rt->texture, texture->flags);
}
/* BACK FBO */
/* For MSAA */
#ifndef JAVASCRIPT_ENABLED
if (rt->msaa >= VS::VIEWPORT_MSAA_2X && rt->msaa <= VS::VIEWPORT_MSAA_16X && config.multisample_supported) {
rt->multisample_active = true;
static const int msaa_value[] = { 0, 2, 4, 8, 16 };
int msaa = msaa_value[rt->msaa];
int max_samples = 0;
glGetIntegerv(GL_MAX_SAMPLES, &max_samples);
if (msaa > max_samples) {
WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples));
msaa = max_samples;
}
//regular fbo
glGenFramebuffers(1, &rt->multisample_fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->multisample_fbo);
glGenRenderbuffers(1, &rt->multisample_depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_depth);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, config.depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->multisample_depth);
#if defined(GLES_OVER_GL) || defined(IPHONE_ENABLED)
glGenRenderbuffers(1, &rt->multisample_color);
glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_color);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->multisample_color);
#elif ANDROID_ENABLED
// Render to a texture in android
glGenTextures(1, &rt->multisample_color);
glBindTexture(GL_TEXTURE_2D, rt->multisample_color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, NULL);
// multisample buffer is same size as front buffer, so just use nearest
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glFramebufferTexture2DMultisample(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->multisample_color, 0, msaa);
#endif
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// Delete allocated resources and default to no MSAA
WARN_PRINT_ONCE("Cannot allocate back framebuffer for MSAA");
printf("err status: %x\n", status);
config.multisample_supported = false;
rt->multisample_active = false;
glDeleteFramebuffers(1, &rt->multisample_fbo);
rt->multisample_fbo = 0;
glDeleteRenderbuffers(1, &rt->multisample_depth);
rt->multisample_depth = 0;
#ifdef ANDROID_ENABLED
glDeleteTextures(1, &rt->multisample_color);
#else
glDeleteRenderbuffers(1, &rt->multisample_color);
#endif
rt->multisample_color = 0;
}
glBindRenderbuffer(GL_RENDERBUFFER, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#ifdef ANDROID_ENABLED
glBindTexture(GL_TEXTURE_2D, 0);
#endif
} else
#endif // JAVASCRIPT_ENABLED
{
rt->multisample_active = false;
}
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// copy texscreen buffers
if (!(rt->flags[RasterizerStorage::RENDER_TARGET_NO_SAMPLING])) {
glGenTextures(1, &rt->copy_screen_effect.color);
glBindTexture(GL_TEXTURE_2D, rt->copy_screen_effect.color);
if (rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, rt->width, rt->height, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glGenFramebuffers(1, &rt->copy_screen_effect.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, rt->copy_screen_effect.fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->copy_screen_effect.color, 0);
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
_render_target_clear(rt);
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
// Allocate mipmap chains for post_process effects
if (!rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D] && rt->width >= 2 && rt->height >= 2) {
for (int i = 0; i < 2; i++) {
ERR_FAIL_COND(rt->mip_maps[i].sizes.size());
int w = rt->width;
int h = rt->height;
if (i > 0) {
w >>= 1;
h >>= 1;
}
int level = 0;
int fb_w = w;
int fb_h = h;
while (true) {
RenderTarget::MipMaps::Size mm;
mm.width = w;
mm.height = h;
rt->mip_maps[i].sizes.push_back(mm);
w >>= 1;
h >>= 1;
if (w < 2 || h < 2) {
break;
}
level++;
}
GLsizei width = fb_w;
GLsizei height = fb_h;
if (config.render_to_mipmap_supported) {
glGenTextures(1, &rt->mip_maps[i].color);
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].color);
for (int l = 0; l < level + 1; l++) {
glTexImage2D(GL_TEXTURE_2D, l, color_internal_format, width, height, 0, color_format, color_type, nullptr);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
}
#ifdef GLES_OVER_GL
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level);
#endif
} else {
// Can't render to specific levels of a mipmap in ES 2.0 or Webgl so create a texture for each level
for (int l = 0; l < level + 1; l++) {
glGenTextures(1, &rt->mip_maps[i].sizes.write[l].color);
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[l].color);
glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, width, height, 0, color_format, color_type, nullptr);
width = MAX(1, (width / 2));
height = MAX(1, (height / 2));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
glDisable(GL_SCISSOR_TEST);
glColorMask(1, 1, 1, 1);
glDepthMask(GL_TRUE);
for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) {
RenderTarget::MipMaps::Size &mm = rt->mip_maps[i].sizes.write[j];
glGenFramebuffers(1, &mm.fbo);
glBindFramebuffer(GL_FRAMEBUFFER, mm.fbo);
if (config.render_to_mipmap_supported) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].color, j);
} else {
glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color, 0);
}
bool used_depth = false;
if (j == 0 && i == 0) { //use always
if (config.support_depth_texture) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
used_depth = true;
}
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
WARN_PRINT_ONCE("Cannot allocate mipmaps for 3D post processing effects");
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
return;
}
glClearColor(1.0, 0.0, 1.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
if (used_depth) {
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
}
}
rt->mip_maps[i].levels = level;
if (config.render_to_mipmap_supported) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
}
rt->mip_maps_allocated = true;
}
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
}
void RasterizerStorageGLES2::_render_target_clear(RenderTarget *rt) {
// there is nothing to clear when DIRECT_TO_SCREEN is used
if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
return;
}
if (rt->fbo) {
glDeleteFramebuffers(1, &rt->fbo);
glDeleteTextures(1, &rt->color);
rt->fbo = 0;
}
Texture *tex = texture_owner.get(rt->texture);
tex->alloc_height = 0;
tex->alloc_width = 0;
tex->width = 0;
tex->height = 0;
tex->active = false;
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// reset our texture back to the original
tex->tex_id = rt->color;
if (rt->external.depth != 0 && rt->external.depth_owned) {
glDeleteRenderbuffers(1, &rt->external.depth);
}
rt->external.fbo = 0;
rt->external.color = 0;
rt->external.depth = 0;
rt->external.depth_owned = false;
}
if (rt->depth) {
if (config.support_depth_texture) {
glDeleteTextures(1, &rt->depth);
} else {
glDeleteRenderbuffers(1, &rt->depth);
}
rt->depth = 0;
}
if (rt->copy_screen_effect.color) {
glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo);
rt->copy_screen_effect.fbo = 0;
glDeleteTextures(1, &rt->copy_screen_effect.color);
rt->copy_screen_effect.color = 0;
}
for (int i = 0; i < 2; i++) {
if (rt->mip_maps[i].sizes.size()) {
for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) {
glDeleteFramebuffers(1, &rt->mip_maps[i].sizes[j].fbo);
glDeleteTextures(1, &rt->mip_maps[i].sizes[j].color);
}
glDeleteTextures(1, &rt->mip_maps[i].color);
rt->mip_maps[i].sizes.clear();
rt->mip_maps[i].levels = 0;
rt->mip_maps[i].color = 0;
}
}
if (rt->multisample_active) {
glDeleteFramebuffers(1, &rt->multisample_fbo);
rt->multisample_fbo = 0;
glDeleteRenderbuffers(1, &rt->multisample_depth);
rt->multisample_depth = 0;
#ifdef ANDROID_ENABLED
glDeleteTextures(1, &rt->multisample_color);
#else
glDeleteRenderbuffers(1, &rt->multisample_color);
#endif
rt->multisample_color = 0;
}
}
RID RasterizerStorageGLES2::render_target_create() {
RenderTarget *rt = memnew(RenderTarget);
Texture *t = memnew(Texture);
t->type = VS::TEXTURE_TYPE_2D;
t->flags = 0;
t->width = 0;
t->height = 0;
t->alloc_height = 0;
t->alloc_width = 0;
t->format = Image::FORMAT_R8;
t->target = GL_TEXTURE_2D;
t->gl_format_cache = 0;
t->gl_internal_format_cache = 0;
t->gl_type_cache = 0;
t->data_size = 0;
t->total_data_size = 0;
t->ignore_mipmaps = false;
t->compressed = false;
t->mipmaps = 1;
t->active = true;
t->tex_id = 0;
t->render_target = rt;
rt->texture = texture_owner.make_rid(t);
return render_target_owner.make_rid(rt);
}
void RasterizerStorageGLES2::render_target_set_position(RID p_render_target, int p_x, int p_y) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->x = p_x;
rt->y = p_y;
}
void RasterizerStorageGLES2::render_target_set_size(RID p_render_target, int p_width, int p_height) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (p_width == rt->width && p_height == rt->height) {
return;
}
_render_target_clear(rt);
rt->width = p_width;
rt->height = p_height;
_render_target_allocate(rt);
}
RID RasterizerStorageGLES2::render_target_get_texture(RID p_render_target) const {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, RID());
return rt->texture;
}
uint32_t RasterizerStorageGLES2::render_target_get_depth_texture_id(RID p_render_target) const {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, 0);
if (rt->external.depth == 0) {
return rt->depth;
} else {
return rt->external.depth;
}
}
void RasterizerStorageGLES2::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id, unsigned int p_depth_id) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (p_texture_id == 0) {
if (rt->external.fbo != 0) {
// free this
glDeleteFramebuffers(1, &rt->external.fbo);
// and this
if (rt->external.depth != 0 && rt->external.depth_owned) {
glDeleteRenderbuffers(1, &rt->external.depth);
}
// reset our texture back to the original
Texture *t = texture_owner.get(rt->texture);
t->tex_id = rt->color;
t->width = rt->width;
t->alloc_width = rt->width;
t->height = rt->height;
t->alloc_height = rt->height;
rt->external.fbo = 0;
rt->external.color = 0;
rt->external.depth = 0;
}
} else {
if (rt->external.fbo == 0) {
// create our fbo
glGenFramebuffers(1, &rt->external.fbo);
}
// bind our frame buffer
glBindFramebuffer(GL_FRAMEBUFFER, rt->external.fbo);
rt->external.color = p_texture_id;
// Set our texture to the new image, note that we expect formats to be the same (or compatible) so we don't change those
Texture *t = texture_owner.get(rt->texture);
t->tex_id = p_texture_id;
t->width = rt->width;
t->height = rt->height;
t->alloc_height = rt->width;
t->alloc_width = rt->height;
// Switch our texture on our frame buffer
#if ANDROID_ENABLED
if (rt->msaa >= VS::VIEWPORT_MSAA_EXT_2X && rt->msaa <= VS::VIEWPORT_MSAA_EXT_4X) {
// This code only applies to the Oculus Go and Oculus Quest. Due to the the tiled nature
// of the GPU we can do a single render pass by rendering directly into our texture chains
// texture and apply MSAA as we render.
// On any other hardware these two modes are ignored and we do not have any MSAA,
// the normal MSAA modes need to be used to enable our two pass approach
// If we created a depth buffer before and we're now passed one, we need to clear it out
if (rt->external.depth != 0 && rt->external.depth_owned && p_depth_id != 0) {
glDeleteRenderbuffers(1, &rt->external.depth);
rt->external.depth_owned = false;
rt->external.depth = 0;
}
if (!rt->external.depth_owned) {
rt->external.depth = p_depth_id;
}
static const int msaa_value[] = { 2, 4 };
int msaa = msaa_value[rt->msaa - VS::VIEWPORT_MSAA_EXT_2X];
if (rt->external.depth == 0) {
rt->external.depth_owned = true;
// create a multisample depth buffer, we're not reusing Godots because Godot's didn't get created..
glGenRenderbuffers(1, &rt->external.depth);
glBindRenderbuffer(GL_RENDERBUFFER, rt->external.depth);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, config.depth_buffer_internalformat, rt->width, rt->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->external.depth);
} else if (!rt->external.depth_owned) {
// we make an exception here, external plugin MUST make sure this is a proper multisample render buffer!
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->external.depth);
}
// and set our external texture as the texture...
glFramebufferTexture2DMultisample(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0, msaa);
} else
#endif
{
// if MSAA as on before, clear our render buffer
if (rt->external.depth != 0 && rt->external.depth_owned) {
glDeleteRenderbuffers(1, &rt->external.depth);
}
rt->external.depth_owned = false;
rt->external.depth = p_depth_id;
// set our texture as the destination for our framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0);
// seeing we're rendering into this directly, better also use our depth buffer, just use our existing one :)
if (rt->external.depth != 0) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->external.depth, 0);
} else if (config.support_depth_texture) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0);
} else {
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth);
}
}
// check status and unbind
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("framebuffer fail, status: %x\n", status);
}
ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE);
}
}
void RasterizerStorageGLES2::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
// When setting DIRECT_TO_SCREEN, you need to clear before the value is set, but allocate after as
// those functions change how they operate depending on the value of DIRECT_TO_SCREEN
if (p_flag == RENDER_TARGET_DIRECT_TO_SCREEN && p_value != rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) {
_render_target_clear(rt);
rt->flags[p_flag] = p_value;
_render_target_allocate(rt);
}
rt->flags[p_flag] = p_value;
switch (p_flag) {
case RENDER_TARGET_TRANSPARENT:
case RENDER_TARGET_HDR:
case RENDER_TARGET_NO_3D:
case RENDER_TARGET_NO_SAMPLING:
case RENDER_TARGET_NO_3D_EFFECTS: {
//must reset for these formats
_render_target_clear(rt);
_render_target_allocate(rt);
} break;
default: {
}
}
}
bool RasterizerStorageGLES2::render_target_was_used(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND_V(!rt, false);
return rt->used_in_frame;
}
void RasterizerStorageGLES2::render_target_clear_used(RID p_render_target) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->used_in_frame = false;
}
void RasterizerStorageGLES2::render_target_set_msaa(RID p_render_target, VS::ViewportMSAA p_msaa) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (rt->msaa == p_msaa) {
return;
}
if (!config.multisample_supported) {
ERR_PRINT("MSAA not supported on this hardware.");
return;
}
_render_target_clear(rt);
rt->msaa = p_msaa;
_render_target_allocate(rt);
}
void RasterizerStorageGLES2::render_target_set_use_fxaa(RID p_render_target, bool p_fxaa) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
rt->use_fxaa = p_fxaa;
}
void RasterizerStorageGLES2::render_target_set_use_debanding(RID p_render_target, bool p_debanding) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (p_debanding) {
WARN_PRINT_ONCE("Debanding is not supported in the GLES2 backend. To use debanding, switch to the GLES3 backend and make sure HDR is enabled.");
}
rt->use_debanding = p_debanding;
}
void RasterizerStorageGLES2::render_target_set_sharpen_intensity(RID p_render_target, float p_intensity) {
RenderTarget *rt = render_target_owner.getornull(p_render_target);
ERR_FAIL_COND(!rt);
if (p_intensity >= 0.001) {
WARN_PRINT_ONCE("Sharpening is not supported in the GLES2 backend. To use sharpening, switch to the GLES3 backend.");
}
rt->sharpen_intensity = p_intensity;
}
/* CANVAS SHADOW */
RID RasterizerStorageGLES2::canvas_light_shadow_buffer_create(int p_width) {
CanvasLightShadow *cls = memnew(CanvasLightShadow);
if (p_width > config.max_texture_size) {
p_width = config.max_texture_size;
}
cls->size = p_width;
cls->height = 16;
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &cls->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo);
glGenRenderbuffers(1, &cls->depth);
glBindRenderbuffer(GL_RENDERBUFFER, cls->depth);
glRenderbufferStorage(GL_RENDERBUFFER, config.depth_buffer_internalformat, cls->size, cls->height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth);
glGenTextures(1, &cls->distance);
glBindTexture(GL_TEXTURE_2D, cls->distance);
if (config.use_rgba_2d_shadows) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
} else {
#ifdef GLES_OVER_GL
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, nullptr);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_FLOAT, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, NULL);
#endif
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
//printf("errnum: %x\n",status);
glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
if (status != GL_FRAMEBUFFER_COMPLETE) {
memdelete(cls);
ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID());
}
return canvas_light_shadow_owner.make_rid(cls);
}
/* LIGHT SHADOW MAPPING */
RID RasterizerStorageGLES2::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
return canvas_occluder_owner.make_rid(co);
}
void RasterizerStorageGLES2::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
}
if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
}
}
VS::InstanceType RasterizerStorageGLES2::get_base_type(RID p_rid) const {
if (mesh_owner.owns(p_rid)) {
return VS::INSTANCE_MESH;
} else if (light_owner.owns(p_rid)) {
return VS::INSTANCE_LIGHT;
} else if (multimesh_owner.owns(p_rid)) {
return VS::INSTANCE_MULTIMESH;
} else if (immediate_owner.owns(p_rid)) {
return VS::INSTANCE_IMMEDIATE;
} else if (reflection_probe_owner.owns(p_rid)) {
return VS::INSTANCE_REFLECTION_PROBE;
} else if (lightmap_capture_data_owner.owns(p_rid)) {
return VS::INSTANCE_LIGHTMAP_CAPTURE;
} else {
return VS::INSTANCE_NONE;
}
}
bool RasterizerStorageGLES2::free(RID p_rid) {
if (render_target_owner.owns(p_rid)) {
RenderTarget *rt = render_target_owner.getornull(p_rid);
_render_target_clear(rt);
Texture *t = texture_owner.get(rt->texture);
texture_owner.free(rt->texture);
memdelete(t);
render_target_owner.free(p_rid);
memdelete(rt);
return true;
} else if (texture_owner.owns(p_rid)) {
Texture *t = texture_owner.get(p_rid);
// can't free a render target texture
ERR_FAIL_COND_V(t->render_target, true);
info.texture_mem -= t->total_data_size;
texture_owner.free(p_rid);
memdelete(t);
return true;
} else if (sky_owner.owns(p_rid)) {
Sky *sky = sky_owner.get(p_rid);
sky_set_texture(p_rid, RID(), 256);
sky_owner.free(p_rid);
memdelete(sky);
return true;
} else if (shader_owner.owns(p_rid)) {
Shader *shader = shader_owner.get(p_rid);
if (shader->shader && shader->custom_code_id) {
shader->shader->free_custom_shader(shader->custom_code_id);
}
if (shader->dirty_list.in_list()) {
_shader_dirty_list.remove(&shader->dirty_list);
}
while (shader->materials.first()) {
Material *m = shader->materials.first()->self();
m->shader = nullptr;
_material_make_dirty(m);
shader->materials.remove(shader->materials.first());
}
shader_owner.free(p_rid);
memdelete(shader);
return true;
} else if (material_owner.owns(p_rid)) {
Material *m = material_owner.get(p_rid);
if (m->shader) {
m->shader->materials.remove(&m->list);
}
for (Map<Geometry *, int>::Element *E = m->geometry_owners.front(); E; E = E->next()) {
Geometry *g = E->key();
g->material = RID();
}
for (Map<RasterizerScene::InstanceBase *, int>::Element *E = m->instance_owners.front(); E; E = E->next()) {
RasterizerScene::InstanceBase *ins = E->key();
if (ins->material_override == p_rid) {
ins->material_override = RID();
}
if (ins->material_overlay == p_rid) {
ins->material_overlay = RID();
}
for (int i = 0; i < ins->materials.size(); i++) {
if (ins->materials[i] == p_rid) {
ins->materials.write[i] = RID();
}
}
}
material_owner.free(p_rid);
memdelete(m);
return true;
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *s = skeleton_owner.get(p_rid);
if (s->update_list.in_list()) {
skeleton_update_list.remove(&s->update_list);
}
for (Set<RasterizerScene::InstanceBase *>::Element *E = s->instances.front(); E; E = E->next()) {
E->get()->skeleton = RID();
}
skeleton_allocate(p_rid, 0, false);
if (s->tex_id) {
glDeleteTextures(1, &s->tex_id);
}
skeleton_owner.free(p_rid);
memdelete(s);
return true;
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get(p_rid);
mesh->instance_remove_deps();
mesh_clear(p_rid);
while (mesh->multimeshes.first()) {
MultiMesh *multimesh = mesh->multimeshes.first()->self();
multimesh->mesh = RID();
multimesh->dirty_aabb = true;
mesh->multimeshes.remove(mesh->multimeshes.first());
if (!multimesh->update_list.in_list()) {
multimesh_update_list.add(&multimesh->update_list);
}
}
mesh_owner.free(p_rid);
memdelete(mesh);
return true;
} else if (multimesh_owner.owns(p_rid)) {
// remove from interpolator
_interpolation_data.notify_free_multimesh(p_rid);
MultiMesh *multimesh = multimesh_owner.get(p_rid);
multimesh->instance_remove_deps();
if (multimesh->mesh.is_valid()) {
Mesh *mesh = mesh_owner.getornull(multimesh->mesh);
if (mesh) {
mesh->multimeshes.remove(&multimesh->mesh_list);
}
}
multimesh_allocate(p_rid, 0, VS::MULTIMESH_TRANSFORM_3D, VS::MULTIMESH_COLOR_NONE);
update_dirty_multimeshes();
multimesh_owner.free(p_rid);
memdelete(multimesh);
return true;
} else if (immediate_owner.owns(p_rid)) {
Immediate *im = immediate_owner.get(p_rid);
im->instance_remove_deps();
immediate_owner.free(p_rid);
memdelete(im);
return true;
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get(p_rid);
light->instance_remove_deps();
light_owner.free(p_rid);
memdelete(light);
return true;
} else if (reflection_probe_owner.owns(p_rid)) {
// delete the texture
ReflectionProbe *reflection_probe = reflection_probe_owner.get(p_rid);
reflection_probe->instance_remove_deps();
reflection_probe_owner.free(p_rid);
memdelete(reflection_probe);
return true;
} else if (lightmap_capture_data_owner.owns(p_rid)) {
// delete the texture
LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get(p_rid);
lightmap_capture->instance_remove_deps();
lightmap_capture_data_owner.free(p_rid);
memdelete(lightmap_capture);
return true;
} else if (canvas_occluder_owner.owns(p_rid)) {
CanvasOccluder *co = canvas_occluder_owner.get(p_rid);
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
}
if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
canvas_occluder_owner.free(p_rid);
memdelete(co);
return true;
} else if (canvas_light_shadow_owner.owns(p_rid)) {
CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_rid);
glDeleteFramebuffers(1, &cls->fbo);
glDeleteRenderbuffers(1, &cls->depth);
glDeleteTextures(1, &cls->distance);
canvas_light_shadow_owner.free(p_rid);
memdelete(cls);
return true;
} else {
return false;
}
}
bool RasterizerStorageGLES2::has_os_feature(const String &p_feature) const {
if (p_feature == "pvrtc") {
return config.pvrtc_supported;
}
if (p_feature == "s3tc") {
return config.s3tc_supported;
}
if (p_feature == "etc") {
return config.etc1_supported;
}
if (p_feature == "skinning_fallback") {
return config.use_skeleton_software;
}
return false;
}
////////////////////////////////////////////
void RasterizerStorageGLES2::set_debug_generate_wireframes(bool p_generate) {
}
void RasterizerStorageGLES2::render_info_begin_capture() {
info.snap = info.render;
}
void RasterizerStorageGLES2::render_info_end_capture() {
info.snap.object_count = info.render.object_count - info.snap.object_count;
info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count;
info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count;
info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count;
info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count;
info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count;
info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count;
info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count;
}
int RasterizerStorageGLES2::get_captured_render_info(VS::RenderInfo p_info) {
switch (p_info) {
case VS::INFO_OBJECTS_IN_FRAME: {
return info.snap.object_count;
} break;
case VS::INFO_VERTICES_IN_FRAME: {
return info.snap.vertices_count;
} break;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME: {
return info.snap.material_switch_count;
} break;
case VS::INFO_SHADER_CHANGES_IN_FRAME: {
return info.snap.shader_rebind_count;
} break;
case VS::INFO_SURFACE_CHANGES_IN_FRAME: {
return info.snap.surface_switch_count;
} break;
case VS::INFO_DRAW_CALLS_IN_FRAME: {
return info.snap.draw_call_count;
} break;
case VS::INFO_2D_ITEMS_IN_FRAME: {
return info.snap._2d_item_count;
} break;
case VS::INFO_2D_DRAW_CALLS_IN_FRAME: {
return info.snap._2d_draw_call_count;
} break;
default: {
return get_render_info(p_info);
}
}
}
uint64_t RasterizerStorageGLES2::get_render_info(VS::RenderInfo p_info) {
switch (p_info) {
case VS::INFO_OBJECTS_IN_FRAME:
return info.render_final.object_count;
case VS::INFO_VERTICES_IN_FRAME:
return info.render_final.vertices_count;
case VS::INFO_MATERIAL_CHANGES_IN_FRAME:
return info.render_final.material_switch_count;
case VS::INFO_SHADER_CHANGES_IN_FRAME:
return info.render_final.shader_rebind_count;
case VS::INFO_SURFACE_CHANGES_IN_FRAME:
return info.render_final.surface_switch_count;
case VS::INFO_DRAW_CALLS_IN_FRAME:
return info.render_final.draw_call_count;
case VS::INFO_2D_ITEMS_IN_FRAME:
return info.render_final._2d_item_count;
case VS::INFO_2D_DRAW_CALLS_IN_FRAME:
return info.render_final._2d_draw_call_count;
case VS::INFO_USAGE_VIDEO_MEM_TOTAL:
return 0; //no idea
case VS::INFO_VIDEO_MEM_USED:
return info.vertex_mem + info.texture_mem;
case VS::INFO_TEXTURE_MEM_USED:
return info.texture_mem;
case VS::INFO_VERTEX_MEM_USED:
return info.vertex_mem;
default:
return 0; //no idea either
}
}
String RasterizerStorageGLES2::get_video_adapter_name() const {
return (const char *)glGetString(GL_RENDERER);
}
String RasterizerStorageGLES2::get_video_adapter_vendor() const {
return (const char *)glGetString(GL_VENDOR);
}
void RasterizerStorageGLES2::initialize() {
RasterizerStorageGLES2::system_fbo = 0;
{
const GLubyte *extension_string = glGetString(GL_EXTENSIONS);
Vector<String> extensions = String((const char *)extension_string).split(" ");
for (int i = 0; i < extensions.size(); i++) {
config.extensions.insert(extensions[i]);
}
}
config.keep_original_textures = false;
config.shrink_textures_x2 = false;
config.depth_internalformat = GL_DEPTH_COMPONENT;
config.depth_type = GL_UNSIGNED_INT;
#ifdef GLES_OVER_GL
config.float_texture_supported = true;
config.s3tc_supported = true;
config.pvrtc_supported = false;
config.etc1_supported = false;
config.support_npot_repeat_mipmap = true;
config.depth_buffer_internalformat = GL_DEPTH_COMPONENT24;
#else
config.float_texture_supported = config.extensions.has("GL_ARB_texture_float") || config.extensions.has("GL_OES_texture_float");
config.s3tc_supported = config.extensions.has("GL_EXT_texture_compression_s3tc") || config.extensions.has("WEBGL_compressed_texture_s3tc");
config.etc1_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture") || config.extensions.has("WEBGL_compressed_texture_etc1");
config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc") || config.extensions.has("WEBGL_compressed_texture_pvrtc");
config.support_npot_repeat_mipmap = config.extensions.has("GL_OES_texture_npot");
// If the desktop build is using S3TC, and you export / run from the IDE for android, if the device supports
// S3TC it will crash trying to load these textures, as they are not exported in the APK. This is a simple way
// to prevent Android devices trying to load S3TC, by faking lack of hardware support.
#if defined(ANDROID_ENABLED) || defined(IPHONE_ENABLED)
config.s3tc_supported = false;
#endif
#ifdef JAVASCRIPT_ENABLED
// RenderBuffer internal format must be 16 bits in WebGL,
// but depth_texture should default to 32 always
// if the implementation doesn't support 32, it should just quietly use 16 instead
// https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/
config.depth_buffer_internalformat = GL_DEPTH_COMPONENT16;
config.depth_type = GL_UNSIGNED_INT;
#else
// on mobile check for 24 bit depth support for RenderBufferStorage
if (config.extensions.has("GL_OES_depth24")) {
config.depth_buffer_internalformat = _DEPTH_COMPONENT24_OES;
config.depth_type = GL_UNSIGNED_INT;
} else {
config.depth_buffer_internalformat = GL_DEPTH_COMPONENT16;
config.depth_type = GL_UNSIGNED_SHORT;
}
#endif
#endif
#ifndef GLES_OVER_GL
//Manually load extensions for android and ios
#ifdef IPHONE_ENABLED
// appears that IPhone doesn't need to dlopen TODO: test this rigorously before removing
//void *gles2_lib = dlopen(NULL, RTLD_LAZY);
//glRenderbufferStorageMultisampleAPPLE = dlsym(gles2_lib, "glRenderbufferStorageMultisampleAPPLE");
//glResolveMultisampleFramebufferAPPLE = dlsym(gles2_lib, "glResolveMultisampleFramebufferAPPLE");
#elif ANDROID_ENABLED
void *gles2_lib = dlopen("libGLESv2.so", RTLD_LAZY);
glRenderbufferStorageMultisampleEXT = (PFNGLRENDERBUFFERSTORAGEMULTISAMPLEEXTPROC)dlsym(gles2_lib, "glRenderbufferStorageMultisampleEXT");
glFramebufferTexture2DMultisampleEXT = (PFNGLFRAMEBUFFERTEXTURE2DMULTISAMPLEEXTPROC)dlsym(gles2_lib, "glFramebufferTexture2DMultisampleEXT");
#endif
#endif
// Check for multisample support
config.multisample_supported = config.extensions.has("GL_EXT_framebuffer_multisample") || config.extensions.has("GL_EXT_multisampled_render_to_texture") || config.extensions.has("GL_APPLE_framebuffer_multisample");
#ifdef GLES_OVER_GL
//TODO: causes huge problems with desktop video drivers. Making false for now, needs to be true to render SCREEN_TEXTURE mipmaps
config.render_to_mipmap_supported = false;
#else
//check if mipmaps can be used for SCREEN_TEXTURE and Glow on Mobile and web platforms
config.render_to_mipmap_supported = config.extensions.has("GL_OES_fbo_render_mipmap") && config.extensions.has("GL_EXT_texture_lod");
#endif
#ifdef GLES_OVER_GL
config.use_rgba_2d_shadows = false;
config.support_depth_texture = true;
config.use_rgba_3d_shadows = false;
config.support_depth_cubemaps = true;
#else
config.use_rgba_2d_shadows = !(config.float_texture_supported && config.extensions.has("GL_EXT_texture_rg"));
config.support_depth_texture = config.extensions.has("GL_OES_depth_texture") || config.extensions.has("WEBGL_depth_texture");
config.use_rgba_3d_shadows = !config.support_depth_texture;
config.support_depth_cubemaps = config.extensions.has("GL_OES_depth_texture_cube_map");
#endif
#ifdef GLES_OVER_GL
config.support_32_bits_indices = true;
#else
config.support_32_bits_indices = config.extensions.has("GL_OES_element_index_uint");
#endif
#ifdef GLES_OVER_GL
config.support_write_depth = true;
#elif defined(JAVASCRIPT_ENABLED)
config.support_write_depth = false;
#else
config.support_write_depth = config.extensions.has("GL_EXT_frag_depth");
#endif
config.support_half_float_vertices = true;
//every platform should support this except web, iOS has issues with their support, so add option to disable
#ifdef JAVASCRIPT_ENABLED
config.support_half_float_vertices = false;
#endif
bool disable_half_float = GLOBAL_GET("rendering/gles2/compatibility/disable_half_float");
if (disable_half_float) {
config.support_half_float_vertices = false;
}
config.rgtc_supported = config.extensions.has("GL_EXT_texture_compression_rgtc") || config.extensions.has("GL_ARB_texture_compression_rgtc") || config.extensions.has("EXT_texture_compression_rgtc");
config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc") || config.extensions.has("EXT_texture_compression_bptc");
config.anisotropic_level = 1.0;
config.use_anisotropic_filter = config.extensions.has("GL_EXT_texture_filter_anisotropic");
if (config.use_anisotropic_filter) {
glGetFloatv(_GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &config.anisotropic_level);
config.anisotropic_level = MIN(int(ProjectSettings::get_singleton()->get("rendering/quality/filters/anisotropic_filter_level")), config.anisotropic_level);
}
//determine formats for depth textures (or renderbuffers)
if (config.support_depth_texture) {
// Will use texture for depth
// have to manually see if we can create a valid framebuffer texture using UNSIGNED_INT,
// as there is no extension to test for this.
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
GLuint depth;
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, config.depth_type, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
glBindFramebuffer(GL_FRAMEBUFFER, system_fbo);
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &depth);
if (status != GL_FRAMEBUFFER_COMPLETE) {
// If it fails, test to see if it supports a framebuffer texture using UNSIGNED_SHORT
// This is needed because many OSX devices don't support either UNSIGNED_INT or UNSIGNED_SHORT
#ifdef GLES_OVER_GL
config.depth_internalformat = GL_DEPTH_COMPONENT16;
#else
// OES_depth_texture extension only specifies GL_DEPTH_COMPONENT.
config.depth_internalformat = GL_DEPTH_COMPONENT;
#endif
config.depth_type = GL_UNSIGNED_SHORT;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glGenTextures(1, &depth);
glBindTexture(GL_TEXTURE_2D, depth);
glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0);
status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
//if it fails again depth textures aren't supported, use rgba shadows and renderbuffer for depth
config.support_depth_texture = false;
config.use_rgba_3d_shadows = true;
}
glBindFramebuffer(GL_FRAMEBUFFER, system_fbo);
glDeleteFramebuffers(1, &fbo);
glBindTexture(GL_TEXTURE_2D, 0);
glDeleteTextures(1, &depth);
}
}
//picky requirements for these
config.support_shadow_cubemaps = config.support_depth_texture && config.support_write_depth && config.support_depth_cubemaps;
if (!config.support_shadow_cubemaps) {
print_verbose("OmniLight cubemap shadows are not supported by this GPU. Falling back to dual paraboloid shadows for all omni lights (faster but less precise).");
}
frame.count = 0;
frame.delta = 0;
frame.current_rt = nullptr;
frame.clear_request = false;
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &config.max_vertex_texture_image_units);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units);
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size);
glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &config.max_cubemap_texture_size);
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, config.max_viewport_dimensions);
// the use skeleton software path should be used if either float texture is not supported,
// OR max_vertex_texture_image_units is zero
config.use_skeleton_software = (config.float_texture_supported == false) || (config.max_vertex_texture_image_units == 0);
shaders.copy.init();
shaders.cubemap_filter.init();
bool ggx_hq = GLOBAL_GET("rendering/quality/reflections/high_quality_ggx");
shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::LOW_QUALITY, !ggx_hq);
{
// quad for copying stuff
glGenBuffers(1, &resources.quadie);
glBindBuffer(GL_ARRAY_BUFFER, resources.quadie);
{
const float qv[16] = {
-1,
-1,
0,
0,
-1,
1,
0,
1,
1,
1,
1,
1,
1,
-1,
1,
0,
};
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
{
//default textures
glGenTextures(1, &resources.white_tex);
unsigned char whitetexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
whitetexdata[i] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.white_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.black_tex);
unsigned char blacktexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i++) {
blacktexdata[i] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.black_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, blacktexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.normal_tex);
unsigned char normaltexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
normaltexdata[i + 0] = 128;
normaltexdata[i + 1] = 128;
normaltexdata[i + 2] = 255;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.normal_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, normaltexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glGenTextures(1, &resources.aniso_tex);
unsigned char anisotexdata[8 * 8 * 3];
for (int i = 0; i < 8 * 8 * 3; i += 3) {
anisotexdata[i + 0] = 255;
anisotexdata[i + 1] = 128;
anisotexdata[i + 2] = 0;
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.aniso_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, anisotexdata);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
}
// skeleton buffer
{
resources.skeleton_transform_buffer_size = 0;
glGenBuffers(1, &resources.skeleton_transform_buffer);
}
// blend buffer
{
resources.blend_shape_transform_cpu_buffer_size = 0;
}
// radical inverse vdc cache texture
// used for cubemap filtering
if (true /*||config.float_texture_supported*/) { //uint8 is similar and works everywhere
glGenTextures(1, &resources.radical_inverse_vdc_cache_tex);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex);
uint8_t radical_inverse[512];
for (uint32_t i = 0; i < 512; i++) {
uint32_t bits = i;
bits = (bits << 16) | (bits >> 16);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2);
bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4);
bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8);
float value = float(bits) * 2.3283064365386963e-10;
radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255));
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, radical_inverse);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling
glBindTexture(GL_TEXTURE_2D, 0);
}
{
glGenFramebuffers(1, &resources.mipmap_blur_fbo);
glGenTextures(1, &resources.mipmap_blur_color);
}
#ifdef GLES_OVER_GL
//this needs to be enabled manually in OpenGL 2.1
if (config.extensions.has("GL_ARB_seamless_cube_map")) {
glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS);
}
glEnable(GL_POINT_SPRITE);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
config.force_vertex_shading = GLOBAL_GET("rendering/quality/shading/force_vertex_shading");
config.use_fast_texture_filter = GLOBAL_GET("rendering/quality/filters/use_nearest_mipmap_filter");
GLOBAL_DEF_RST("rendering/quality/lightmapping/use_bicubic_sampling", true);
GLOBAL_DEF_RST("rendering/quality/lightmapping/use_bicubic_sampling.mobile", false);
config.use_lightmap_filter_bicubic = GLOBAL_GET("rendering/quality/lightmapping/use_bicubic_sampling");
config.use_physical_light_attenuation = GLOBAL_GET("rendering/quality/shading/use_physical_light_attenuation");
int orphan_mode = GLOBAL_GET("rendering/2d/opengl/legacy_orphan_buffers");
switch (orphan_mode) {
default: {
config.should_orphan = true;
} break;
case 1: {
config.should_orphan = false;
} break;
case 2: {
config.should_orphan = true;
} break;
}
}
void RasterizerStorageGLES2::finalize() {
}
void RasterizerStorageGLES2::_copy_screen() {
bind_quad_array();
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
void RasterizerStorageGLES2::update_dirty_resources() {
update_dirty_shaders();
update_dirty_materials();
update_dirty_blend_shapes();
update_dirty_skeletons();
update_dirty_multimeshes();
update_dirty_captures();
}
RasterizerStorageGLES2::RasterizerStorageGLES2() {
RasterizerStorageGLES2::system_fbo = 0;
config.should_orphan = true;
}