godot/thirdparty/libktx/lib/basis_transcode.cpp

740 lines
31 KiB
C++

/* -*- tab-width: 4; -*- */
/* vi: set sw=2 ts=4 expandtab: */
/*
* Copyright 2019-2020 The Khronos Group Inc.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @internal
* @file basis_transcode.cpp
* @~English
*
* @brief Functions for transcoding Basis Universal BasisLZ/ETC1S and UASTC textures.
*
* Two worlds collide here too. More uglyness!
*
* @author Mark Callow, www.edgewise-consulting.com
*/
#include <inttypes.h>
#include <stdio.h>
#include <KHR/khr_df.h>
#include "dfdutils/dfd.h"
#include "ktx.h"
#include "ktxint.h"
#include "texture2.h"
#include "vkformat_enum.h"
#include "vk_format.h"
#include "basis_sgd.h"
#include "transcoder/basisu_file_headers.h"
#include "transcoder/basisu_transcoder.h"
#include "transcoder/basisu_transcoder_internal.h"
#undef DECLARE_PRIVATE
#undef DECLARE_PROTECTED
#define DECLARE_PRIVATE(n,t2) ktxTexture2_private& n = *(t2->_private)
#define DECLARE_PROTECTED(n,t2) ktxTexture_protected& n = *(t2->_protected)
using namespace basisu;
using namespace basist;
inline bool isPow2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
inline bool isPow2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
KTX_error_code
ktxTexture2_transcodeLzEtc1s(ktxTexture2* This,
alpha_content_e alphaContent,
ktxTexture2* prototype,
ktx_transcode_fmt_e outputFormat,
ktx_transcode_flags transcodeFlags);
KTX_error_code
ktxTexture2_transcodeUastc(ktxTexture2* This,
alpha_content_e alphaContent,
ktxTexture2* prototype,
ktx_transcode_fmt_e outputFormat,
ktx_transcode_flags transcodeFlags);
/**
* @memberof ktxTexture2
* @ingroup reader
* @~English
* @brief Transcode a KTX2 texture with BasisLZ/ETC1S or UASTC images.
*
* If the texture contains BasisLZ supercompressed images, Inflates them from
* back to ETC1S then transcodes them to the specified block-compressed
* format. If the texture contains UASTC images, inflates them, if they have been
* supercompressed with zstd, then transcodes then to the specified format, The
* transcoded images replace the original images and the texture's fields including
* the DFD are modified to reflect the new format.
*
* These types of textures must be transcoded to a desired target
* block-compressed format before they can be uploaded to a GPU via a
* graphics API.
*
* The following block compressed transcode targets are available: @c KTX_TTF_ETC1_RGB,
* @c KTX_TTF_ETC2_RGBA, @c KTX_TTF_BC1_RGB, @c KTX_TTF_BC3_RGBA,
* @c KTX_TTF_BC4_R, @c KTX_TTF_BC5_RG, @c KTX_TTF_BC7_RGBA,
* @c @c KTX_TTF_PVRTC1_4_RGB, @c KTX_TTF_PVRTC1_4_RGBA,
* @c KTX_TTF_PVRTC2_4_RGB, @c KTX_TTF_PVRTC2_4_RGBA, @c KTX_TTF_ASTC_4x4_RGBA,
* @c KTX_TTF_ETC2_EAC_R11, @c KTX_TTF_ETC2_EAC_RG11, @c KTX_TTF_ETC and
* @c KTX_TTF_BC1_OR_3.
*
* @c KTX_TTF_ETC automatically selects between @c KTX_TTF_ETC1_RGB and
* @c KTX_TTF_ETC2_RGBA according to whether an alpha channel is available. @c KTX_TTF_BC1_OR_3
* does likewise between @c KTX_TTF_BC1_RGB and @c KTX_TTF_BC3_RGBA. Note that if
* @c KTX_TTF_PVRTC1_4_RGBA or @c KTX_TTF_PVRTC2_4_RGBA is specified and there is no alpha
* channel @c KTX_TTF_PVRTC1_4_RGB or @c KTX_TTF_PVRTC2_4_RGB respectively will be selected.
*
* Transcoding to ATC & FXT1 formats is not supported by libktx as there
* are no equivalent Vulkan formats.
*
* The following uncompressed transcode targets are also available: @c KTX_TTF_RGBA32,
* @c KTX_TTF_RGB565, KTX_TTF_BGR565 and KTX_TTF_RGBA4444.
*
* The following @p transcodeFlags are available.
*
* @sa ktxtexture2_CompressBasis().
*
* @param[in] This pointer to the ktxTexture2 object of interest.
* @param[in] outputFormat a value from the ktx_texture_transcode_fmt_e enum
* specifying the target format.
* @param[in] transcodeFlags bitfield of flags modifying the transcode
* operation. @sa ktx_texture_decode_flags_e.
*
* @return KTX_SUCCESS on success, other KTX_* enum values on error.
*
* @exception KTX_FILE_DATA_ERROR
* Supercompression global data is corrupted.
* @exception KTX_INVALID_OPERATION
* The texture's format is not transcodable (not
* ETC1S/BasisLZ or UASTC).
* @exception KTX_INVALID_OPERATION
* Supercompression global data is missing, i.e.,
* the texture object is invalid.
* @exception KTX_INVALID_OPERATION
* Image data is missing, i.e., the texture object
* is invalid.
* @exception KTX_INVALID_OPERATION
* @p outputFormat is PVRTC1 but the texture does
* does not have power-of-two dimensions.
* @exception KTX_INVALID_VALUE @p outputFormat is invalid.
* @exception KTX_TRANSCODE_FAILED
* Something went wrong during transcoding.
* @exception KTX_UNSUPPORTED_FEATURE
* KTX_TF_PVRTC_DECODE_TO_NEXT_POW2 was requested
* or the specified transcode target has not been
* included in the library being used.
* @exception KTX_OUT_OF_MEMORY Not enough memory to carry out transcoding.
*/
KTX_error_code
ktxTexture2_TranscodeBasis(ktxTexture2* This,
ktx_transcode_fmt_e outputFormat,
ktx_transcode_flags transcodeFlags)
{
uint32_t* BDB = This->pDfd + 1;
khr_df_model_e colorModel = (khr_df_model_e)KHR_DFDVAL(BDB, MODEL);
if (colorModel != KHR_DF_MODEL_UASTC
// Constructor has checked color model matches BASIS_LZ.
&& This->supercompressionScheme != KTX_SS_BASIS_LZ)
{
return KTX_INVALID_OPERATION; // Not in a transcodable format.
}
DECLARE_PRIVATE(priv, This);
if (This->supercompressionScheme == KTX_SS_BASIS_LZ) {
if (!priv._supercompressionGlobalData || priv._sgdByteLength == 0)
return KTX_INVALID_OPERATION;
}
if (transcodeFlags & KTX_TF_PVRTC_DECODE_TO_NEXT_POW2) {
debug_printf("ktxTexture_TranscodeBasis: KTX_TF_PVRTC_DECODE_TO_NEXT_POW2 currently unsupported\n");
return KTX_UNSUPPORTED_FEATURE;
}
if (outputFormat == KTX_TTF_PVRTC1_4_RGB
|| outputFormat == KTX_TTF_PVRTC1_4_RGBA) {
if ((!isPow2(This->baseWidth)) || (!isPow2(This->baseHeight))) {
debug_printf("ktxTexture_TranscodeBasis: PVRTC1 only supports power of 2 dimensions\n");
return KTX_INVALID_OPERATION;
}
}
const bool srgb = (KHR_DFDVAL(BDB, TRANSFER) == KHR_DF_TRANSFER_SRGB);
alpha_content_e alphaContent = eNone;
if (colorModel == KHR_DF_MODEL_ETC1S) {
if (KHR_DFDSAMPLECOUNT(BDB) == 2) {
uint32_t channelId = KHR_DFDSVAL(BDB, 1, CHANNELID);
if (channelId == KHR_DF_CHANNEL_ETC1S_AAA) {
alphaContent = eAlpha;
} else if (channelId == KHR_DF_CHANNEL_ETC1S_GGG){
alphaContent = eGreen;
} else {
return KTX_FILE_DATA_ERROR;
}
}
} else {
uint32_t channelId = KHR_DFDSVAL(BDB, 0, CHANNELID);
if (channelId == KHR_DF_CHANNEL_UASTC_RGBA)
alphaContent = eAlpha;
else if (channelId == KHR_DF_CHANNEL_UASTC_RRRG)
alphaContent = eGreen;
}
VkFormat vkFormat;
// Do some format mapping.
switch (outputFormat) {
case KTX_TTF_BC1_OR_3:
outputFormat = alphaContent != eNone ? KTX_TTF_BC3_RGBA
: KTX_TTF_BC1_RGB;
break;
case KTX_TTF_ETC:
outputFormat = alphaContent != eNone ? KTX_TTF_ETC2_RGBA
: KTX_TTF_ETC1_RGB;
break;
case KTX_TTF_PVRTC1_4_RGBA:
// This transcoder does not write opaque alpha blocks.
outputFormat = alphaContent != eNone ? KTX_TTF_PVRTC1_4_RGBA
: KTX_TTF_PVRTC1_4_RGB;
break;
case KTX_TTF_PVRTC2_4_RGBA:
// This transcoder does not write opaque alpha blocks.
outputFormat = alphaContent != eNone ? KTX_TTF_PVRTC2_4_RGBA
: KTX_TTF_PVRTC2_4_RGB;
break;
default:
/*NOP*/;
}
switch (outputFormat) {
case KTX_TTF_ETC1_RGB:
vkFormat = srgb ? VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK
: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
break;
case KTX_TTF_ETC2_RGBA:
vkFormat = srgb ? VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK
: VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
break;
case KTX_TTF_ETC2_EAC_R11:
vkFormat = VK_FORMAT_EAC_R11_UNORM_BLOCK;
break;
case KTX_TTF_ETC2_EAC_RG11:
vkFormat = VK_FORMAT_EAC_R11G11_UNORM_BLOCK;
break;
case KTX_TTF_BC1_RGB:
// Transcoding doesn't support BC1 alpha.
vkFormat = srgb ? VK_FORMAT_BC1_RGB_SRGB_BLOCK
: VK_FORMAT_BC1_RGB_UNORM_BLOCK;
break;
case KTX_TTF_BC3_RGBA:
vkFormat = srgb ? VK_FORMAT_BC3_SRGB_BLOCK
: VK_FORMAT_BC3_UNORM_BLOCK;
break;
case KTX_TTF_BC4_R:
vkFormat = VK_FORMAT_BC4_UNORM_BLOCK;
break;
case KTX_TTF_BC5_RG:
vkFormat = VK_FORMAT_BC5_UNORM_BLOCK;
break;
case KTX_TTF_PVRTC1_4_RGB:
case KTX_TTF_PVRTC1_4_RGBA:
vkFormat = srgb ? VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG
: VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG;
break;
case KTX_TTF_PVRTC2_4_RGB:
case KTX_TTF_PVRTC2_4_RGBA:
vkFormat = srgb ? VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG
: VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG;
break;
case KTX_TTF_BC7_RGBA:
vkFormat = srgb ? VK_FORMAT_BC7_SRGB_BLOCK
: VK_FORMAT_BC7_UNORM_BLOCK;
break;
case KTX_TTF_ASTC_4x4_RGBA:
vkFormat = srgb ? VK_FORMAT_ASTC_4x4_SRGB_BLOCK
: VK_FORMAT_ASTC_4x4_UNORM_BLOCK;
break;
case KTX_TTF_RGB565:
vkFormat = VK_FORMAT_R5G6B5_UNORM_PACK16;
break;
case KTX_TTF_BGR565:
vkFormat = VK_FORMAT_B5G6R5_UNORM_PACK16;
break;
case KTX_TTF_RGBA4444:
vkFormat = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
break;
case KTX_TTF_RGBA32:
vkFormat = srgb ? VK_FORMAT_R8G8B8A8_SRGB
: VK_FORMAT_R8G8B8A8_UNORM;
break;
default:
return KTX_INVALID_VALUE;
}
basis_tex_format textureFormat;
if (colorModel == KHR_DF_MODEL_UASTC)
textureFormat = basis_tex_format::cUASTC4x4;
else
textureFormat = basis_tex_format::cETC1S;
if (!basis_is_format_supported((transcoder_texture_format)outputFormat,
textureFormat)) {
return KTX_UNSUPPORTED_FEATURE;
}
// Create a prototype texture to use for calculating sizes in the target
// format and, as useful side effects, provide us with a properly sized
// data allocation and the DFD for the target format.
ktxTextureCreateInfo createInfo;
createInfo.glInternalformat = 0;
createInfo.vkFormat = vkFormat;
createInfo.baseWidth = This->baseWidth;
createInfo.baseHeight = This->baseHeight;
createInfo.baseDepth = This->baseDepth;
createInfo.generateMipmaps = This->generateMipmaps;
createInfo.isArray = This->isArray;
createInfo.numDimensions = This->numDimensions;
createInfo.numFaces = This->numFaces;
createInfo.numLayers = This->numLayers;
createInfo.numLevels = This->numLevels;
createInfo.pDfd = nullptr;
KTX_error_code result;
ktxTexture2* prototype;
result = ktxTexture2_Create(&createInfo, KTX_TEXTURE_CREATE_ALLOC_STORAGE,
&prototype);
if (result != KTX_SUCCESS) {
assert(result == KTX_OUT_OF_MEMORY); // The only run time error
return result;
}
if (!This->pData) {
if (ktxTexture_isActiveStream((ktxTexture*)This)) {
// Load pending. Complete it.
result = ktxTexture2_LoadImageData(This, NULL, 0);
if (result != KTX_SUCCESS)
{
ktxTexture2_Destroy(prototype);
return result;
}
} else {
// No data to transcode.
ktxTexture2_Destroy(prototype);
return KTX_INVALID_OPERATION;
}
}
// Transcoder global initialization. Requires ~9 milliseconds when compiled
// and executed natively on a Core i7 2.2 GHz. If this is too slow, the
// tables it computes can easily be moved to be compiled in.
static bool transcoderInitialized;
if (!transcoderInitialized) {
basisu_transcoder_init();
transcoderInitialized = true;
}
if (textureFormat == basis_tex_format::cETC1S) {
result = ktxTexture2_transcodeLzEtc1s(This, alphaContent,
prototype, outputFormat,
transcodeFlags);
} else {
result = ktxTexture2_transcodeUastc(This, alphaContent,
prototype, outputFormat,
transcodeFlags);
}
if (result == KTX_SUCCESS) {
// Fix up the current texture
DECLARE_PROTECTED(thisPrtctd, This);
DECLARE_PRIVATE(protoPriv, prototype);
DECLARE_PROTECTED(protoPrtctd, prototype);
memcpy(&thisPrtctd._formatSize, &protoPrtctd._formatSize,
sizeof(ktxFormatSize));
This->vkFormat = vkFormat;
This->isCompressed = prototype->isCompressed;
This->supercompressionScheme = KTX_SS_NONE;
priv._requiredLevelAlignment = protoPriv._requiredLevelAlignment;
// Copy the levelIndex from the prototype to This.
memcpy(priv._levelIndex, protoPriv._levelIndex,
This->numLevels * sizeof(ktxLevelIndexEntry));
// Move the DFD and data from the prototype to This.
free(This->pDfd);
This->pDfd = prototype->pDfd;
prototype->pDfd = 0;
free(This->pData);
This->pData = prototype->pData;
This->dataSize = prototype->dataSize;
prototype->pData = 0;
prototype->dataSize = 0;
// Free SGD data
This->_private->_sgdByteLength = 0;
if (This->_private->_supercompressionGlobalData) {
free(This->_private->_supercompressionGlobalData);
This->_private->_supercompressionGlobalData = NULL;
}
}
ktxTexture2_Destroy(prototype);
return result;
}
/**
* @memberof ktxTexture2 @private
* @ingroup reader
* @~English
* @brief Transcode a KTX2 texture with BasisLZ supercompressed ETC1S images.
*
* Inflates the images from BasisLZ supercompression back to ETC1S
* then transcodes them to the specified block-compressed format. The
* transcoded images replace the original images and the texture's fields
* including the DFD are modified to reflect the new format.
*
* BasisLZ supercompressed textures must be transcoded to a desired target
* block-compressed format before they can be uploaded to a GPU via a graphics
* API.
*
* The following block compressed transcode targets are available: @c KTX_TTF_ETC1_RGB,
* @c KTX_TTF_ETC2_RGBA, @c KTX_TTF_BC1_RGB, @c KTX_TTF_BC3_RGBA,
* @c KTX_TTF_BC4_R, @c KTX_TTF_BC5_RG, @c KTX_TTF_BC7_RGBA,
* @c @c KTX_TTF_PVRTC1_4_RGB, @c KTX_TTF_PVRTC1_4_RGBA,
* @c KTX_TTF_PVRTC2_4_RGB, @c KTX_TTF_PVRTC2_4_RGBA, @c KTX_TTF_ASTC_4x4_RGBA,
* @c KTX_TTF_ETC2_EAC_R11, @c KTX_TTF_ETC2_EAC_RG11, @c KTX_TTF_ETC and
* @c KTX_TTF_BC1_OR_3.
*
* @c KTX_TTF_ETC automatically selects between @c KTX_TTF_ETC1_RGB and
* @c KTX_TTF_ETC2_RGBA according to whether an alpha channel is available. @c KTX_TTF_BC1_OR_3
* does likewise between @c KTX_TTF_BC1_RGB and @c KTX_TTF_BC3_RGBA. Note that if
* @c KTX_TTF_PVRTC1_4_RGBA or @c KTX_TTF_PVRTC2_4_RGBA is specified and there is no alpha
* channel @c KTX_TTF_PVRTC1_4_RGB or @c KTX_TTF_PVRTC2_4_RGB respectively will be selected.
*
* ATC & FXT1 formats are not supported by KTX2 & libktx as there are no equivalent Vulkan formats.
*
* The following uncompressed transcode targets are also available: @c KTX_TTF_RGBA32,
* @c KTX_TTF_RGB565, KTX_TTF_BGR565 and KTX_TTF_RGBA4444.
*
* The following @p transcodeFlags are available.
*
* @sa ktxtexture2_CompressBasis().
*
* @param[in] This pointer to the ktxTexture2 object of interest.
* @param[in] outputFormat a value from the ktx_texture_transcode_fmt_e enum
* specifying the target format.
* @param[in] transcodeFlags bitfield of flags modifying the transcode
* operation. @sa ktx_texture_decode_flags_e.
*
* @return KTX_SUCCESS on success, other KTX_* enum values on error.
*
* @exception KTX_FILE_DATA_ERROR
* Supercompression global data is corrupted.
* @exception KTX_INVALID_OPERATION
* The texture's format is not transcodable (not
* ETC1S/BasisLZ or UASTC).
* @exception KTX_INVALID_OPERATION
* Supercompression global data is missing, i.e.,
* the texture object is invalid.
* @exception KTX_INVALID_OPERATION
* Image data is missing, i.e., the texture object
* is invalid.
* @exception KTX_INVALID_OPERATION
* @p outputFormat is PVRTC1 but the texture does
* does not have power-of-two dimensions.
* @exception KTX_INVALID_VALUE @p outputFormat is invalid.
* @exception KTX_TRANSCODE_FAILED
* Something went wrong during transcoding. The
* texture object will be corrupted.
* @exception KTX_UNSUPPORTED_FEATURE
* KTX_TF_PVRTC_DECODE_TO_NEXT_POW2 was requested
* or the specified transcode target has not been
* included in the library being used.
* @exception KTX_OUT_OF_MEMORY Not enough memory to carry out transcoding.
*/
KTX_error_code
ktxTexture2_transcodeLzEtc1s(ktxTexture2* This,
alpha_content_e alphaContent,
ktxTexture2* prototype,
ktx_transcode_fmt_e outputFormat,
ktx_transcode_flags transcodeFlags)
{
DECLARE_PRIVATE(priv, This);
DECLARE_PRIVATE(protoPriv, prototype);
KTX_error_code result = KTX_SUCCESS;
assert(This->supercompressionScheme == KTX_SS_BASIS_LZ);
uint8_t* bgd = priv._supercompressionGlobalData;
ktxBasisLzGlobalHeader& bgdh = *reinterpret_cast<ktxBasisLzGlobalHeader*>(bgd);
if (!(bgdh.endpointsByteLength && bgdh.selectorsByteLength && bgdh.tablesByteLength)) {
debug_printf("ktxTexture_TranscodeBasis: missing endpoints, selectors or tables");
return KTX_FILE_DATA_ERROR;
}
// Compute some helpful numbers.
//
// firstImages contains the indices of the first images for each level to
// ease finding the correct slice description when iterating from smallest
// level to largest or when randomly accessing them (t.b.c). The last array
// entry contains the total number of images, for calculating the offsets
// of the endpoints, etc.
uint32_t* firstImages = new uint32_t[This->numLevels+1];
// Temporary invariant value
uint32_t layersFaces = This->numLayers * This->numFaces;
firstImages[0] = 0;
for (uint32_t level = 1; level <= This->numLevels; level++) {
// NOTA BENE: numFaces * depth is only reasonable because they can't
// both be > 1. I.e there are no 3d cubemaps.
firstImages[level] = firstImages[level - 1]
+ layersFaces * MAX(This->baseDepth >> (level - 1), 1);
}
uint32_t& imageCount = firstImages[This->numLevels];
if (BGD_TABLES_ADDR(0, bgdh, imageCount) + bgdh.tablesByteLength > priv._sgdByteLength) {
return KTX_FILE_DATA_ERROR;
}
// FIXME: Do more validation.
// Prepare low-level transcoder for transcoding slices.
basist::basisu_lowlevel_etc1s_transcoder bit;
// basisu_transcoder_state is used to find the previous frame when
// decoding a video P-Frame. It tracks the previous frame for each mip
// level. For cube map array textures we need to find the previous frame
// for each face so we a state per face. Although providing this is only
// needed for video, it is easier to always pass our own.
std::vector<basisu_transcoder_state> xcoderStates;
xcoderStates.resize(This->isVideo ? This->numFaces : 1);
bit.decode_palettes(bgdh.endpointCount, BGD_ENDPOINTS_ADDR(bgd, imageCount),
bgdh.endpointsByteLength,
bgdh.selectorCount, BGD_SELECTORS_ADDR(bgd, bgdh, imageCount),
bgdh.selectorsByteLength);
bit.decode_tables(BGD_TABLES_ADDR(bgd, bgdh, imageCount),
bgdh.tablesByteLength);
// Find matching VkFormat and calculate output sizes.
const bool isVideo = This->isVideo;
ktx_uint8_t* pXcodedData = prototype->pData;
// Inconveniently, the output buffer size parameter of transcode_image
// has to be in pixels for uncompressed output and in blocks for
// compressed output. The only reason for humouring the API is so
// its buffer size tests provide a real check. An alternative is to
// always provide the size in bytes which will always pass.
ktx_uint32_t outputBlockByteLength
= prototype->_protected->_formatSize.blockSizeInBits / 8;
ktx_size_t xcodedDataLength
= prototype->dataSize / outputBlockByteLength;
ktxLevelIndexEntry* protoLevelIndex;
uint64_t levelOffsetWrite;
const ktxBasisLzEtc1sImageDesc* imageDescs = BGD_ETC1S_IMAGE_DESCS(bgd);
// Finally we're ready to transcode the slices.
// FIXME: Iframe flag needs to be queryable by the application. In Basis
// the app can query file_info and image_info from the transcoder which
// returns a structure with lots of info about the image.
protoLevelIndex = protoPriv._levelIndex;
levelOffsetWrite = 0;
for (int32_t level = This->numLevels - 1; level >= 0; level--) {
uint64_t levelOffset = ktxTexture2_levelDataOffset(This, level);
uint64_t writeOffset = levelOffsetWrite;
uint64_t writeOffsetBlocks = levelOffsetWrite / outputBlockByteLength;
uint32_t levelWidth = MAX(1, This->baseWidth >> level);
uint32_t levelHeight = MAX(1, This->baseHeight >> level);
// ETC1S texel block dimensions
const uint32_t bw = 4, bh = 4;
uint32_t levelBlocksX = (levelWidth + (bw - 1)) / bw;
uint32_t levelBlocksY = (levelHeight + (bh - 1)) / bh;
uint32_t depth = MAX(1, This->baseDepth >> level);
//uint32_t faceSlices = This->numFaces == 1 ? depth : This->numFaces;
uint32_t faceSlices = This->numFaces * depth;
uint32_t numImages = This->numLayers * faceSlices;
uint32_t image = firstImages[level];
uint32_t endImage = image + numImages;
ktx_size_t levelImageSizeOut, levelSizeOut;
uint32_t stateIndex = 0;
levelSizeOut = 0;
// FIXME: Figure out a way to get the size out of the transcoder.
levelImageSizeOut = ktxTexture2_GetImageSize(prototype, level);
for (; image < endImage; image++) {
const ktxBasisLzEtc1sImageDesc& imageDesc = imageDescs[image];
basisu_transcoder_state& xcoderState = xcoderStates[stateIndex];
// We have face0 [face1 ...] within each layer. Use `stateIndex`
// rather than a double loop of layers and faceSlices as this
// works for 3d texture and non-array cube maps as well as
// cube map arrays without special casing.
if (++stateIndex == xcoderStates.size())
stateIndex = 0;
if (alphaContent != eNone)
{
// The slice descriptions should have alpha information.
if (imageDesc.alphaSliceByteOffset == 0
|| imageDesc.alphaSliceByteLength == 0)
return KTX_FILE_DATA_ERROR;
}
bool status;
status = bit.transcode_image(
(transcoder_texture_format)outputFormat,
pXcodedData + writeOffset,
(uint32_t)(xcodedDataLength - writeOffsetBlocks),
This->pData,
(uint32_t)This->dataSize,
levelBlocksX,
levelBlocksY,
levelWidth,
levelHeight,
level,
(uint32_t)(levelOffset + imageDesc.rgbSliceByteOffset),
imageDesc.rgbSliceByteLength,
(uint32_t)(levelOffset + imageDesc.alphaSliceByteOffset),
imageDesc.alphaSliceByteLength,
transcodeFlags,
alphaContent != eNone,
isVideo,
// Our P-Frame flag is in the same bit as
// cSliceDescFlagsFrameIsIFrame. We have to
// invert it to make it an I-Frame flag.
//
// API currently doesn't have any way to pass
// the I-Frame flag.
//imageDesc.imageFlags ^ cSliceDescFlagsFrameIsIFrame,
0, // output_row_pitch_in_blocks_or_pixels
&xcoderState,
0 // output_rows_in_pixels
);
if (!status) {
result = KTX_TRANSCODE_FAILED;
goto cleanup;
}
writeOffset += levelImageSizeOut;
levelSizeOut += levelImageSizeOut;
} // end images loop
protoLevelIndex[level].byteOffset = levelOffsetWrite;
protoLevelIndex[level].byteLength = levelSizeOut;
protoLevelIndex[level].uncompressedByteLength = levelSizeOut;
levelOffsetWrite += levelSizeOut;
assert(levelOffsetWrite == writeOffset);
// In case of transcoding to uncompressed.
levelOffsetWrite = _KTX_PADN(protoPriv._requiredLevelAlignment,
levelOffsetWrite);
} // level loop
result = KTX_SUCCESS;
cleanup:
delete[] firstImages;
return result;
}
KTX_error_code
ktxTexture2_transcodeUastc(ktxTexture2* This,
alpha_content_e alphaContent,
ktxTexture2* prototype,
ktx_transcode_fmt_e outputFormat,
ktx_transcode_flags transcodeFlags)
{
assert(This->supercompressionScheme != KTX_SS_BASIS_LZ);
ktx_uint8_t* pXcodedData = prototype->pData;
ktx_uint32_t outputBlockByteLength
= prototype->_protected->_formatSize.blockSizeInBits / 8;
ktx_size_t xcodedDataLength
= prototype->dataSize / outputBlockByteLength;
DECLARE_PRIVATE(protoPriv, prototype);
ktxLevelIndexEntry* protoLevelIndex = protoPriv._levelIndex;
ktx_size_t levelOffsetWrite = 0;
basisu_lowlevel_uastc_transcoder uit;
// See comment on same declaration in transcodeEtc1s.
std::vector<basisu_transcoder_state> xcoderStates;
xcoderStates.resize(This->isVideo ? This->numFaces : 1);
for (ktx_int32_t level = This->numLevels - 1; level >= 0; level--)
{
ktx_uint32_t depth;
uint64_t writeOffset = levelOffsetWrite;
uint64_t writeOffsetBlocks = levelOffsetWrite / outputBlockByteLength;
ktx_size_t levelImageSizeIn, levelImageOffsetIn;
ktx_size_t levelImageSizeOut, levelSizeOut;
ktx_uint32_t levelImageCount;
uint32_t levelWidth = MAX(1, This->baseWidth >> level);
uint32_t levelHeight = MAX(1, This->baseHeight >> level);
// UASTC texel block dimensions
const uint32_t bw = 4, bh = 4;
uint32_t levelBlocksX = (levelWidth + (bw - 1)) / bw;
uint32_t levelBlocksY = (levelHeight + (bh - 1)) / bh;
uint32_t stateIndex = 0;
depth = MAX(1, This->baseDepth >> level);
levelImageCount = This->numLayers * This->numFaces * depth;
levelImageSizeIn = ktxTexture_calcImageSize(ktxTexture(This), level,
KTX_FORMAT_VERSION_TWO);
levelImageSizeOut = ktxTexture_calcImageSize(ktxTexture(prototype),
level,
KTX_FORMAT_VERSION_TWO);
levelImageOffsetIn = ktxTexture2_levelDataOffset(This, level);
levelSizeOut = 0;
bool status;
for (uint32_t image = 0; image < levelImageCount; image++) {
basisu_transcoder_state& xcoderState = xcoderStates[stateIndex];
// See comment before same lines in transcodeEtc1s.
if (++stateIndex == xcoderStates.size())
stateIndex = 0;
status = uit.transcode_image(
(transcoder_texture_format)outputFormat,
pXcodedData + writeOffset,
(uint32_t)(xcodedDataLength - writeOffsetBlocks),
This->pData,
(uint32_t)This->dataSize,
levelBlocksX,
levelBlocksY,
levelWidth,
levelHeight,
level,
(uint32_t)levelImageOffsetIn,
(uint32_t)levelImageSizeIn,
transcodeFlags,
alphaContent != eNone,
This->isVideo, // is_video
//imageDesc.imageFlags ^ cSliceDescFlagsFrameIsIFrame,
0, // output_row_pitch_in_blocks_or_pixels
&xcoderState, // pState
0, // output_rows_in_pixels,
-1, // channel0
-1 // channel1
);
if (!status)
return KTX_TRANSCODE_FAILED;
writeOffset += levelImageSizeOut;
levelSizeOut += levelImageSizeOut;
levelImageOffsetIn += levelImageSizeIn;
}
protoLevelIndex[level].byteOffset = levelOffsetWrite;
// writeOffset will be equal to total size of the images in the level.
protoLevelIndex[level].byteLength = levelSizeOut;
protoLevelIndex[level].uncompressedByteLength = levelSizeOut;
levelOffsetWrite += levelSizeOut;
}
// In case of transcoding to uncompressed.
levelOffsetWrite = _KTX_PADN(protoPriv._requiredLevelAlignment,
levelOffsetWrite);
return KTX_SUCCESS;
}