godot/servers/physics_2d/body_2d_sw.cpp
PouleyKetchoupp 562d9cef1b Fix RigidBody collision update after changing collision layer/mask
Changing the collision layer of a sleeping body was not triggering area
updates correctly.

Bodies need to be active for collision to be checked against already
overlapping bodies and areas.

Neighbors need to be activated too in order to handle the case where a
static body is modified (it can't be activated directly but paired
bodies need to check their collision again).

In 3D, moved the call to wakeup() from the physics server to
BodySW::_shapes_changed to make it consistent with 2D and also handle
the case where shapes are modified (_shapes_changed is called in both
this case and collision layer changes).
2021-10-21 17:22:47 -07:00

709 lines
19 KiB
C++

/*************************************************************************/
/* body_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "body_2d_sw.h"
#include "area_2d_sw.h"
#include "physics_2d_server_sw.h"
#include "space_2d_sw.h"
void Body2DSW::_update_inertia() {
if (!user_inertia && get_space() && !inertia_update_list.in_list()) {
get_space()->body_add_to_inertia_update_list(&inertia_update_list);
}
}
void Body2DSW::update_inertias() {
//update shapes and motions
switch (mode) {
case Physics2DServer::BODY_MODE_RIGID: {
if (user_inertia) {
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
break;
}
//update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet)
real_t total_area = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
total_area += get_shape_aabb(i).get_area();
}
inertia = 0;
for (int i = 0; i < get_shape_count(); i++) {
if (is_shape_disabled(i)) {
continue;
}
const Shape2DSW *shape = get_shape(i);
real_t area = get_shape_aabb(i).get_area();
real_t mass = area * this->mass / total_area;
Transform2D mtx = get_shape_transform(i);
Vector2 scale = mtx.get_scale();
inertia += shape->get_moment_of_inertia(mass, scale) + mass * mtx.get_origin().length_squared();
}
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
if (mass) {
_inv_mass = 1.0 / mass;
} else {
_inv_mass = 0;
}
} break;
case Physics2DServer::BODY_MODE_KINEMATIC:
case Physics2DServer::BODY_MODE_STATIC: {
_inv_inertia = 0;
_inv_mass = 0;
} break;
case Physics2DServer::BODY_MODE_CHARACTER: {
_inv_inertia = 0;
_inv_mass = 1.0 / mass;
} break;
}
//_update_inertia_tensor();
//_update_shapes();
}
void Body2DSW::set_active(bool p_active) {
if (active == p_active) {
return;
}
active = p_active;
if (!p_active) {
if (get_space()) {
get_space()->body_remove_from_active_list(&active_list);
}
} else {
if (mode == Physics2DServer::BODY_MODE_STATIC) {
return; //static bodies can't become active
}
if (get_space()) {
get_space()->body_add_to_active_list(&active_list);
}
//still_time=0;
}
/*
if (!space)
return;
for(int i=0;i<get_shape_count();i++) {
Shape &s=shapes[i];
if (s.bpid>0) {
get_space()->get_broadphase()->set_active(s.bpid,active);
}
}
*/
}
void Body2DSW::set_param(Physics2DServer::BodyParameter p_param, real_t p_value) {
switch (p_param) {
case Physics2DServer::BODY_PARAM_BOUNCE: {
bounce = p_value;
} break;
case Physics2DServer::BODY_PARAM_FRICTION: {
friction = p_value;
} break;
case Physics2DServer::BODY_PARAM_MASS: {
ERR_FAIL_COND(p_value <= 0);
mass = p_value;
_update_inertia();
} break;
case Physics2DServer::BODY_PARAM_INERTIA: {
if (p_value <= 0) {
user_inertia = false;
_update_inertia();
} else {
user_inertia = true;
inertia = p_value;
_inv_inertia = 1.0 / p_value;
}
} break;
case Physics2DServer::BODY_PARAM_GRAVITY_SCALE: {
gravity_scale = p_value;
} break;
case Physics2DServer::BODY_PARAM_LINEAR_DAMP: {
linear_damp = p_value;
} break;
case Physics2DServer::BODY_PARAM_ANGULAR_DAMP: {
angular_damp = p_value;
} break;
default: {
}
}
}
real_t Body2DSW::get_param(Physics2DServer::BodyParameter p_param) const {
switch (p_param) {
case Physics2DServer::BODY_PARAM_BOUNCE: {
return bounce;
}
case Physics2DServer::BODY_PARAM_FRICTION: {
return friction;
}
case Physics2DServer::BODY_PARAM_MASS: {
return mass;
}
case Physics2DServer::BODY_PARAM_INERTIA: {
return inertia;
}
case Physics2DServer::BODY_PARAM_GRAVITY_SCALE: {
return gravity_scale;
}
case Physics2DServer::BODY_PARAM_LINEAR_DAMP: {
return linear_damp;
}
case Physics2DServer::BODY_PARAM_ANGULAR_DAMP: {
return angular_damp;
}
default: {
}
}
return 0;
}
void Body2DSW::set_mode(Physics2DServer::BodyMode p_mode) {
Physics2DServer::BodyMode prev = mode;
mode = p_mode;
switch (p_mode) {
//CLEAR UP EVERYTHING IN CASE IT NOT WORKS!
case Physics2DServer::BODY_MODE_STATIC:
case Physics2DServer::BODY_MODE_KINEMATIC: {
_set_inv_transform(get_transform().affine_inverse());
_inv_mass = 0;
_inv_inertia = 0;
_set_static(p_mode == Physics2DServer::BODY_MODE_STATIC);
set_active(p_mode == Physics2DServer::BODY_MODE_KINEMATIC && contacts.size());
linear_velocity = Vector2();
angular_velocity = 0;
if (mode == Physics2DServer::BODY_MODE_KINEMATIC && prev != mode) {
first_time_kinematic = true;
}
} break;
case Physics2DServer::BODY_MODE_RIGID: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = inertia > 0 ? (1.0 / inertia) : 0;
_set_static(false);
set_active(true);
} break;
case Physics2DServer::BODY_MODE_CHARACTER: {
_inv_mass = mass > 0 ? (1.0 / mass) : 0;
_inv_inertia = 0;
_set_static(false);
set_active(true);
angular_velocity = 0;
} break;
}
if (p_mode == Physics2DServer::BODY_MODE_RIGID && _inv_inertia == 0) {
_update_inertia();
}
/*
if (get_space())
_update_queries();
*/
}
Physics2DServer::BodyMode Body2DSW::get_mode() const {
return mode;
}
void Body2DSW::_shapes_changed() {
_update_inertia();
wakeup();
wakeup_neighbours();
}
void Body2DSW::set_state(Physics2DServer::BodyState p_state, const Variant &p_variant) {
switch (p_state) {
case Physics2DServer::BODY_STATE_TRANSFORM: {
if (mode == Physics2DServer::BODY_MODE_KINEMATIC) {
new_transform = p_variant;
//wakeup_neighbours();
set_active(true);
if (first_time_kinematic) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
first_time_kinematic = false;
}
} else if (mode == Physics2DServer::BODY_MODE_STATIC) {
_set_transform(p_variant);
_set_inv_transform(get_transform().affine_inverse());
wakeup_neighbours();
} else {
Transform2D t = p_variant;
t.orthonormalize();
new_transform = get_transform(); //used as old to compute motion
if (t == new_transform) {
break;
}
_set_transform(t);
_set_inv_transform(get_transform().inverse());
}
wakeup();
} break;
case Physics2DServer::BODY_STATE_LINEAR_VELOCITY: {
/*
if (mode==Physics2DServer::BODY_MODE_STATIC)
break;
*/
linear_velocity = p_variant;
wakeup();
} break;
case Physics2DServer::BODY_STATE_ANGULAR_VELOCITY: {
/*
if (mode!=Physics2DServer::BODY_MODE_RIGID)
break;
*/
angular_velocity = p_variant;
wakeup();
} break;
case Physics2DServer::BODY_STATE_SLEEPING: {
//?
if (mode == Physics2DServer::BODY_MODE_STATIC || mode == Physics2DServer::BODY_MODE_KINEMATIC) {
break;
}
bool do_sleep = p_variant;
if (do_sleep) {
linear_velocity = Vector2();
//biased_linear_velocity=Vector3();
angular_velocity = 0;
//biased_angular_velocity=Vector3();
set_active(false);
} else {
if (mode != Physics2DServer::BODY_MODE_STATIC) {
set_active(true);
}
}
} break;
case Physics2DServer::BODY_STATE_CAN_SLEEP: {
can_sleep = p_variant;
if (mode == Physics2DServer::BODY_MODE_RIGID && !active && !can_sleep) {
set_active(true);
}
} break;
}
}
Variant Body2DSW::get_state(Physics2DServer::BodyState p_state) const {
switch (p_state) {
case Physics2DServer::BODY_STATE_TRANSFORM: {
return get_transform();
}
case Physics2DServer::BODY_STATE_LINEAR_VELOCITY: {
return linear_velocity;
}
case Physics2DServer::BODY_STATE_ANGULAR_VELOCITY: {
return angular_velocity;
}
case Physics2DServer::BODY_STATE_SLEEPING: {
return !is_active();
}
case Physics2DServer::BODY_STATE_CAN_SLEEP: {
return can_sleep;
}
}
return Variant();
}
void Body2DSW::set_space(Space2DSW *p_space) {
if (get_space()) {
wakeup_neighbours();
if (inertia_update_list.in_list()) {
get_space()->body_remove_from_inertia_update_list(&inertia_update_list);
}
if (active_list.in_list()) {
get_space()->body_remove_from_active_list(&active_list);
}
if (direct_state_query_list.in_list()) {
get_space()->body_remove_from_state_query_list(&direct_state_query_list);
}
}
_set_space(p_space);
if (get_space()) {
_update_inertia();
if (active) {
get_space()->body_add_to_active_list(&active_list);
}
/*
_update_queries();
if (is_active()) {
active=false;
set_active(true);
}
*/
}
first_integration = false;
}
void Body2DSW::_compute_area_gravity_and_dampenings(const Area2DSW *p_area) {
if (p_area->is_gravity_point()) {
if (p_area->get_gravity_distance_scale() > 0) {
Vector2 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin();
gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale() + 1, 2));
} else {
gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity();
}
} else {
gravity += p_area->get_gravity_vector() * p_area->get_gravity();
}
area_linear_damp += p_area->get_linear_damp();
area_angular_damp += p_area->get_angular_damp();
}
void Body2DSW::integrate_forces(real_t p_step) {
if (mode == Physics2DServer::BODY_MODE_STATIC) {
return;
}
Area2DSW *def_area = get_space()->get_default_area();
// Area2DSW *damp_area = def_area;
ERR_FAIL_COND(!def_area);
int ac = areas.size();
bool stopped = false;
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
if (ac) {
areas.sort();
const AreaCMP *aa = &areas[0];
// damp_area = aa[ac-1].area;
for (int i = ac - 1; i >= 0 && !stopped; i--) {
Physics2DServer::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode();
switch (mode) {
case Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE:
case Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: {
_compute_area_gravity_and_dampenings(aa[i].area);
stopped = mode == Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE;
} break;
case Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE:
case Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: {
gravity = Vector2(0, 0);
area_angular_damp = 0;
area_linear_damp = 0;
_compute_area_gravity_and_dampenings(aa[i].area);
stopped = mode == Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE;
} break;
default: {
}
}
}
}
if (!stopped) {
_compute_area_gravity_and_dampenings(def_area);
}
gravity *= gravity_scale;
// If less than 0, override dampenings with that of the Body2D
if (angular_damp >= 0) {
area_angular_damp = angular_damp;
}
/*
else
area_angular_damp=damp_area->get_angular_damp();
*/
if (linear_damp >= 0) {
area_linear_damp = linear_damp;
}
/*
else
area_linear_damp=damp_area->get_linear_damp();
*/
Vector2 motion;
bool do_motion = false;
if (mode == Physics2DServer::BODY_MODE_KINEMATIC) {
//compute motion, angular and etc. velocities from prev transform
motion = new_transform.get_origin() - get_transform().get_origin();
linear_velocity = motion / p_step;
real_t rot = new_transform.get_rotation() - get_transform().get_rotation();
angular_velocity = remainder(rot, 2.0 * Math_PI) / p_step;
do_motion = true;
/*
for(int i=0;i<get_shape_count();i++) {
set_shape_kinematic_advance(i,Vector2());
set_shape_kinematic_retreat(i,0);
}
*/
} else {
if (!omit_force_integration && !first_integration) {
//overridden by direct state query
Vector2 force = gravity * mass;
force += applied_force;
real_t torque = applied_torque;
real_t damp = 1.0 - p_step * area_linear_damp;
if (damp < 0) { // reached zero in the given time
damp = 0;
}
real_t angular_damp = 1.0 - p_step * area_angular_damp;
if (angular_damp < 0) { // reached zero in the given time
angular_damp = 0;
}
linear_velocity *= damp;
angular_velocity *= angular_damp;
linear_velocity += _inv_mass * force * p_step;
angular_velocity += _inv_inertia * torque * p_step;
}
if (continuous_cd_mode != Physics2DServer::CCD_MODE_DISABLED) {
motion = linear_velocity * p_step;
do_motion = true;
}
}
//motion=linear_velocity*p_step;
first_integration = false;
biased_angular_velocity = 0;
biased_linear_velocity = Vector2();
if (do_motion) { //shapes temporarily extend for raycast
_update_shapes_with_motion(motion);
}
// damp_area=NULL; // clear the area, so it is set in the next frame
def_area = nullptr; // clear the area, so it is set in the next frame
contact_count = 0;
}
void Body2DSW::integrate_velocities(real_t p_step) {
if (mode == Physics2DServer::BODY_MODE_STATIC) {
return;
}
if (fi_callback) {
get_space()->body_add_to_state_query_list(&direct_state_query_list);
}
if (mode == Physics2DServer::BODY_MODE_KINEMATIC) {
_set_transform(new_transform, false);
_set_inv_transform(new_transform.affine_inverse());
if (contacts.size() == 0 && linear_velocity == Vector2() && angular_velocity == 0) {
set_active(false); //stopped moving, deactivate
}
return;
}
real_t total_angular_velocity = angular_velocity + biased_angular_velocity;
Vector2 total_linear_velocity = linear_velocity + biased_linear_velocity;
real_t angle = get_transform().get_rotation() + total_angular_velocity * p_step;
Vector2 pos = get_transform().get_origin() + total_linear_velocity * p_step;
_set_transform(Transform2D(angle, pos), continuous_cd_mode == Physics2DServer::CCD_MODE_DISABLED);
_set_inv_transform(get_transform().inverse());
if (continuous_cd_mode != Physics2DServer::CCD_MODE_DISABLED) {
new_transform = get_transform();
}
//_update_inertia_tensor();
}
void Body2DSW::wakeup_neighbours() {
for (Map<Constraint2DSW *, int>::Element *E = constraint_map.front(); E; E = E->next()) {
const Constraint2DSW *c = E->key();
Body2DSW **n = c->get_body_ptr();
int bc = c->get_body_count();
for (int i = 0; i < bc; i++) {
if (i == E->get()) {
continue;
}
Body2DSW *b = n[i];
if (b->mode != Physics2DServer::BODY_MODE_RIGID) {
continue;
}
if (!b->is_active()) {
b->set_active(true);
}
}
}
}
void Body2DSW::call_queries() {
if (fi_callback) {
Physics2DDirectBodyStateSW *dbs = Physics2DDirectBodyStateSW::singleton;
dbs->body = this;
Variant v = dbs;
const Variant *vp[2] = { &v, &fi_callback->callback_udata };
Object *obj = ObjectDB::get_instance(fi_callback->id);
if (!obj) {
set_force_integration_callback(0, StringName());
} else {
Variant::CallError ce;
if (fi_callback->callback_udata.get_type() != Variant::NIL) {
obj->call(fi_callback->method, vp, 2, ce);
} else {
obj->call(fi_callback->method, vp, 1, ce);
}
}
}
}
bool Body2DSW::sleep_test(real_t p_step) {
if (mode == Physics2DServer::BODY_MODE_STATIC || mode == Physics2DServer::BODY_MODE_KINEMATIC) {
return true; //
} else if (mode == Physics2DServer::BODY_MODE_CHARACTER) {
return !active; // characters and kinematic bodies don't sleep unless asked to sleep
} else if (!can_sleep) {
return false;
}
if (Math::abs(angular_velocity) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) {
still_time += p_step;
return still_time > get_space()->get_body_time_to_sleep();
} else {
still_time = 0; //maybe this should be set to 0 on set_active?
return false;
}
}
void Body2DSW::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) {
if (fi_callback) {
memdelete(fi_callback);
fi_callback = nullptr;
}
if (p_id != 0) {
fi_callback = memnew(ForceIntegrationCallback);
fi_callback->id = p_id;
fi_callback->method = p_method;
fi_callback->callback_udata = p_udata;
}
}
Body2DSW::Body2DSW() :
CollisionObject2DSW(TYPE_BODY),
active_list(this),
inertia_update_list(this),
direct_state_query_list(this) {
mode = Physics2DServer::BODY_MODE_RIGID;
active = true;
angular_velocity = 0;
biased_angular_velocity = 0;
mass = 1;
inertia = 0;
user_inertia = false;
_inv_inertia = 0;
_inv_mass = 1;
bounce = 0;
friction = 1;
omit_force_integration = false;
applied_torque = 0;
island_step = 0;
island_next = nullptr;
island_list_next = nullptr;
_set_static(false);
first_time_kinematic = false;
linear_damp = -1;
angular_damp = -1;
area_angular_damp = 0;
area_linear_damp = 0;
contact_count = 0;
gravity_scale = 1.0;
first_integration = false;
still_time = 0;
continuous_cd_mode = Physics2DServer::CCD_MODE_DISABLED;
can_sleep = true;
fi_callback = nullptr;
}
Body2DSW::~Body2DSW() {
if (fi_callback) {
memdelete(fi_callback);
}
}
Physics2DDirectBodyStateSW *Physics2DDirectBodyStateSW::singleton = nullptr;
Physics2DDirectSpaceState *Physics2DDirectBodyStateSW::get_space_state() {
return body->get_space()->get_direct_state();
}
Variant Physics2DDirectBodyStateSW::get_contact_collider_shape_metadata(int p_contact_idx) const {
ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Variant());
if (!Physics2DServerSW::singletonsw->body_owner.owns(body->contacts[p_contact_idx].collider)) {
return Variant();
}
Body2DSW *other = Physics2DServerSW::singletonsw->body_owner.get(body->contacts[p_contact_idx].collider);
int sidx = body->contacts[p_contact_idx].collider_shape;
if (sidx < 0 || sidx >= other->get_shape_count()) {
return Variant();
}
return other->get_shape_metadata(sidx);
}