godot/thirdparty/thorvg/src/common/tvgCompressor.cpp
Martin Capitanio e090b112ef ThorVG: update from v0.11.6 to v0.12.0
https://github.com/thorvg/thorvg/releases/tag/v0.12.0

Godot-related SVG bug fixes:

+ [SwEngine] Fixed a linear filling scaling issue.
      thorvg/thorvg#1834
+ [SwEngine] Path data not invalid even though
      it doesn't start with MoveTo.
      thorvg/thorvg#1848

Fixes #86128 Gradient issue.
2024-01-08 09:59:43 +01:00

476 lines
16 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020 - 2024 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* LempelZivWelch (LZW) encoder/decoder by Guilherme R. Lampert(guilherme.ronaldo.lampert@gmail.com)
* This is the compression scheme used by the GIF image format and the Unix 'compress' tool.
* Main differences from this implementation is that End Of Input (EOI) and Clear Codes (CC)
* are not stored in the output and the max code length in bits is 12, vs 16 in compress.
*
* EOI is simply detected by the end of the data stream, while CC happens if the
* dictionary gets filled. Data is written/read from bit streams, which handle
* byte-alignment for us in a transparent way.
* The decoder relies on the hardcoded data layout produced by the encoder, since
* no additional reconstruction data is added to the output, so they must match.
* The nice thing about LZW is that we can reconstruct the dictionary directly from
* the stream of codes generated by the encoder, so this avoids storing additional
* headers in the bit stream.
* The output code length is variable. It starts with the minimum number of bits
* required to store the base byte-sized dictionary and automatically increases
* as the dictionary gets larger (it starts at 9-bits and grows to 10-bits when
* code 512 is added, then 11-bits when 1024 is added, and so on). If the dictionary
* is filled (4096 items for a 12-bits dictionary), the whole thing is cleared and
* the process starts over. This is the main reason why the encoder and the decoder
* must match perfectly, since the lengths of the codes will not be specified with
* the data itself.
* USEFUL LINKS:
* https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
* http://rosettacode.org/wiki/LZW_compression
* http://www.cs.duke.edu/csed/curious/compression/lzw.html
* http://www.cs.cf.ac.uk/Dave/Multimedia/node214.html
* http://marknelson.us/1989/10/01/lzw-data-compression/
*/
#include "config.h"
#include <string>
#include <memory.h>
#include "tvgCompressor.h"
namespace tvg {
/************************************************************************/
/* LZW Implementation */
/************************************************************************/
//LZW Dictionary helper:
constexpr int Nil = -1;
constexpr int MaxDictBits = 12;
constexpr int StartBits = 9;
constexpr int FirstCode = (1 << (StartBits - 1)); // 256
constexpr int MaxDictEntries = (1 << MaxDictBits); // 4096
//Round up to the next power-of-two number, e.g. 37 => 64
static int nextPowerOfTwo(int num)
{
--num;
for (size_t i = 1; i < sizeof(num) * 8; i <<= 1) {
num = num | num >> i;
}
return ++num;
}
struct BitStreamWriter
{
uint8_t* stream; //Growable buffer to store our bits. Heap allocated & owned by the class instance.
int bytesAllocated; //Current size of heap-allocated stream buffer *in bytes*.
int granularity; //Amount bytesAllocated multiplies by when auto-resizing in appendBit().
int currBytePos; //Current byte being written to, from 0 to bytesAllocated-1.
int nextBitPos; //Bit position within the current byte to access next. 0 to 7.
int numBitsWritten; //Number of bits in use from the stream buffer, not including byte-rounding padding.
void internalInit()
{
stream = nullptr;
bytesAllocated = 0;
granularity = 2;
currBytePos = 0;
nextBitPos = 0;
numBitsWritten = 0;
}
uint8_t* allocBytes(const int bytesWanted, uint8_t * oldPtr, const int oldSize)
{
auto newMemory = static_cast<uint8_t *>(malloc(bytesWanted));
memset(newMemory, 0, bytesWanted);
if (oldPtr) {
memcpy(newMemory, oldPtr, oldSize);
free(oldPtr);
}
return newMemory;
}
BitStreamWriter()
{
/* 8192 bits for a start (1024 bytes). It will resize if needed.
Default granularity is 2. */
internalInit();
allocate(8192);
}
BitStreamWriter(const int initialSizeInBits, const int growthGranularity = 2)
{
internalInit();
setGranularity(growthGranularity);
allocate(initialSizeInBits);
}
~BitStreamWriter()
{
free(stream);
}
void allocate(int bitsWanted)
{
//Require at least a byte.
if (bitsWanted <= 0) bitsWanted = 8;
//Round upwards if needed:
if ((bitsWanted % 8) != 0) bitsWanted = nextPowerOfTwo(bitsWanted);
//We might already have the required count.
const int sizeInBytes = bitsWanted / 8;
if (sizeInBytes <= bytesAllocated) return;
stream = allocBytes(sizeInBytes, stream, bytesAllocated);
bytesAllocated = sizeInBytes;
}
void appendBit(const int bit)
{
const uint32_t mask = uint32_t(1) << nextBitPos;
stream[currBytePos] = (stream[currBytePos] & ~mask) | (-bit & mask);
++numBitsWritten;
if (++nextBitPos == 8) {
nextBitPos = 0;
if (++currBytePos == bytesAllocated) allocate(bytesAllocated * granularity * 8);
}
}
void appendBitsU64(const uint64_t num, const int bitCount)
{
for (int b = 0; b < bitCount; ++b) {
const uint64_t mask = uint64_t(1) << b;
const int bit = !!(num & mask);
appendBit(bit);
}
}
uint8_t* release()
{
auto oldPtr = stream;
internalInit();
return oldPtr;
}
void setGranularity(const int growthGranularity)
{
granularity = (growthGranularity >= 2) ? growthGranularity : 2;
}
int getByteCount() const
{
int usedBytes = numBitsWritten / 8;
int leftovers = numBitsWritten % 8;
if (leftovers != 0) ++usedBytes;
return usedBytes;
}
};
struct BitStreamReader
{
const uint8_t* stream; // Pointer to the external bit stream. Not owned by the reader.
const int sizeInBytes; // Size of the stream *in bytes*. Might include padding.
const int sizeInBits; // Size of the stream *in bits*, padding *not* include.
int currBytePos = 0; // Current byte being read in the stream.
int nextBitPos = 0; // Bit position within the current byte to access next. 0 to 7.
int numBitsRead = 0; // Total bits read from the stream so far. Never includes byte-rounding padding.
BitStreamReader(const uint8_t* bitStream, const int byteCount, const int bitCount) : stream(bitStream), sizeInBytes(byteCount), sizeInBits(bitCount)
{
}
bool readNextBit(int& bitOut)
{
if (numBitsRead >= sizeInBits) return false; //We are done.
const uint32_t mask = uint32_t(1) << nextBitPos;
bitOut = !!(stream[currBytePos] & mask);
++numBitsRead;
if (++nextBitPos == 8) {
nextBitPos = 0;
++currBytePos;
}
return true;
}
uint64_t readBitsU64(const int bitCount)
{
uint64_t num = 0;
for (int b = 0; b < bitCount; ++b) {
int bit;
if (!readNextBit(bit)) break;
/* Based on a "Stanford bit-hack":
http://graphics.stanford.edu/~seander/bithacks.html#ConditionalSetOrClearBitsWithoutBranching */
const uint64_t mask = uint64_t(1) << b;
num = (num & ~mask) | (-bit & mask);
}
return num;
}
bool isEndOfStream() const
{
return numBitsRead >= sizeInBits;
}
};
struct Dictionary
{
struct Entry
{
int code;
int value;
};
//Dictionary entries 0-255 are always reserved to the byte/ASCII range.
int size;
Entry entries[MaxDictEntries];
Dictionary()
{
/* First 256 dictionary entries are reserved to the byte/ASCII range.
Additional entries follow for the character sequences found in the input.
Up to 4096 - 256 (MaxDictEntries - FirstCode). */
size = FirstCode;
for (int i = 0; i < size; ++i) {
entries[i].code = Nil;
entries[i].value = i;
}
}
int findIndex(const int code, const int value) const
{
if (code == Nil) return value;
//Linear search for now.
//TODO: Worth optimizing with a proper hash-table?
for (int i = 0; i < size; ++i) {
if (entries[i].code == code && entries[i].value == value) return i;
}
return Nil;
}
bool add(const int code, const int value)
{
if (size == MaxDictEntries) return false;
entries[size].code = code;
entries[size].value = value;
++size;
return true;
}
bool flush(int & codeBitsWidth)
{
if (size == (1 << codeBitsWidth)) {
++codeBitsWidth;
if (codeBitsWidth > MaxDictBits) {
//Clear the dictionary (except the first 256 byte entries).
codeBitsWidth = StartBits;
size = FirstCode;
return true;
}
}
return false;
}
};
static bool outputByte(int code, uint8_t*& output, int outputSizeBytes, int& bytesDecodedSoFar)
{
if (bytesDecodedSoFar >= outputSizeBytes) return false;
*output++ = static_cast<uint8_t>(code);
++bytesDecodedSoFar;
return true;
}
static bool outputSequence(const Dictionary& dict, int code, uint8_t*& output, int outputSizeBytes, int& bytesDecodedSoFar, int& firstByte)
{
/* A sequence is stored backwards, so we have to write
it to a temp then output the buffer in reverse. */
int i = 0;
uint8_t sequence[MaxDictEntries];
do {
sequence[i++] = dict.entries[code].value;
code = dict.entries[code].code;
} while (code >= 0);
firstByte = sequence[--i];
for (; i >= 0; --i) {
if (!outputByte(sequence[i], output, outputSizeBytes, bytesDecodedSoFar)) return false;
}
return true;
}
uint8_t* lzwDecode(const uint8_t* compressed, uint32_t compressedSizeBytes, uint32_t compressedSizeBits, uint32_t uncompressedSizeBytes)
{
int code = Nil;
int prevCode = Nil;
int firstByte = 0;
int bytesDecoded = 0;
int codeBitsWidth = StartBits;
auto uncompressed = (uint8_t*) malloc(sizeof(uint8_t) * uncompressedSizeBytes);
auto ptr = uncompressed;
/* We'll reconstruct the dictionary based on the bit stream codes.
Unlike Huffman encoding, we don't store the dictionary as a prefix to the data. */
Dictionary dictionary;
BitStreamReader bitStream(compressed, compressedSizeBytes, compressedSizeBits);
/* We check to avoid an overflow of the user buffer.
If the buffer is smaller than the decompressed size, we break the loop and return the current decompression count. */
while (!bitStream.isEndOfStream()) {
code = static_cast<int>(bitStream.readBitsU64(codeBitsWidth));
if (prevCode == Nil) {
if (!outputByte(code, ptr, uncompressedSizeBytes, bytesDecoded)) break;
firstByte = code;
prevCode = code;
continue;
}
if (code >= dictionary.size) {
if (!outputSequence(dictionary, prevCode, ptr, uncompressedSizeBytes, bytesDecoded, firstByte)) break;
if (!outputByte(firstByte, ptr, uncompressedSizeBytes, bytesDecoded)) break;
} else if (!outputSequence(dictionary, code, ptr, uncompressedSizeBytes, bytesDecoded, firstByte)) break;
dictionary.add(prevCode, firstByte);
if (dictionary.flush(codeBitsWidth)) prevCode = Nil;
else prevCode = code;
}
return uncompressed;
}
uint8_t* lzwEncode(const uint8_t* uncompressed, uint32_t uncompressedSizeBytes, uint32_t* compressedSizeBytes, uint32_t* compressedSizeBits)
{
//LZW encoding context:
int code = Nil;
int codeBitsWidth = StartBits;
Dictionary dictionary;
//Output bit stream we write to. This will allocate memory as needed to accommodate the encoded data.
BitStreamWriter bitStream;
for (; uncompressedSizeBytes > 0; --uncompressedSizeBytes, ++uncompressed) {
const int value = *uncompressed;
const int index = dictionary.findIndex(code, value);
if (index != Nil) {
code = index;
continue;
}
//Write the dictionary code using the minimum bit-with:
bitStream.appendBitsU64(code, codeBitsWidth);
//Flush it when full so we can restart the sequences.
if (!dictionary.flush(codeBitsWidth)) {
//There's still space for this sequence.
dictionary.add(code, value);
}
code = value;
}
//Residual code at the end:
if (code != Nil) bitStream.appendBitsU64(code, codeBitsWidth);
//Pass ownership of the compressed data buffer to the user pointer:
*compressedSizeBytes = bitStream.getByteCount();
*compressedSizeBits = bitStream.numBitsWritten;
return bitStream.release();
}
/************************************************************************/
/* B64 Implementation */
/************************************************************************/
size_t b64Decode(const char* encoded, const size_t len, char** decoded)
{
static constexpr const char B64_INDEX[256] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 62, 63, 62, 62, 63, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 0, 0, 0, 0, 63, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51
};
if (!decoded || !encoded || len == 0) return 0;
auto reserved = 3 * (1 + (len >> 2)) + 1;
auto output = static_cast<char*>(malloc(reserved * sizeof(char)));
if (!output) return 0;
output[reserved - 1] = '\0';
size_t idx = 0;
while (*encoded && *(encoded + 1)) {
if (*encoded <= 0x20) {
++encoded;
continue;
}
auto value1 = B64_INDEX[(size_t)encoded[0]];
auto value2 = B64_INDEX[(size_t)encoded[1]];
output[idx++] = (value1 << 2) + ((value2 & 0x30) >> 4);
if (!encoded[2] || encoded[2] == '=' || encoded[2] == '.') break;
auto value3 = B64_INDEX[(size_t)encoded[2]];
output[idx++] = ((value2 & 0x0f) << 4) + ((value3 & 0x3c) >> 2);
if (!encoded[3] || encoded[3] == '=' || encoded[3] == '.') break;
auto value4 = B64_INDEX[(size_t)encoded[3]];
output[idx++] = ((value3 & 0x03) << 6) + value4;
encoded += 4;
}
*decoded = output;
return reserved;
}
}