302 lines
13 KiB
C++
302 lines
13 KiB
C++
/**************************************************************************/
|
|
/* test_basis.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_BASIS_H
|
|
#define TEST_BASIS_H
|
|
|
|
#include "core/math/basis.h"
|
|
#include "core/math/random_number_generator.h"
|
|
|
|
#include "tests/test_macros.h"
|
|
|
|
namespace TestBasis {
|
|
|
|
Vector3 deg_to_rad(const Vector3 &p_rotation) {
|
|
return p_rotation / 180.0 * Math_PI;
|
|
}
|
|
|
|
Vector3 rad2deg(const Vector3 &p_rotation) {
|
|
return p_rotation / Math_PI * 180.0;
|
|
}
|
|
|
|
String get_rot_order_name(EulerOrder ro) {
|
|
switch (ro) {
|
|
case EulerOrder::XYZ:
|
|
return "XYZ";
|
|
case EulerOrder::XZY:
|
|
return "XZY";
|
|
case EulerOrder::YZX:
|
|
return "YZX";
|
|
case EulerOrder::YXZ:
|
|
return "YXZ";
|
|
case EulerOrder::ZXY:
|
|
return "ZXY";
|
|
case EulerOrder::ZYX:
|
|
return "ZYX";
|
|
default:
|
|
return "[Not supported]";
|
|
}
|
|
}
|
|
|
|
void test_rotation(Vector3 deg_original_euler, EulerOrder rot_order) {
|
|
// This test:
|
|
// 1. Converts the rotation vector from deg to rad.
|
|
// 2. Converts euler to basis.
|
|
// 3. Converts the above basis back into euler.
|
|
// 4. Converts the above euler into basis again.
|
|
// 5. Compares the basis obtained in step 2 with the basis of step 4
|
|
//
|
|
// The conversion "basis to euler", done in the step 3, may be different from
|
|
// the original euler, even if the final rotation are the same.
|
|
// This happens because there are more ways to represents the same rotation,
|
|
// both valid, using eulers.
|
|
// For this reason is necessary to convert that euler back to basis and finally
|
|
// compares it.
|
|
//
|
|
// In this way we can assert that both functions: basis to euler / euler to basis
|
|
// are correct.
|
|
|
|
// Euler to rotation
|
|
const Vector3 original_euler = deg_to_rad(deg_original_euler);
|
|
const Basis to_rotation = Basis::from_euler(original_euler, rot_order);
|
|
|
|
// Euler from rotation
|
|
const Vector3 euler_from_rotation = to_rotation.get_euler(rot_order);
|
|
const Basis rotation_from_computed_euler = Basis::from_euler(euler_from_rotation, rot_order);
|
|
|
|
Basis res = to_rotation.inverse() * rotation_from_computed_euler;
|
|
|
|
CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Fail due to X %s\n", String(res.get_column(0))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Fail due to Y %s\n", String(res.get_column(1))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Fail due to Z %s\n", String(res.get_column(2))).utf8().ptr());
|
|
|
|
// Double check `to_rotation` decomposing with XYZ rotation order.
|
|
const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(EulerOrder::XYZ);
|
|
Basis rotation_from_xyz_computed_euler = Basis::from_euler(euler_xyz_from_rotation, EulerOrder::XYZ);
|
|
|
|
res = to_rotation.inverse() * rotation_from_xyz_computed_euler;
|
|
|
|
CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to X %s\n", String(res.get_column(0))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Y %s\n", String(res.get_column(1))).utf8().ptr());
|
|
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Z %s\n", String(res.get_column(2))).utf8().ptr());
|
|
|
|
INFO(vformat("Rotation order: %s\n.", get_rot_order_name(rot_order)).utf8().ptr());
|
|
INFO(vformat("Original Rotation: %s\n", String(deg_original_euler)).utf8().ptr());
|
|
INFO(vformat("Quaternion to rotation order: %s\n", String(rad2deg(euler_from_rotation))).utf8().ptr());
|
|
}
|
|
|
|
TEST_CASE("[Basis] Euler conversions") {
|
|
Vector<EulerOrder> euler_order_to_test;
|
|
euler_order_to_test.push_back(EulerOrder::XYZ);
|
|
euler_order_to_test.push_back(EulerOrder::XZY);
|
|
euler_order_to_test.push_back(EulerOrder::YZX);
|
|
euler_order_to_test.push_back(EulerOrder::YXZ);
|
|
euler_order_to_test.push_back(EulerOrder::ZXY);
|
|
euler_order_to_test.push_back(EulerOrder::ZYX);
|
|
|
|
Vector<Vector3> vectors_to_test;
|
|
|
|
// Test the special cases.
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 0.5, 0.5));
|
|
vectors_to_test.push_back(Vector3(-0.5, -0.5, -0.5));
|
|
vectors_to_test.push_back(Vector3(40.0, 40.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(-40.0, -40.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(0.0, -90.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 90.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, -30.0));
|
|
vectors_to_test.push_back(Vector3(0.0, -30.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(-30.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 0.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(0.0, 30.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(30.0, 0.0, 0.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 50.0, 20.0));
|
|
vectors_to_test.push_back(Vector3(-0.5, -50.0, -20.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 0.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(0.5, 0.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(360.0, 360.0, 360.0));
|
|
vectors_to_test.push_back(Vector3(-360.0, -360.0, -360.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, -60.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, -60.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(60.0, 90.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(60.0, -90.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(-60.0, -90.0, -40.0));
|
|
vectors_to_test.push_back(Vector3(-60.0, 90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(60.0, 90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(60.0, -90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(-60.0, -90.0, 40.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, -90.0, -90.0));
|
|
vectors_to_test.push_back(Vector3(-90.0, 90.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, 90.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(90.0, -90.0, 90.0));
|
|
vectors_to_test.push_back(Vector3(20.0, 150.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(20.0, -150.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(-120.0, -150.0, 30.0));
|
|
vectors_to_test.push_back(Vector3(-120.0, -150.0, -130.0));
|
|
vectors_to_test.push_back(Vector3(120.0, -150.0, -130.0));
|
|
vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0));
|
|
vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0));
|
|
|
|
for (int h = 0; h < euler_order_to_test.size(); h += 1) {
|
|
for (int i = 0; i < vectors_to_test.size(); i += 1) {
|
|
test_rotation(vectors_to_test[i], euler_order_to_test[h]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[Stress][Basis] Euler conversions") {
|
|
Vector<EulerOrder> euler_order_to_test;
|
|
euler_order_to_test.push_back(EulerOrder::XYZ);
|
|
euler_order_to_test.push_back(EulerOrder::XZY);
|
|
euler_order_to_test.push_back(EulerOrder::YZX);
|
|
euler_order_to_test.push_back(EulerOrder::YXZ);
|
|
euler_order_to_test.push_back(EulerOrder::ZXY);
|
|
euler_order_to_test.push_back(EulerOrder::ZYX);
|
|
|
|
Vector<Vector3> vectors_to_test;
|
|
// Add 1000 random vectors with weirds numbers.
|
|
RandomNumberGenerator rng;
|
|
for (int _ = 0; _ < 1000; _ += 1) {
|
|
vectors_to_test.push_back(Vector3(
|
|
rng.randf_range(-1800, 1800),
|
|
rng.randf_range(-1800, 1800),
|
|
rng.randf_range(-1800, 1800)));
|
|
}
|
|
|
|
for (int h = 0; h < euler_order_to_test.size(); h += 1) {
|
|
for (int i = 0; i < vectors_to_test.size(); i += 1) {
|
|
test_rotation(vectors_to_test[i], euler_order_to_test[h]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[Basis] Set axis angle") {
|
|
Vector3 axis;
|
|
real_t angle;
|
|
real_t pi = (real_t)Math_PI;
|
|
|
|
// Testing the singularity when the angle is 0°.
|
|
Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
|
identity.get_axis_angle(axis, angle);
|
|
CHECK(angle == 0);
|
|
|
|
// Testing the singularity when the angle is 180°.
|
|
Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1);
|
|
singularityPi.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(pi));
|
|
|
|
// Testing reversing the an axis (of an 30° angle).
|
|
float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0));
|
|
Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1);
|
|
Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1);
|
|
|
|
z_positive.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
|
|
CHECK(axis == Vector3(0, 0, 1));
|
|
|
|
z_negative.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
|
|
CHECK(axis == Vector3(0, 0, -1));
|
|
|
|
// Testing a rotation of 90° on x-y-z.
|
|
Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0);
|
|
x90deg.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(pi / (real_t)2));
|
|
CHECK(axis == Vector3(1, 0, 0));
|
|
|
|
Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0);
|
|
y90deg.get_axis_angle(axis, angle);
|
|
CHECK(axis == Vector3(0, 1, 0));
|
|
|
|
Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1);
|
|
z90deg.get_axis_angle(axis, angle);
|
|
CHECK(axis == Vector3(0, 0, 1));
|
|
|
|
// Regression test: checks that the method returns a small angle (not 0).
|
|
Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad.
|
|
tiny.get_axis_angle(axis, angle);
|
|
CHECK(angle == doctest::Approx(0.001).epsilon(0.0001));
|
|
|
|
// Regression test: checks that the method returns an angle which is a number (not NaN)
|
|
Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024);
|
|
bugNan.get_axis_angle(axis, angle);
|
|
CHECK(!Math::is_nan(angle));
|
|
}
|
|
|
|
TEST_CASE("[Basis] Finite number checks") {
|
|
const Vector3 x(0, 1, 2);
|
|
const Vector3 infinite(NAN, NAN, NAN);
|
|
|
|
CHECK_MESSAGE(
|
|
Basis(x, x, x).is_finite(),
|
|
"Basis with all components finite should be finite");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, x, x).is_finite(),
|
|
"Basis with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(x, infinite, x).is_finite(),
|
|
"Basis with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(x, x, infinite).is_finite(),
|
|
"Basis with one component infinite should not be finite.");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, infinite, x).is_finite(),
|
|
"Basis with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, x, infinite).is_finite(),
|
|
"Basis with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(x, infinite, infinite).is_finite(),
|
|
"Basis with two components infinite should not be finite.");
|
|
|
|
CHECK_FALSE_MESSAGE(
|
|
Basis(infinite, infinite, infinite).is_finite(),
|
|
"Basis with three components infinite should not be finite.");
|
|
}
|
|
|
|
} // namespace TestBasis
|
|
|
|
#endif // TEST_BASIS_H
|