250 lines
7.4 KiB
C
250 lines
7.4 KiB
C
/* Copyright (c) 2014-2015 Xiph.Org Foundation
|
|
Written by Viswanath Puttagunta */
|
|
/**
|
|
@file celt_neon_intr.c
|
|
@brief ARM Neon Intrinsic optimizations for celt
|
|
*/
|
|
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include "opus/opus_config.h"
|
|
|
|
#include <arm_neon.h>
|
|
#include "opus/celt/pitch.h"
|
|
|
|
#if !defined(FIXED_POINT)
|
|
/*
|
|
* Function: xcorr_kernel_neon_float
|
|
* ---------------------------------
|
|
* Computes 4 correlation values and stores them in sum[4]
|
|
*/
|
|
static void xcorr_kernel_neon_float(const float32_t *x, const float32_t *y,
|
|
float32_t sum[4], int len) {
|
|
float32x4_t YY[3];
|
|
float32x4_t YEXT[3];
|
|
float32x4_t XX[2];
|
|
float32x2_t XX_2;
|
|
float32x4_t SUMM;
|
|
const float32_t *xi = x;
|
|
const float32_t *yi = y;
|
|
|
|
celt_assert(len>0);
|
|
|
|
YY[0] = vld1q_f32(yi);
|
|
SUMM = vdupq_n_f32(0);
|
|
|
|
/* Consume 8 elements in x vector and 12 elements in y
|
|
* vector. However, the 12'th element never really gets
|
|
* touched in this loop. So, if len == 8, then we only
|
|
* must access y[0] to y[10]. y[11] must not be accessed
|
|
* hence make sure len > 8 and not len >= 8
|
|
*/
|
|
while (len > 8) {
|
|
yi += 4;
|
|
YY[1] = vld1q_f32(yi);
|
|
yi += 4;
|
|
YY[2] = vld1q_f32(yi);
|
|
|
|
XX[0] = vld1q_f32(xi);
|
|
xi += 4;
|
|
XX[1] = vld1q_f32(xi);
|
|
xi += 4;
|
|
|
|
SUMM = vmlaq_lane_f32(SUMM, YY[0], vget_low_f32(XX[0]), 0);
|
|
YEXT[0] = vextq_f32(YY[0], YY[1], 1);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[0], vget_low_f32(XX[0]), 1);
|
|
YEXT[1] = vextq_f32(YY[0], YY[1], 2);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[1], vget_high_f32(XX[0]), 0);
|
|
YEXT[2] = vextq_f32(YY[0], YY[1], 3);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[2], vget_high_f32(XX[0]), 1);
|
|
|
|
SUMM = vmlaq_lane_f32(SUMM, YY[1], vget_low_f32(XX[1]), 0);
|
|
YEXT[0] = vextq_f32(YY[1], YY[2], 1);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[0], vget_low_f32(XX[1]), 1);
|
|
YEXT[1] = vextq_f32(YY[1], YY[2], 2);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[1], vget_high_f32(XX[1]), 0);
|
|
YEXT[2] = vextq_f32(YY[1], YY[2], 3);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[2], vget_high_f32(XX[1]), 1);
|
|
|
|
YY[0] = YY[2];
|
|
len -= 8;
|
|
}
|
|
|
|
/* Consume 4 elements in x vector and 8 elements in y
|
|
* vector. However, the 8'th element in y never really gets
|
|
* touched in this loop. So, if len == 4, then we only
|
|
* must access y[0] to y[6]. y[7] must not be accessed
|
|
* hence make sure len>4 and not len>=4
|
|
*/
|
|
if (len > 4) {
|
|
yi += 4;
|
|
YY[1] = vld1q_f32(yi);
|
|
|
|
XX[0] = vld1q_f32(xi);
|
|
xi += 4;
|
|
|
|
SUMM = vmlaq_lane_f32(SUMM, YY[0], vget_low_f32(XX[0]), 0);
|
|
YEXT[0] = vextq_f32(YY[0], YY[1], 1);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[0], vget_low_f32(XX[0]), 1);
|
|
YEXT[1] = vextq_f32(YY[0], YY[1], 2);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[1], vget_high_f32(XX[0]), 0);
|
|
YEXT[2] = vextq_f32(YY[0], YY[1], 3);
|
|
SUMM = vmlaq_lane_f32(SUMM, YEXT[2], vget_high_f32(XX[0]), 1);
|
|
|
|
YY[0] = YY[1];
|
|
len -= 4;
|
|
}
|
|
|
|
while (--len > 0) {
|
|
XX_2 = vld1_dup_f32(xi++);
|
|
SUMM = vmlaq_lane_f32(SUMM, YY[0], XX_2, 0);
|
|
YY[0]= vld1q_f32(++yi);
|
|
}
|
|
|
|
XX_2 = vld1_dup_f32(xi);
|
|
SUMM = vmlaq_lane_f32(SUMM, YY[0], XX_2, 0);
|
|
|
|
vst1q_f32(sum, SUMM);
|
|
}
|
|
|
|
/*
|
|
* Function: xcorr_kernel_neon_float_process1
|
|
* ---------------------------------
|
|
* Computes single correlation values and stores in *sum
|
|
*/
|
|
static void xcorr_kernel_neon_float_process1(const float32_t *x,
|
|
const float32_t *y, float32_t *sum, int len) {
|
|
float32x4_t XX[4];
|
|
float32x4_t YY[4];
|
|
float32x2_t XX_2;
|
|
float32x2_t YY_2;
|
|
float32x4_t SUMM;
|
|
float32x2_t SUMM_2[2];
|
|
const float32_t *xi = x;
|
|
const float32_t *yi = y;
|
|
|
|
SUMM = vdupq_n_f32(0);
|
|
|
|
/* Work on 16 values per iteration */
|
|
while (len >= 16) {
|
|
XX[0] = vld1q_f32(xi);
|
|
xi += 4;
|
|
XX[1] = vld1q_f32(xi);
|
|
xi += 4;
|
|
XX[2] = vld1q_f32(xi);
|
|
xi += 4;
|
|
XX[3] = vld1q_f32(xi);
|
|
xi += 4;
|
|
|
|
YY[0] = vld1q_f32(yi);
|
|
yi += 4;
|
|
YY[1] = vld1q_f32(yi);
|
|
yi += 4;
|
|
YY[2] = vld1q_f32(yi);
|
|
yi += 4;
|
|
YY[3] = vld1q_f32(yi);
|
|
yi += 4;
|
|
|
|
SUMM = vmlaq_f32(SUMM, YY[0], XX[0]);
|
|
SUMM = vmlaq_f32(SUMM, YY[1], XX[1]);
|
|
SUMM = vmlaq_f32(SUMM, YY[2], XX[2]);
|
|
SUMM = vmlaq_f32(SUMM, YY[3], XX[3]);
|
|
len -= 16;
|
|
}
|
|
|
|
/* Work on 8 values */
|
|
if (len >= 8) {
|
|
XX[0] = vld1q_f32(xi);
|
|
xi += 4;
|
|
XX[1] = vld1q_f32(xi);
|
|
xi += 4;
|
|
|
|
YY[0] = vld1q_f32(yi);
|
|
yi += 4;
|
|
YY[1] = vld1q_f32(yi);
|
|
yi += 4;
|
|
|
|
SUMM = vmlaq_f32(SUMM, YY[0], XX[0]);
|
|
SUMM = vmlaq_f32(SUMM, YY[1], XX[1]);
|
|
len -= 8;
|
|
}
|
|
|
|
/* Work on 4 values */
|
|
if (len >= 4) {
|
|
XX[0] = vld1q_f32(xi);
|
|
xi += 4;
|
|
YY[0] = vld1q_f32(yi);
|
|
yi += 4;
|
|
SUMM = vmlaq_f32(SUMM, YY[0], XX[0]);
|
|
len -= 4;
|
|
}
|
|
|
|
/* Start accumulating results */
|
|
SUMM_2[0] = vget_low_f32(SUMM);
|
|
if (len >= 2) {
|
|
/* While at it, consume 2 more values if available */
|
|
XX_2 = vld1_f32(xi);
|
|
xi += 2;
|
|
YY_2 = vld1_f32(yi);
|
|
yi += 2;
|
|
SUMM_2[0] = vmla_f32(SUMM_2[0], YY_2, XX_2);
|
|
len -= 2;
|
|
}
|
|
SUMM_2[1] = vget_high_f32(SUMM);
|
|
SUMM_2[0] = vadd_f32(SUMM_2[0], SUMM_2[1]);
|
|
SUMM_2[0] = vpadd_f32(SUMM_2[0], SUMM_2[0]);
|
|
/* Ok, now we have result accumulated in SUMM_2[0].0 */
|
|
|
|
if (len > 0) {
|
|
/* Case when you have one value left */
|
|
XX_2 = vld1_dup_f32(xi);
|
|
YY_2 = vld1_dup_f32(yi);
|
|
SUMM_2[0] = vmla_f32(SUMM_2[0], XX_2, YY_2);
|
|
}
|
|
|
|
vst1_lane_f32(sum, SUMM_2[0], 0);
|
|
}
|
|
|
|
void celt_pitch_xcorr_float_neon(const opus_val16 *_x, const opus_val16 *_y,
|
|
opus_val32 *xcorr, int len, int max_pitch) {
|
|
int i;
|
|
celt_assert(max_pitch > 0);
|
|
celt_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0);
|
|
|
|
for (i = 0; i < (max_pitch-3); i += 4) {
|
|
xcorr_kernel_neon_float((const float32_t *)_x, (const float32_t *)_y+i,
|
|
(float32_t *)xcorr+i, len);
|
|
}
|
|
|
|
/* In case max_pitch isn't multiple of 4
|
|
* compute single correlation value per iteration
|
|
*/
|
|
for (; i < max_pitch; i++) {
|
|
xcorr_kernel_neon_float_process1((const float32_t *)_x,
|
|
(const float32_t *)_y+i, (float32_t *)xcorr+i, len);
|
|
}
|
|
}
|
|
#endif
|