godot/scene/resources/mesh.cpp
A Thousand Ships 3a707b1f54
Fix some additional errors with 3D disabled
* Disabled 2D navigation tests as they do not work
* Disabled tests for primitive meshes
* Unbound some `Mesh` methods that rely on 3D resources
* Unexposed `World3D` as it depends on physics (and isn't useful)
* Unexposed some `Viewport` vrs related properties that had unexposed
  methods
2024-02-23 20:58:56 +01:00

2348 lines
82 KiB
C++

/**************************************************************************/
/* mesh.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "mesh.h"
#include "core/math/convex_hull.h"
#include "core/templates/pair.h"
#include "scene/resources/surface_tool.h"
#include "scene/resources/concave_polygon_shape_3d.h"
#include "scene/resources/convex_polygon_shape_3d.h"
void MeshConvexDecompositionSettings::set_max_concavity(real_t p_max_concavity) {
max_concavity = CLAMP(p_max_concavity, 0.001, 1.0);
}
real_t MeshConvexDecompositionSettings::get_max_concavity() const {
return max_concavity;
};
void MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias(real_t p_symmetry_planes_clipping_bias) {
symmetry_planes_clipping_bias = CLAMP(p_symmetry_planes_clipping_bias, 0.0, 1.0);
};
real_t MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias() const {
return symmetry_planes_clipping_bias;
};
void MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias(real_t p_revolution_axes_clipping_bias) {
revolution_axes_clipping_bias = CLAMP(p_revolution_axes_clipping_bias, 0.0, 1.0);
};
real_t MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias() const {
return revolution_axes_clipping_bias;
};
void MeshConvexDecompositionSettings::set_min_volume_per_convex_hull(real_t p_min_volume_per_convex_hull) {
min_volume_per_convex_hull = CLAMP(p_min_volume_per_convex_hull, 0.0001, 0.01);
}
real_t MeshConvexDecompositionSettings::get_min_volume_per_convex_hull() const {
return min_volume_per_convex_hull;
}
void MeshConvexDecompositionSettings::set_resolution(uint32_t p_resolution) {
resolution = p_resolution < 10'000 ? 10'000 : (p_resolution > 100'000 ? 100'000 : p_resolution);
}
uint32_t MeshConvexDecompositionSettings::get_resolution() const {
return resolution;
}
void MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull(uint32_t p_max_num_vertices_per_convex_hull) {
max_num_vertices_per_convex_hull = p_max_num_vertices_per_convex_hull < 4 ? 4 : (p_max_num_vertices_per_convex_hull > 1024 ? 1024 : p_max_num_vertices_per_convex_hull);
}
uint32_t MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull() const {
return max_num_vertices_per_convex_hull;
}
void MeshConvexDecompositionSettings::set_plane_downsampling(uint32_t p_plane_downsampling) {
plane_downsampling = p_plane_downsampling < 1 ? 1 : (p_plane_downsampling > 16 ? 16 : p_plane_downsampling);
}
uint32_t MeshConvexDecompositionSettings::get_plane_downsampling() const {
return plane_downsampling;
}
void MeshConvexDecompositionSettings::set_convex_hull_downsampling(uint32_t p_convex_hull_downsampling) {
convex_hull_downsampling = p_convex_hull_downsampling < 1 ? 1 : (p_convex_hull_downsampling > 16 ? 16 : p_convex_hull_downsampling);
}
uint32_t MeshConvexDecompositionSettings::get_convex_hull_downsampling() const {
return convex_hull_downsampling;
}
void MeshConvexDecompositionSettings::set_normalize_mesh(bool p_normalize_mesh) {
normalize_mesh = p_normalize_mesh;
}
bool MeshConvexDecompositionSettings::get_normalize_mesh() const {
return normalize_mesh;
}
void MeshConvexDecompositionSettings::set_mode(Mode p_mode) {
mode = p_mode;
}
MeshConvexDecompositionSettings::Mode MeshConvexDecompositionSettings::get_mode() const {
return mode;
}
void MeshConvexDecompositionSettings::set_convex_hull_approximation(bool p_convex_hull_approximation) {
convex_hull_approximation = p_convex_hull_approximation;
}
bool MeshConvexDecompositionSettings::get_convex_hull_approximation() const {
return convex_hull_approximation;
}
void MeshConvexDecompositionSettings::set_max_convex_hulls(uint32_t p_max_convex_hulls) {
max_convex_hulls = p_max_convex_hulls < 1 ? 1 : (p_max_convex_hulls > 32 ? 32 : p_max_convex_hulls);
}
uint32_t MeshConvexDecompositionSettings::get_max_convex_hulls() const {
return max_convex_hulls;
}
void MeshConvexDecompositionSettings::set_project_hull_vertices(bool p_project_hull_vertices) {
project_hull_vertices = p_project_hull_vertices;
}
bool MeshConvexDecompositionSettings::get_project_hull_vertices() const {
return project_hull_vertices;
}
void MeshConvexDecompositionSettings::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_max_concavity", "max_concavity"), &MeshConvexDecompositionSettings::set_max_concavity);
ClassDB::bind_method(D_METHOD("get_max_concavity"), &MeshConvexDecompositionSettings::get_max_concavity);
ClassDB::bind_method(D_METHOD("set_symmetry_planes_clipping_bias", "symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias);
ClassDB::bind_method(D_METHOD("get_symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias);
ClassDB::bind_method(D_METHOD("set_revolution_axes_clipping_bias", "revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias);
ClassDB::bind_method(D_METHOD("get_revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias);
ClassDB::bind_method(D_METHOD("set_min_volume_per_convex_hull", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_min_volume_per_convex_hull);
ClassDB::bind_method(D_METHOD("get_min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::get_min_volume_per_convex_hull);
ClassDB::bind_method(D_METHOD("set_resolution", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_resolution);
ClassDB::bind_method(D_METHOD("get_resolution"), &MeshConvexDecompositionSettings::get_resolution);
ClassDB::bind_method(D_METHOD("set_max_num_vertices_per_convex_hull", "max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull);
ClassDB::bind_method(D_METHOD("get_max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull);
ClassDB::bind_method(D_METHOD("set_plane_downsampling", "plane_downsampling"), &MeshConvexDecompositionSettings::set_plane_downsampling);
ClassDB::bind_method(D_METHOD("get_plane_downsampling"), &MeshConvexDecompositionSettings::get_plane_downsampling);
ClassDB::bind_method(D_METHOD("set_convex_hull_downsampling", "convex_hull_downsampling"), &MeshConvexDecompositionSettings::set_convex_hull_downsampling);
ClassDB::bind_method(D_METHOD("get_convex_hull_downsampling"), &MeshConvexDecompositionSettings::get_convex_hull_downsampling);
ClassDB::bind_method(D_METHOD("set_normalize_mesh", "normalize_mesh"), &MeshConvexDecompositionSettings::set_normalize_mesh);
ClassDB::bind_method(D_METHOD("get_normalize_mesh"), &MeshConvexDecompositionSettings::get_normalize_mesh);
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &MeshConvexDecompositionSettings::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &MeshConvexDecompositionSettings::get_mode);
ClassDB::bind_method(D_METHOD("set_convex_hull_approximation", "convex_hull_approximation"), &MeshConvexDecompositionSettings::set_convex_hull_approximation);
ClassDB::bind_method(D_METHOD("get_convex_hull_approximation"), &MeshConvexDecompositionSettings::get_convex_hull_approximation);
ClassDB::bind_method(D_METHOD("set_max_convex_hulls", "max_convex_hulls"), &MeshConvexDecompositionSettings::set_max_convex_hulls);
ClassDB::bind_method(D_METHOD("get_max_convex_hulls"), &MeshConvexDecompositionSettings::get_max_convex_hulls);
ClassDB::bind_method(D_METHOD("set_project_hull_vertices", "project_hull_vertices"), &MeshConvexDecompositionSettings::set_project_hull_vertices);
ClassDB::bind_method(D_METHOD("get_project_hull_vertices"), &MeshConvexDecompositionSettings::get_project_hull_vertices);
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "max_concavity", PROPERTY_HINT_RANGE, "0.001,1.0,0.001"), "set_max_concavity", "get_max_concavity");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "symmetry_planes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_symmetry_planes_clipping_bias", "get_symmetry_planes_clipping_bias");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "revolution_axes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_revolution_axes_clipping_bias", "get_revolution_axes_clipping_bias");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "min_volume_per_convex_hull", PROPERTY_HINT_RANGE, "0.0001,0.01,0.0001"), "set_min_volume_per_convex_hull", "get_min_volume_per_convex_hull");
ADD_PROPERTY(PropertyInfo(Variant::INT, "resolution"), "set_resolution", "get_resolution");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_num_vertices_per_convex_hull"), "set_max_num_vertices_per_convex_hull", "get_max_num_vertices_per_convex_hull");
ADD_PROPERTY(PropertyInfo(Variant::INT, "plane_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_plane_downsampling", "get_plane_downsampling");
ADD_PROPERTY(PropertyInfo(Variant::INT, "convex_hull_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_convex_hull_downsampling", "get_convex_hull_downsampling");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "normalize_mesh"), "set_normalize_mesh", "get_normalize_mesh");
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Voxel,Tetrahedron"), "set_mode", "get_mode");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "convex_hull_approximation"), "set_convex_hull_approximation", "get_convex_hull_approximation");
ADD_PROPERTY(PropertyInfo(Variant::INT, "max_convex_hulls"), "set_max_convex_hulls", "get_max_convex_hulls");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "project_hull_vertices"), "set_project_hull_vertices", "get_project_hull_vertices");
BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_VOXEL);
BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_TETRAHEDRON);
}
Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr;
int Mesh::get_surface_count() const {
int ret = 0;
GDVIRTUAL_REQUIRED_CALL(_get_surface_count, ret);
return ret;
}
int Mesh::surface_get_array_len(int p_idx) const {
int ret = 0;
GDVIRTUAL_REQUIRED_CALL(_surface_get_array_len, p_idx, ret);
return ret;
}
int Mesh::surface_get_array_index_len(int p_idx) const {
int ret = 0;
GDVIRTUAL_REQUIRED_CALL(_surface_get_array_index_len, p_idx, ret);
return ret;
}
Array Mesh::surface_get_arrays(int p_surface) const {
Array ret;
GDVIRTUAL_REQUIRED_CALL(_surface_get_arrays, p_surface, ret);
return ret;
}
TypedArray<Array> Mesh::surface_get_blend_shape_arrays(int p_surface) const {
TypedArray<Array> ret;
GDVIRTUAL_REQUIRED_CALL(_surface_get_blend_shape_arrays, p_surface, ret);
return ret;
}
Dictionary Mesh::surface_get_lods(int p_surface) const {
Dictionary ret;
GDVIRTUAL_REQUIRED_CALL(_surface_get_lods, p_surface, ret);
return ret;
}
BitField<Mesh::ArrayFormat> Mesh::surface_get_format(int p_idx) const {
uint32_t ret = 0;
GDVIRTUAL_REQUIRED_CALL(_surface_get_format, p_idx, ret);
return ret;
}
Mesh::PrimitiveType Mesh::surface_get_primitive_type(int p_idx) const {
uint32_t ret = PRIMITIVE_MAX;
GDVIRTUAL_REQUIRED_CALL(_surface_get_primitive_type, p_idx, ret);
return (Mesh::PrimitiveType)ret;
}
void Mesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
GDVIRTUAL_REQUIRED_CALL(_surface_set_material, p_idx, p_material);
}
Ref<Material> Mesh::surface_get_material(int p_idx) const {
Ref<Material> ret;
GDVIRTUAL_REQUIRED_CALL(_surface_get_material, p_idx, ret);
return ret;
}
int Mesh::get_blend_shape_count() const {
int ret = 0;
GDVIRTUAL_REQUIRED_CALL(_get_blend_shape_count, ret);
return ret;
}
StringName Mesh::get_blend_shape_name(int p_index) const {
StringName ret;
GDVIRTUAL_REQUIRED_CALL(_get_blend_shape_name, p_index, ret);
return ret;
}
void Mesh::set_blend_shape_name(int p_index, const StringName &p_name) {
GDVIRTUAL_REQUIRED_CALL(_set_blend_shape_name, p_index, p_name);
}
AABB Mesh::get_aabb() const {
AABB ret;
GDVIRTUAL_REQUIRED_CALL(_get_aabb, ret);
return ret;
}
Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
if (triangle_mesh.is_valid()) {
return triangle_mesh;
}
int faces_size = 0;
for (int i = 0; i < get_surface_count(); i++) {
switch (surface_get_primitive_type(i)) {
case PRIMITIVE_TRIANGLES: {
int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
// Don't error if zero, it's valid (we'll just skip it later).
ERR_CONTINUE_MSG((len % 3) != 0, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLES).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len));
faces_size += len;
} break;
case PRIMITIVE_TRIANGLE_STRIP: {
int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
// Don't error if zero, it's valid (we'll just skip it later).
ERR_CONTINUE_MSG(len != 0 && len < 3, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLE_STRIP).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len));
faces_size += (len == 0) ? 0 : (len - 2) * 3;
} break;
default: {
} break;
}
}
if (faces_size == 0) {
return triangle_mesh;
}
Vector<Vector3> faces;
faces.resize(faces_size);
Vector<int32_t> surface_indices;
surface_indices.resize(faces_size / 3);
Vector3 *facesw = faces.ptrw();
int32_t *surface_indicesw = surface_indices.ptrw();
int widx = 0;
for (int i = 0; i < get_surface_count(); i++) {
Mesh::PrimitiveType primitive = surface_get_primitive_type(i);
if (primitive != PRIMITIVE_TRIANGLES && primitive != PRIMITIVE_TRIANGLE_STRIP) {
continue;
}
int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
if ((primitive == PRIMITIVE_TRIANGLES && (len == 0 || (len % 3) != 0)) ||
(primitive == PRIMITIVE_TRIANGLE_STRIP && len < 3) ||
(surface_get_format(i) & ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY)) {
// Error was already shown, just skip (including zero).
continue;
}
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.is_empty(), Ref<TriangleMesh>());
int vc = surface_get_array_len(i);
Vector<Vector3> vertices = a[ARRAY_VERTEX];
ERR_FAIL_COND_V(vertices.is_empty(), Ref<TriangleMesh>());
const Vector3 *vr = vertices.ptr();
int32_t from_index = widx / 3;
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
int ic = surface_get_array_index_len(i);
Vector<int> indices = a[ARRAY_INDEX];
const int *ir = indices.ptr();
if (primitive == PRIMITIVE_TRIANGLES) {
for (int j = 0; j < ic; j++) {
int index = ir[j];
ERR_FAIL_COND_V(index >= vc, Ref<TriangleMesh>());
facesw[widx++] = vr[index];
}
} else { // PRIMITIVE_TRIANGLE_STRIP
for (int j = 2; j < ic; j++) {
facesw[widx++] = vr[ir[j - 2]];
facesw[widx++] = vr[ir[j - 1]];
facesw[widx++] = vr[ir[j]];
}
}
} else {
if (primitive == PRIMITIVE_TRIANGLES) {
for (int j = 0; j < vc; j++) {
facesw[widx++] = vr[j];
}
} else { // PRIMITIVE_TRIANGLE_STRIP
for (int j = 2; j < vc; j++) {
facesw[widx++] = vr[j - 2];
facesw[widx++] = vr[j - 1];
facesw[widx++] = vr[j];
}
}
}
int32_t to_index = widx / 3;
for (int j = from_index; j < to_index; j++) {
surface_indicesw[j] = i;
}
}
triangle_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
triangle_mesh->create(faces);
return triangle_mesh;
}
Ref<TriangleMesh> Mesh::generate_surface_triangle_mesh(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, get_surface_count(), Ref<TriangleMesh>());
if (surface_triangle_meshes.size() != get_surface_count()) {
surface_triangle_meshes.resize(get_surface_count());
}
if (surface_triangle_meshes[p_surface].is_valid()) {
return surface_triangle_meshes[p_surface];
}
int facecount = 0;
if (surface_get_primitive_type(p_surface) != PRIMITIVE_TRIANGLES) {
return Ref<TriangleMesh>();
}
if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) {
facecount += surface_get_array_index_len(p_surface);
} else {
facecount += surface_get_array_len(p_surface);
}
Vector<Vector3> faces;
faces.resize(facecount);
Vector3 *facesw = faces.ptrw();
Array a = surface_get_arrays(p_surface);
ERR_FAIL_COND_V(a.is_empty(), Ref<TriangleMesh>());
int vc = surface_get_array_len(p_surface);
Vector<Vector3> vertices = a[ARRAY_VERTEX];
const Vector3 *vr = vertices.ptr();
int widx = 0;
if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) {
int ic = surface_get_array_index_len(p_surface);
Vector<int> indices = a[ARRAY_INDEX];
const int *ir = indices.ptr();
for (int j = 0; j < ic; j++) {
int index = ir[j];
facesw[widx++] = vr[index];
}
} else {
for (int j = 0; j < vc; j++) {
facesw[widx++] = vr[j];
}
}
Ref<TriangleMesh> tr_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
tr_mesh->create(faces);
surface_triangle_meshes.set(p_surface, tr_mesh);
return tr_mesh;
}
void Mesh::generate_debug_mesh_lines(Vector<Vector3> &r_lines) {
if (debug_lines.size() > 0) {
r_lines = debug_lines;
return;
}
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null()) {
return;
}
Vector<int> triangle_indices;
tm->get_indices(&triangle_indices);
const int triangles_num = tm->get_triangles().size();
Vector<Vector3> vertices = tm->get_vertices();
debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line
const int *ind_r = triangle_indices.ptr();
const Vector3 *ver_r = vertices.ptr();
for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) {
// Triangle line 1
debug_lines.write[j + 0] = ver_r[ind_r[x + 0]];
debug_lines.write[j + 1] = ver_r[ind_r[x + 1]];
// Triangle line 2
debug_lines.write[j + 2] = ver_r[ind_r[x + 1]];
debug_lines.write[j + 3] = ver_r[ind_r[x + 2]];
// Triangle line 3
debug_lines.write[j + 4] = ver_r[ind_r[x + 2]];
debug_lines.write[j + 5] = ver_r[ind_r[x + 0]];
}
r_lines = debug_lines;
}
void Mesh::generate_debug_mesh_indices(Vector<Vector3> &r_points) {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null()) {
return;
}
Vector<Vector3> vertices = tm->get_vertices();
int vertices_size = vertices.size();
r_points.resize(vertices_size);
for (int i = 0; i < vertices_size; ++i) {
r_points.write[i] = vertices[i];
}
}
Vector<Vector3> Mesh::_get_faces() const {
return Variant(get_faces());
}
Vector<Face3> Mesh::get_faces() const {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_valid()) {
return tm->get_faces();
}
return Vector<Face3>();
}
Vector<Face3> Mesh::get_surface_faces(int p_surface) const {
Ref<TriangleMesh> tm = generate_surface_triangle_mesh(p_surface);
if (tm.is_valid()) {
return tm->get_faces();
}
return Vector<Face3>();
}
Ref<ConvexPolygonShape3D> Mesh::create_convex_shape(bool p_clean, bool p_simplify) const {
if (p_simplify) {
Ref<MeshConvexDecompositionSettings> settings = Ref<MeshConvexDecompositionSettings>();
settings.instantiate();
settings->set_max_convex_hulls(1);
settings->set_max_concavity(1.0);
Vector<Ref<Shape3D>> decomposed = convex_decompose(settings);
if (decomposed.size() == 1) {
return decomposed[0];
} else {
ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
}
}
Vector<Vector3> vertices;
for (int i = 0; i < get_surface_count(); i++) {
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>());
Vector<Vector3> v = a[ARRAY_VERTEX];
vertices.append_array(v);
}
Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D);
if (p_clean) {
Geometry3D::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
shape->set_points(md.vertices);
return shape;
} else {
ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
}
}
shape->set_points(vertices);
return shape;
}
Ref<ConcavePolygonShape3D> Mesh::create_trimesh_shape() const {
Vector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<ConcavePolygonShape3D>();
}
Vector<Vector3> face_points;
face_points.resize(faces.size() * 3);
for (int i = 0; i < face_points.size(); i += 3) {
Face3 f = faces.get(i / 3);
face_points.set(i, f.vertex[0]);
face_points.set(i + 1, f.vertex[1]);
face_points.set(i + 2, f.vertex[2]);
}
Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
shape->set_faces(face_points);
return shape;
}
Ref<Mesh> Mesh::create_outline(float p_margin) const {
Array arrays;
int index_accum = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.is_empty(), Ref<ArrayMesh>());
if (i == 0) {
arrays = a;
Vector<Vector3> v = a[ARRAY_VERTEX];
index_accum += v.size();
} else {
int vcount = 0;
for (int j = 0; j < arrays.size(); j++) {
if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) {
//mismatch, do not use
arrays[j] = Variant();
continue;
}
switch (j) {
case ARRAY_VERTEX:
case ARRAY_NORMAL: {
Vector<Vector3> dst = arrays[j];
Vector<Vector3> src = a[j];
if (j == ARRAY_VERTEX) {
vcount = src.size();
}
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TANGENT:
case ARRAY_BONES:
case ARRAY_WEIGHTS: {
Vector<real_t> dst = arrays[j];
Vector<real_t> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_COLOR: {
Vector<Color> dst = arrays[j];
Vector<Color> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TEX_UV:
case ARRAY_TEX_UV2: {
Vector<Vector2> dst = arrays[j];
Vector<Vector2> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_INDEX: {
Vector<int> dst = arrays[j];
Vector<int> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
{
int ss = src.size();
int *w = src.ptrw();
for (int k = 0; k < ss; k++) {
w[k] += index_accum;
}
}
dst.append_array(src);
arrays[j] = dst;
index_accum += vcount;
} break;
}
}
}
}
ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref<ArrayMesh>());
{
int *ir = nullptr;
Vector<int> indices = arrays[ARRAY_INDEX];
bool has_indices = false;
Vector<Vector3> vertices = arrays[ARRAY_VERTEX];
int vc = vertices.size();
ERR_FAIL_COND_V(!vc, Ref<ArrayMesh>());
Vector3 *r = vertices.ptrw();
if (indices.size()) {
ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ArrayMesh>());
vc = indices.size();
ir = indices.ptrw();
has_indices = true;
} else {
// Ensure there are enough vertices to construct at least one triangle.
ERR_FAIL_COND_V(vertices.size() % 3 != 0, Ref<ArrayMesh>());
}
HashMap<Vector3, Vector3> normal_accum;
//fill normals with triangle normals
for (int i = 0; i < vc; i += 3) {
Vector3 t[3];
if (has_indices) {
t[0] = r[ir[i + 0]];
t[1] = r[ir[i + 1]];
t[2] = r[ir[i + 2]];
} else {
t[0] = r[i + 0];
t[1] = r[i + 1];
t[2] = r[i + 2];
}
Vector3 n = Plane(t[0], t[1], t[2]).normal;
for (int j = 0; j < 3; j++) {
HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t[j]);
if (!E) {
normal_accum[t[j]] = n;
} else {
float d = n.dot(E->value);
if (d < 1.0) {
E->value += n * (1.0 - d);
}
//E->get()+=n;
}
}
}
//normalize
for (KeyValue<Vector3, Vector3> &E : normal_accum) {
E.value.normalize();
}
//displace normals
int vc2 = vertices.size();
for (int i = 0; i < vc2; i++) {
Vector3 t = r[i];
HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t);
ERR_CONTINUE(!E);
t += E->value * p_margin;
r[i] = t;
}
arrays[ARRAY_VERTEX] = vertices;
if (!has_indices) {
Vector<int> new_indices;
new_indices.resize(vertices.size());
int *iw = new_indices.ptrw();
for (int j = 0; j < vc2; j += 3) {
iw[j] = j;
iw[j + 1] = j + 2;
iw[j + 2] = j + 1;
}
arrays[ARRAY_INDEX] = new_indices;
} else {
for (int j = 0; j < vc; j += 3) {
SWAP(ir[j + 1], ir[j + 2]);
}
arrays[ARRAY_INDEX] = indices;
}
}
Ref<ArrayMesh> newmesh = memnew(ArrayMesh);
newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays);
return newmesh;
}
void Mesh::set_lightmap_size_hint(const Size2i &p_size) {
lightmap_size_hint = p_size;
}
Size2i Mesh::get_lightmap_size_hint() const {
return lightmap_size_hint;
}
Ref<Resource> Mesh::create_placeholder() const {
Ref<PlaceholderMesh> placeholder;
placeholder.instantiate();
placeholder->set_aabb(get_aabb());
return placeholder;
}
void Mesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb);
ClassDB::bind_method(D_METHOD("get_faces"), &Mesh::_get_faces);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint");
ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count);
ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays);
ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays);
ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material);
ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material);
ClassDB::bind_method(D_METHOD("create_placeholder"), &Mesh::create_placeholder);
BIND_ENUM_CONSTANT(PRIMITIVE_POINTS);
BIND_ENUM_CONSTANT(PRIMITIVE_LINES);
BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM0);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM1);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM2);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM3);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_UNORM);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_SNORM);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_HALF);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_HALF);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_R_FLOAT);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_FLOAT);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGB_FLOAT);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_FLOAT);
BIND_ENUM_CONSTANT(ARRAY_CUSTOM_MAX);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_VERTEX);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_NORMAL);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_TANGENT);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_COLOR);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV2);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_BONES);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_WEIGHTS);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_INDEX);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_BLEND_SHAPE_MASK);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BASE);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BITS);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0_SHIFT);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1_SHIFT);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2_SHIFT);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3_SHIFT);
BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_MASK);
BIND_BITFIELD_FLAG(ARRAY_COMPRESS_FLAGS_BASE);
BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_2D_VERTICES);
BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_DYNAMIC_UPDATE);
BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_8_BONE_WEIGHTS);
BIND_BITFIELD_FLAG(ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY);
BIND_BITFIELD_FLAG(ARRAY_FLAG_COMPRESS_ATTRIBUTES);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
GDVIRTUAL_BIND(_get_surface_count)
GDVIRTUAL_BIND(_surface_get_array_len, "index")
GDVIRTUAL_BIND(_surface_get_array_index_len, "index")
GDVIRTUAL_BIND(_surface_get_arrays, "index")
GDVIRTUAL_BIND(_surface_get_blend_shape_arrays, "index")
GDVIRTUAL_BIND(_surface_get_lods, "index")
GDVIRTUAL_BIND(_surface_get_format, "index")
GDVIRTUAL_BIND(_surface_get_primitive_type, "index")
GDVIRTUAL_BIND(_surface_set_material, "index", "material")
GDVIRTUAL_BIND(_surface_get_material, "index")
GDVIRTUAL_BIND(_get_blend_shape_count)
GDVIRTUAL_BIND(_get_blend_shape_name, "index")
GDVIRTUAL_BIND(_set_blend_shape_name, "index", "name")
GDVIRTUAL_BIND(_get_aabb)
}
void Mesh::clear_cache() const {
triangle_mesh.unref();
debug_lines.clear();
}
Vector<Ref<Shape3D>> Mesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const {
ERR_FAIL_NULL_V(convex_decomposition_function, Vector<Ref<Shape3D>>());
Ref<TriangleMesh> tm = generate_triangle_mesh();
ERR_FAIL_COND_V(!tm.is_valid(), Vector<Ref<Shape3D>>());
const Vector<TriangleMesh::Triangle> &triangles = tm->get_triangles();
int triangle_count = triangles.size();
Vector<uint32_t> indices;
{
indices.resize(triangle_count * 3);
uint32_t *w = indices.ptrw();
for (int i = 0; i < triangle_count; i++) {
for (int j = 0; j < 3; j++) {
w[i * 3 + j] = triangles[i].indices[j];
}
}
}
const Vector<Vector3> &vertices = tm->get_vertices();
int vertex_count = vertices.size();
Vector<Vector<Vector3>> decomposed = convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), triangle_count, p_settings, nullptr);
Vector<Ref<Shape3D>> ret;
for (int i = 0; i < decomposed.size(); i++) {
Ref<ConvexPolygonShape3D> shape;
shape.instantiate();
shape->set_points(decomposed[i]);
ret.push_back(shape);
}
return ret;
}
int Mesh::get_builtin_bind_pose_count() const {
return 0;
}
Transform3D Mesh::get_builtin_bind_pose(int p_index) const {
return Transform3D();
}
Mesh::Mesh() {
}
enum OldArrayType {
OLD_ARRAY_VERTEX,
OLD_ARRAY_NORMAL,
OLD_ARRAY_TANGENT,
OLD_ARRAY_COLOR,
OLD_ARRAY_TEX_UV,
OLD_ARRAY_TEX_UV2,
OLD_ARRAY_BONES,
OLD_ARRAY_WEIGHTS,
OLD_ARRAY_INDEX,
OLD_ARRAY_MAX,
};
enum OldArrayFormat {
/* OLD_ARRAY FORMAT FLAGS */
OLD_ARRAY_FORMAT_VERTEX = 1 << OLD_ARRAY_VERTEX, // mandatory
OLD_ARRAY_FORMAT_NORMAL = 1 << OLD_ARRAY_NORMAL,
OLD_ARRAY_FORMAT_TANGENT = 1 << OLD_ARRAY_TANGENT,
OLD_ARRAY_FORMAT_COLOR = 1 << OLD_ARRAY_COLOR,
OLD_ARRAY_FORMAT_TEX_UV = 1 << OLD_ARRAY_TEX_UV,
OLD_ARRAY_FORMAT_TEX_UV2 = 1 << OLD_ARRAY_TEX_UV2,
OLD_ARRAY_FORMAT_BONES = 1 << OLD_ARRAY_BONES,
OLD_ARRAY_FORMAT_WEIGHTS = 1 << OLD_ARRAY_WEIGHTS,
OLD_ARRAY_FORMAT_INDEX = 1 << OLD_ARRAY_INDEX,
OLD_ARRAY_COMPRESS_BASE = (OLD_ARRAY_INDEX + 1),
OLD_ARRAY_COMPRESS_VERTEX = 1 << (OLD_ARRAY_VERTEX + OLD_ARRAY_COMPRESS_BASE), // mandatory
OLD_ARRAY_COMPRESS_NORMAL = 1 << (OLD_ARRAY_NORMAL + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_TANGENT = 1 << (OLD_ARRAY_TANGENT + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_COLOR = 1 << (OLD_ARRAY_COLOR + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_TEX_UV = 1 << (OLD_ARRAY_TEX_UV + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_TEX_UV2 = 1 << (OLD_ARRAY_TEX_UV2 + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_BONES = 1 << (OLD_ARRAY_BONES + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_WEIGHTS = 1 << (OLD_ARRAY_WEIGHTS + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_COMPRESS_INDEX = 1 << (OLD_ARRAY_INDEX + OLD_ARRAY_COMPRESS_BASE),
OLD_ARRAY_FLAG_USE_2D_VERTICES = OLD_ARRAY_COMPRESS_INDEX << 1,
OLD_ARRAY_FLAG_USE_16_BIT_BONES = OLD_ARRAY_COMPRESS_INDEX << 2,
OLD_ARRAY_FLAG_USE_DYNAMIC_UPDATE = OLD_ARRAY_COMPRESS_INDEX << 3,
OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION = OLD_ARRAY_COMPRESS_INDEX << 4,
};
#ifndef DISABLE_DEPRECATED
static Array _convert_old_array(const Array &p_old) {
Array new_array;
new_array.resize(Mesh::ARRAY_MAX);
new_array[Mesh::ARRAY_VERTEX] = p_old[OLD_ARRAY_VERTEX];
new_array[Mesh::ARRAY_NORMAL] = p_old[OLD_ARRAY_NORMAL];
new_array[Mesh::ARRAY_TANGENT] = p_old[OLD_ARRAY_TANGENT];
new_array[Mesh::ARRAY_COLOR] = p_old[OLD_ARRAY_COLOR];
new_array[Mesh::ARRAY_TEX_UV] = p_old[OLD_ARRAY_TEX_UV];
new_array[Mesh::ARRAY_TEX_UV2] = p_old[OLD_ARRAY_TEX_UV2];
new_array[Mesh::ARRAY_BONES] = p_old[OLD_ARRAY_BONES];
new_array[Mesh::ARRAY_WEIGHTS] = p_old[OLD_ARRAY_WEIGHTS];
new_array[Mesh::ARRAY_INDEX] = p_old[OLD_ARRAY_INDEX];
return new_array;
}
static Mesh::PrimitiveType _old_primitives[7] = {
Mesh::PRIMITIVE_POINTS,
Mesh::PRIMITIVE_LINES,
Mesh::PRIMITIVE_LINE_STRIP,
Mesh::PRIMITIVE_LINES,
Mesh::PRIMITIVE_TRIANGLES,
Mesh::PRIMITIVE_TRIANGLE_STRIP,
Mesh::PRIMITIVE_TRIANGLE_STRIP
};
#endif // DISABLE_DEPRECATED
void _fix_array_compatibility(const Vector<uint8_t> &p_src, uint64_t p_old_format, uint64_t p_new_format, uint32_t p_elements, Vector<uint8_t> &vertex_data, Vector<uint8_t> &attribute_data, Vector<uint8_t> &skin_data) {
uint32_t dst_vertex_stride;
uint32_t dst_normal_tangent_stride;
uint32_t dst_attribute_stride;
uint32_t dst_skin_stride;
uint32_t dst_offsets[Mesh::ARRAY_MAX];
RenderingServer::get_singleton()->mesh_surface_make_offsets_from_format(p_new_format & (~RS::ARRAY_FORMAT_INDEX), p_elements, 0, dst_offsets, dst_vertex_stride, dst_normal_tangent_stride, dst_attribute_stride, dst_skin_stride);
vertex_data.resize((dst_vertex_stride + dst_normal_tangent_stride) * p_elements);
attribute_data.resize(dst_attribute_stride * p_elements);
skin_data.resize(dst_skin_stride * p_elements);
uint8_t *dst_vertex_ptr = vertex_data.ptrw();
uint8_t *dst_attribute_ptr = attribute_data.ptrw();
uint8_t *dst_skin_ptr = skin_data.ptrw();
const uint8_t *src_vertex_ptr = p_src.ptr();
uint32_t src_vertex_stride = p_src.size() / p_elements;
uint32_t src_offset = 0;
for (uint32_t j = 0; j < OLD_ARRAY_INDEX; j++) {
if (!(p_old_format & (1ULL << j))) {
continue;
}
switch (j) {
case OLD_ARRAY_VERTEX: {
if (p_old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) {
if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride];
float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
dst[0] = Math::half_to_float(src[0]);
dst[1] = Math::half_to_float(src[1]);
}
src_offset += sizeof(uint16_t) * 2;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride];
float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
dst[0] = src[0];
dst[1] = src[1];
}
src_offset += sizeof(float) * 2;
}
} else {
if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride];
float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
dst[0] = Math::half_to_float(src[0]);
dst[1] = Math::half_to_float(src[1]);
dst[2] = Math::half_to_float(src[2]);
}
src_offset += sizeof(uint16_t) * 4; //+pad
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride];
float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
src_offset += sizeof(float) * 3;
}
}
} break;
case OLD_ARRAY_NORMAL: {
if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if ((p_old_format & OLD_ARRAY_COMPRESS_NORMAL) && (p_old_format & OLD_ARRAY_FORMAT_TANGENT) && (p_old_format & OLD_ARRAY_COMPRESS_TANGENT)) {
for (uint32_t i = 0; i < p_elements; i++) {
const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
dst[0] = (int16_t)CLAMP(src[0] / 127.0f * 32767, -32768, 32767);
dst[1] = (int16_t)CLAMP(src[1] / 127.0f * 32767, -32768, 32767);
}
src_offset += sizeof(int8_t) * 2;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
dst[0] = src[0];
dst[1] = src[1];
}
src_offset += sizeof(int16_t) * 2;
}
} else { // No Octahedral compression
if (p_old_format & OLD_ARRAY_COMPRESS_NORMAL) {
for (uint32_t i = 0; i < p_elements; i++) {
const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
const Vector3 original_normal(src[0], src[1], src[2]);
Vector2 res = original_normal.octahedron_encode();
uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
}
src_offset += sizeof(uint8_t) * 4; // 1 byte padding
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
const Vector3 original_normal(src[0], src[1], src[2]);
Vector2 res = original_normal.octahedron_encode();
uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
}
src_offset += sizeof(float) * 3;
}
}
} break;
case OLD_ARRAY_TANGENT: {
if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) { // int8 SNORM -> uint16 UNORM
for (uint32_t i = 0; i < p_elements; i++) {
const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
dst[0] = (uint16_t)CLAMP((src[0] / 127.0f * .5f + .5f) * 65535, 0, 65535);
dst[1] = (uint16_t)CLAMP((src[1] / 127.0f * .5f + .5f) * 65535, 0, 65535);
}
src_offset += sizeof(uint8_t) * 2;
} else { // int16 SNORM -> uint16 UNORM
for (uint32_t i = 0; i < p_elements; i++) {
const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
dst[0] = (uint16_t)CLAMP((src[0] / 32767.0f * .5f + .5f) * 65535, 0, 65535);
dst[1] = (uint16_t)CLAMP((src[1] / 32767.0f * .5f + .5f) * 65535, 0, 65535);
}
src_offset += sizeof(uint16_t) * 2;
}
} else { // No Octahedral compression
if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) {
for (uint32_t i = 0; i < p_elements; i++) {
const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
const Vector3 original_tangent(src[0], src[1], src[2]);
Vector2 res = original_tangent.octahedron_tangent_encode(src[3]);
uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
if (dst[0] == 0 && dst[1] == 65535) {
// (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
// So we sanitize here.
dst[0] = 65535;
}
}
src_offset += sizeof(uint8_t) * 4;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
const Vector3 original_tangent(src[0], src[1], src[2]);
Vector2 res = original_tangent.octahedron_tangent_encode(src[3]);
uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
if (dst[0] == 0 && dst[1] == 65535) {
// (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
// So we sanitize here.
dst[0] = 65535;
}
}
src_offset += sizeof(float) * 4;
}
}
} break;
case OLD_ARRAY_COLOR: {
if (p_old_format & OLD_ARRAY_COMPRESS_COLOR) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint32_t *src = (const uint32_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint32_t *dst = (uint32_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]];
*dst = *src;
}
src_offset += sizeof(uint32_t);
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint8_t *dst = (uint8_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]];
dst[0] = uint8_t(CLAMP(src[0] * 255.0, 0.0, 255.0));
dst[1] = uint8_t(CLAMP(src[1] * 255.0, 0.0, 255.0));
dst[2] = uint8_t(CLAMP(src[2] * 255.0, 0.0, 255.0));
dst[3] = uint8_t(CLAMP(src[3] * 255.0, 0.0, 255.0));
}
src_offset += sizeof(float) * 4;
}
} break;
case OLD_ARRAY_TEX_UV: {
if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]];
dst[0] = Math::half_to_float(src[0]);
dst[1] = Math::half_to_float(src[1]);
}
src_offset += sizeof(uint16_t) * 2;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]];
dst[0] = src[0];
dst[1] = src[1];
}
src_offset += sizeof(float) * 2;
}
} break;
case OLD_ARRAY_TEX_UV2: {
if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV2) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]];
dst[0] = Math::half_to_float(src[0]);
dst[1] = Math::half_to_float(src[1]);
}
src_offset += sizeof(uint16_t) * 2;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]];
dst[0] = src[0];
dst[1] = src[1];
}
src_offset += sizeof(float) * 2;
}
} break;
case OLD_ARRAY_BONES: {
if (p_old_format & OLD_ARRAY_FLAG_USE_16_BIT_BONES) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
src_offset += sizeof(uint16_t) * 4;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const uint8_t *src = (const uint8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
src_offset += sizeof(uint8_t) * 4;
}
} break;
case OLD_ARRAY_WEIGHTS: {
if (p_old_format & OLD_ARRAY_COMPRESS_WEIGHTS) {
for (uint32_t i = 0; i < p_elements; i++) {
const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
src_offset += sizeof(uint16_t) * 4;
} else {
for (uint32_t i = 0; i < p_elements; i++) {
const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]];
dst[0] = uint16_t(CLAMP(src[0] * 65535.0, 0, 65535.0));
dst[1] = uint16_t(CLAMP(src[1] * 65535.0, 0, 65535.0));
dst[2] = uint16_t(CLAMP(src[2] * 65535.0, 0, 65535.0));
dst[3] = uint16_t(CLAMP(src[3] * 65535.0, 0, 65535.0));
}
src_offset += sizeof(float) * 4;
}
} break;
default: {
}
}
}
}
bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
String sname = p_name;
if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1) {
return false;
}
int idx = sname.substr(8, sl - 8).to_int();
String what = sname.get_slicec('/', 1);
if (what == "material") {
surface_set_material(idx, p_value);
} else if (what == "name") {
surface_set_name(idx, p_value);
}
return true;
}
#ifndef DISABLE_DEPRECATED
// Kept for compatibility from 3.x to 4.0.
if (!sname.begins_with("surfaces")) {
return false;
}
WARN_DEPRECATED_MSG(vformat(
"Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene. Path: \"%s\"",
get_path()));
int idx = sname.get_slicec('/', 1).to_int();
String what = sname.get_slicec('/', 2);
if (idx == surfaces.size()) {
//create
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("primitive"), false);
if (d.has("arrays")) {
//oldest format (2.x)
ERR_FAIL_COND_V(!d.has("morph_arrays"), false);
Array morph_arrays = d["morph_arrays"];
for (int i = 0; i < morph_arrays.size(); i++) {
morph_arrays[i] = _convert_old_array(morph_arrays[i]);
}
add_surface_from_arrays(_old_primitives[int(d["primitive"])], _convert_old_array(d["arrays"]), morph_arrays);
} else if (d.has("array_data")) {
//print_line("array data (old style");
//older format (3.x)
Vector<uint8_t> array_data = d["array_data"];
Vector<uint8_t> array_index_data;
if (d.has("array_index_data")) {
array_index_data = d["array_index_data"];
}
ERR_FAIL_COND_V(!d.has("format"), false);
uint64_t old_format = d["format"];
uint32_t primitive = d["primitive"];
primitive = _old_primitives[primitive]; //compatibility
ERR_FAIL_COND_V(!d.has("vertex_count"), false);
int vertex_count = d["vertex_count"];
uint64_t new_format = ARRAY_FORMAT_VERTEX | ARRAY_FLAG_FORMAT_CURRENT_VERSION;
if (old_format & OLD_ARRAY_FORMAT_NORMAL) {
new_format |= ARRAY_FORMAT_NORMAL;
}
if (old_format & OLD_ARRAY_FORMAT_TANGENT) {
new_format |= ARRAY_FORMAT_TANGENT;
}
if (old_format & OLD_ARRAY_FORMAT_COLOR) {
new_format |= ARRAY_FORMAT_COLOR;
}
if (old_format & OLD_ARRAY_FORMAT_TEX_UV) {
new_format |= ARRAY_FORMAT_TEX_UV;
}
if (old_format & OLD_ARRAY_FORMAT_TEX_UV2) {
new_format |= ARRAY_FORMAT_TEX_UV2;
}
if (old_format & OLD_ARRAY_FORMAT_BONES) {
new_format |= ARRAY_FORMAT_BONES;
}
if (old_format & OLD_ARRAY_FORMAT_WEIGHTS) {
new_format |= ARRAY_FORMAT_WEIGHTS;
}
if (old_format & OLD_ARRAY_FORMAT_INDEX) {
new_format |= ARRAY_FORMAT_INDEX;
}
if (old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) {
new_format |= OLD_ARRAY_FLAG_USE_2D_VERTICES;
}
Vector<uint8_t> vertex_array;
Vector<uint8_t> attribute_array;
Vector<uint8_t> skin_array;
_fix_array_compatibility(array_data, old_format, new_format, vertex_count, vertex_array, attribute_array, skin_array);
int index_count = 0;
if (d.has("index_count")) {
index_count = d["index_count"];
}
Vector<uint8_t> blend_shapes_new;
if (d.has("blend_shape_data")) {
Array blend_shape_data = d["blend_shape_data"];
for (int i = 0; i < blend_shape_data.size(); i++) {
Vector<uint8_t> blend_vertex_array;
Vector<uint8_t> blend_attribute_array;
Vector<uint8_t> blend_skin_array;
Vector<uint8_t> shape = blend_shape_data[i];
_fix_array_compatibility(shape, old_format, new_format, vertex_count, blend_vertex_array, blend_attribute_array, blend_skin_array);
blend_shapes_new.append_array(blend_vertex_array);
}
}
//clear unused flags
print_verbose("Mesh format pre-conversion: " + itos(old_format));
print_verbose("Mesh format post-conversion: " + itos(new_format));
ERR_FAIL_COND_V(!d.has("aabb"), false);
AABB aabb_new = d["aabb"];
Vector<AABB> bone_aabb;
if (d.has("skeleton_aabb")) {
Array baabb = d["skeleton_aabb"];
bone_aabb.resize(baabb.size());
for (int i = 0; i < baabb.size(); i++) {
bone_aabb.write[i] = baabb[i];
}
}
add_surface(new_format, PrimitiveType(primitive), vertex_array, attribute_array, skin_array, vertex_count, array_index_data, index_count, aabb_new, blend_shapes_new, bone_aabb);
} else {
ERR_FAIL_V(false);
}
if (d.has("material")) {
surface_set_material(idx, d["material"]);
}
if (d.has("name")) {
surface_set_name(idx, d["name"]);
}
return true;
}
#endif // DISABLE_DEPRECATED
return false;
}
void ArrayMesh::_set_blend_shape_names(const PackedStringArray &p_names) {
ERR_FAIL_COND(surfaces.size() > 0);
blend_shapes.resize(p_names.size());
for (int i = 0; i < p_names.size(); i++) {
blend_shapes.write[i] = p_names[i];
}
if (mesh.is_valid()) {
RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
}
}
PackedStringArray ArrayMesh::_get_blend_shape_names() const {
PackedStringArray sarr;
sarr.resize(blend_shapes.size());
for (int i = 0; i < blend_shapes.size(); i++) {
sarr.write[i] = blend_shapes[i];
}
return sarr;
}
Array ArrayMesh::_get_surfaces() const {
if (mesh.is_null()) {
return Array();
}
Array ret;
for (int i = 0; i < surfaces.size(); i++) {
RenderingServer::SurfaceData surface = RS::get_singleton()->mesh_get_surface(mesh, i);
Dictionary data;
data["format"] = surface.format;
data["primitive"] = surface.primitive;
data["vertex_data"] = surface.vertex_data;
data["vertex_count"] = surface.vertex_count;
if (surface.skin_data.size()) {
data["skin_data"] = surface.skin_data;
}
if (surface.attribute_data.size()) {
data["attribute_data"] = surface.attribute_data;
}
data["aabb"] = surface.aabb;
data["uv_scale"] = surface.uv_scale;
if (surface.index_count) {
data["index_data"] = surface.index_data;
data["index_count"] = surface.index_count;
};
Array lods;
for (int j = 0; j < surface.lods.size(); j++) {
lods.push_back(surface.lods[j].edge_length);
lods.push_back(surface.lods[j].index_data);
}
if (lods.size()) {
data["lods"] = lods;
}
Array bone_aabbs;
for (int j = 0; j < surface.bone_aabbs.size(); j++) {
bone_aabbs.push_back(surface.bone_aabbs[j]);
}
if (bone_aabbs.size()) {
data["bone_aabbs"] = bone_aabbs;
}
if (surface.blend_shape_data.size()) {
data["blend_shapes"] = surface.blend_shape_data;
}
if (surfaces[i].material.is_valid()) {
data["material"] = surfaces[i].material;
}
if (!surfaces[i].name.is_empty()) {
data["name"] = surfaces[i].name;
}
if (surfaces[i].is_2d) {
data["2d"] = true;
}
ret.push_back(data);
}
return ret;
}
void ArrayMesh::_create_if_empty() const {
if (!mesh.is_valid()) {
mesh = RS::get_singleton()->mesh_create();
RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode);
RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
RS::get_singleton()->mesh_set_path(mesh, get_path());
}
}
void ArrayMesh::_set_surfaces(const Array &p_surfaces) {
Vector<RS::SurfaceData> surface_data;
Vector<Ref<Material>> surface_materials;
Vector<String> surface_names;
Vector<bool> surface_2d;
for (int i = 0; i < p_surfaces.size(); i++) {
RS::SurfaceData surface;
Dictionary d = p_surfaces[i];
ERR_FAIL_COND(!d.has("format"));
ERR_FAIL_COND(!d.has("primitive"));
ERR_FAIL_COND(!d.has("vertex_data"));
ERR_FAIL_COND(!d.has("vertex_count"));
ERR_FAIL_COND(!d.has("aabb"));
surface.format = d["format"];
surface.primitive = RS::PrimitiveType(int(d["primitive"]));
surface.vertex_data = d["vertex_data"];
surface.vertex_count = d["vertex_count"];
if (d.has("attribute_data")) {
surface.attribute_data = d["attribute_data"];
}
if (d.has("skin_data")) {
surface.skin_data = d["skin_data"];
}
surface.aabb = d["aabb"];
if (d.has("uv_scale")) {
surface.uv_scale = d["uv_scale"];
}
if (d.has("index_data")) {
ERR_FAIL_COND(!d.has("index_count"));
surface.index_data = d["index_data"];
surface.index_count = d["index_count"];
}
if (d.has("lods")) {
Array lods = d["lods"];
ERR_FAIL_COND(lods.size() & 1); //must be even
for (int j = 0; j < lods.size(); j += 2) {
RS::SurfaceData::LOD lod;
lod.edge_length = lods[j + 0];
lod.index_data = lods[j + 1];
surface.lods.push_back(lod);
}
}
if (d.has("bone_aabbs")) {
Array bone_aabbs = d["bone_aabbs"];
for (int j = 0; j < bone_aabbs.size(); j++) {
surface.bone_aabbs.push_back(bone_aabbs[j]);
}
}
if (d.has("blend_shapes")) {
surface.blend_shape_data = d["blend_shapes"];
}
Ref<Material> material;
if (d.has("material")) {
material = d["material"];
if (material.is_valid()) {
surface.material = material->get_rid();
}
}
String surf_name;
if (d.has("name")) {
surf_name = d["name"];
}
bool _2d = false;
if (d.has("2d")) {
_2d = d["2d"];
}
#ifndef DISABLE_DEPRECATED
uint64_t surface_version = surface.format & (ARRAY_FLAG_FORMAT_VERSION_MASK << ARRAY_FLAG_FORMAT_VERSION_SHIFT);
if (surface_version != ARRAY_FLAG_FORMAT_CURRENT_VERSION) {
RS::get_singleton()->fix_surface_compatibility(surface, get_path());
surface_version = surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
vformat("Surface version provided (%d) does not match current version (%d).",
(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
}
#endif
surface_data.push_back(surface);
surface_materials.push_back(material);
surface_names.push_back(surf_name);
surface_2d.push_back(_2d);
}
if (mesh.is_valid()) {
//if mesh exists, it needs to be updated
RS::get_singleton()->mesh_clear(mesh);
for (int i = 0; i < surface_data.size(); i++) {
RS::get_singleton()->mesh_add_surface(mesh, surface_data[i]);
}
} else {
// if mesh does not exist (first time this is loaded, most likely),
// we can create it with a single call, which is a lot more efficient and thread friendly
mesh = RS::get_singleton()->mesh_create_from_surfaces(surface_data, blend_shapes.size());
RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode);
RS::get_singleton()->mesh_set_path(mesh, get_path());
}
surfaces.clear();
aabb = AABB();
for (int i = 0; i < surface_data.size(); i++) {
Surface s;
s.aabb = surface_data[i].aabb;
if (i == 0) {
aabb = s.aabb;
} else {
aabb.merge_with(s.aabb);
}
s.material = surface_materials[i];
s.is_2d = surface_2d[i];
s.name = surface_names[i];
s.format = surface_data[i].format;
s.primitive = PrimitiveType(surface_data[i].primitive);
s.array_length = surface_data[i].vertex_count;
s.index_array_length = surface_data[i].index_count;
surfaces.push_back(s);
}
}
bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const {
if (_is_generated()) {
return false;
}
String sname = p_name;
if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1) {
return false;
}
int idx = sname.substr(8, sl - 8).to_int();
String what = sname.get_slicec('/', 1);
if (what == "material") {
r_ret = surface_get_material(idx);
} else if (what == "name") {
r_ret = surface_get_name(idx);
}
return true;
}
return false;
}
void ArrayMesh::reset_state() {
clear_surfaces();
clear_blend_shapes();
aabb = AABB();
blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE;
custom_aabb = AABB();
}
void ArrayMesh::_get_property_list(List<PropertyInfo> *p_list) const {
if (_is_generated()) {
return;
}
for (int i = 0; i < surfaces.size(); i++) {
p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR));
if (surfaces[i].is_2d) {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "CanvasItemMaterial,ShaderMaterial", PROPERTY_USAGE_EDITOR));
} else {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial", PROPERTY_USAGE_EDITOR));
}
}
}
void ArrayMesh::_recompute_aabb() {
// regenerate AABB
aabb = AABB();
for (int i = 0; i < surfaces.size(); i++) {
if (i == 0) {
aabb = surfaces[i].aabb;
} else {
aabb.merge_with(surfaces[i].aabb);
}
}
}
// TODO: Need to add binding to add_surface using future MeshSurfaceData object.
void ArrayMesh::add_surface(BitField<ArrayFormat> p_format, PrimitiveType p_primitive, const Vector<uint8_t> &p_array, const Vector<uint8_t> &p_attribute_array, const Vector<uint8_t> &p_skin_array, int p_vertex_count, const Vector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<uint8_t> &p_blend_shape_data, const Vector<AABB> &p_bone_aabbs, const Vector<RS::SurfaceData::LOD> &p_lods, const Vector4 p_uv_scale) {
ERR_FAIL_COND(surfaces.size() == RS::MAX_MESH_SURFACES);
_create_if_empty();
Surface s;
s.aabb = p_aabb;
s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES;
s.primitive = p_primitive;
s.array_length = p_vertex_count;
s.index_array_length = p_index_count;
s.format = p_format;
surfaces.push_back(s);
_recompute_aabb();
RS::SurfaceData sd;
sd.format = p_format;
sd.primitive = RS::PrimitiveType(p_primitive);
sd.aabb = p_aabb;
sd.vertex_count = p_vertex_count;
sd.vertex_data = p_array;
sd.attribute_data = p_attribute_array;
sd.skin_data = p_skin_array;
sd.index_count = p_index_count;
sd.index_data = p_index_array;
sd.blend_shape_data = p_blend_shape_data;
sd.bone_aabbs = p_bone_aabbs;
sd.lods = p_lods;
sd.uv_scale = p_uv_scale;
RenderingServer::get_singleton()->mesh_add_surface(mesh, sd);
clear_cache();
notify_property_list_changed();
emit_changed();
}
void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, BitField<ArrayFormat> p_flags) {
ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);
RS::SurfaceData surface;
Error err = RS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (RenderingServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags);
ERR_FAIL_COND(err != OK);
/* Debug code.
print_line("format: " + itos(surface.format));
print_line("aabb: " + surface.aabb);
print_line("array size: " + itos(surface.vertex_data.size()));
print_line("vertex count: " + itos(surface.vertex_count));
print_line("index size: " + itos(surface.index_data.size()));
print_line("index count: " + itos(surface.index_count));
print_line("primitive: " + itos(surface.primitive));
*/
add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.attribute_data, surface.skin_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shape_data, surface.bone_aabbs, surface.lods, surface.uv_scale);
}
Array ArrayMesh::surface_get_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
}
TypedArray<Array> ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), TypedArray<Array>());
return RenderingServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface);
}
Dictionary ArrayMesh::surface_get_lods(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Dictionary());
return RenderingServer::get_singleton()->mesh_surface_get_lods(mesh, p_surface);
}
int ArrayMesh::get_surface_count() const {
return surfaces.size();
}
void ArrayMesh::add_blend_shape(const StringName &p_name) {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created.");
StringName shape_name = p_name;
if (blend_shapes.has(shape_name)) {
int count = 2;
do {
shape_name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.has(shape_name));
}
blend_shapes.push_back(shape_name);
if (mesh.is_valid()) {
RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
}
}
int ArrayMesh::get_blend_shape_count() const {
return blend_shapes.size();
}
StringName ArrayMesh::get_blend_shape_name(int p_index) const {
ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName());
return blend_shapes[p_index];
}
void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
ERR_FAIL_INDEX(p_index, blend_shapes.size());
StringName shape_name = p_name;
int found = blend_shapes.find(shape_name);
if (found != -1 && found != p_index) {
int count = 2;
do {
shape_name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.find(shape_name) != -1);
}
blend_shapes.write[p_index] = shape_name;
}
void ArrayMesh::clear_blend_shapes() {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created.");
blend_shapes.clear();
if (mesh.is_valid()) {
RS::get_singleton()->mesh_set_blend_shape_count(mesh, 0);
}
}
void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) {
blend_shape_mode = p_mode;
if (mesh.is_valid()) {
RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)p_mode);
}
}
ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const {
return blend_shape_mode;
}
int ArrayMesh::surface_get_array_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return surfaces[p_idx].array_length;
}
int ArrayMesh::surface_get_array_index_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return surfaces[p_idx].index_array_length;
}
BitField<Mesh::ArrayFormat> ArrayMesh::surface_get_format(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0);
return surfaces[p_idx].format;
}
ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES);
return surfaces[p_idx].primitive;
}
void ArrayMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
if (surfaces[p_idx].material == p_material) {
return;
}
surfaces.write[p_idx].material = p_material;
RenderingServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid());
emit_changed();
}
int ArrayMesh::surface_find_by_name(const String &p_name) const {
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].name == p_name) {
return i;
}
}
return -1;
}
void ArrayMesh::surface_set_name(int p_idx, const String &p_name) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].name = p_name;
emit_changed();
}
String ArrayMesh::surface_get_name(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String());
return surfaces[p_idx].name;
}
void ArrayMesh::surface_update_vertex_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
RS::get_singleton()->mesh_surface_update_vertex_region(mesh, p_surface, p_offset, p_data);
emit_changed();
}
void ArrayMesh::surface_update_attribute_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
RS::get_singleton()->mesh_surface_update_attribute_region(mesh, p_surface, p_offset, p_data);
emit_changed();
}
void ArrayMesh::surface_update_skin_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
RS::get_singleton()->mesh_surface_update_skin_region(mesh, p_surface, p_offset, p_data);
emit_changed();
}
void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].aabb = p_aabb;
// set custom aabb too?
emit_changed();
}
Ref<Material> ArrayMesh::surface_get_material(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref<Material>());
return surfaces[p_idx].material;
}
RID ArrayMesh::get_rid() const {
_create_if_empty();
return mesh;
}
AABB ArrayMesh::get_aabb() const {
return aabb;
}
void ArrayMesh::clear_surfaces() {
if (!mesh.is_valid()) {
return;
}
RS::get_singleton()->mesh_clear(mesh);
surfaces.clear();
aabb = AABB();
}
void ArrayMesh::set_custom_aabb(const AABB &p_custom) {
_create_if_empty();
custom_aabb = p_custom;
RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
emit_changed();
}
AABB ArrayMesh::get_custom_aabb() const {
return custom_aabb;
}
void ArrayMesh::regen_normal_maps() {
if (surfaces.size() == 0) {
return;
}
Vector<Ref<SurfaceTool>> surfs;
Vector<uint64_t> formats;
for (int i = 0; i < get_surface_count(); i++) {
Ref<SurfaceTool> st = memnew(SurfaceTool);
st->create_from(Ref<ArrayMesh>(this), i);
surfs.push_back(st);
formats.push_back(surface_get_format(i));
}
clear_surfaces();
for (int i = 0; i < surfs.size(); i++) {
surfs.write[i]->generate_tangents();
surfs.write[i]->commit(Ref<ArrayMesh>(this), formats[i]);
}
}
//dirty hack
bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr;
struct ArrayMeshLightmapSurface {
Ref<Material> material;
LocalVector<SurfaceTool::Vertex> vertices;
Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
uint64_t format = 0;
};
Error ArrayMesh::lightmap_unwrap(const Transform3D &p_base_transform, float p_texel_size) {
Vector<uint8_t> null_cache;
return lightmap_unwrap_cached(p_base_transform, p_texel_size, null_cache, null_cache, false);
}
Error ArrayMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache, bool p_generate_cache) {
ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, ERR_PARAMETER_RANGE_ERROR, "Texel size must be greater than 0.");
LocalVector<float> vertices;
LocalVector<float> normals;
LocalVector<int> indices;
LocalVector<float> uv;
LocalVector<Pair<int, int>> uv_indices;
Vector<ArrayMeshLightmapSurface> lightmap_surfaces;
// Keep only the scale
Basis basis = p_base_transform.get_basis();
Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length());
Transform3D transform;
transform.scale(scale);
Basis normal_basis = transform.basis.inverse().transposed();
for (int i = 0; i < get_surface_count(); i++) {
ArrayMeshLightmapSurface s;
s.primitive = surface_get_primitive_type(i);
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
s.format = surface_get_format(i);
ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
Array arrays = surface_get_arrays(i);
s.material = surface_get_material(i);
SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format);
PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
int vc = rvertices.size();
PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];
int vertex_ofs = vertices.size() / 3;
vertices.resize((vertex_ofs + vc) * 3);
normals.resize((vertex_ofs + vc) * 3);
uv_indices.resize(vertex_ofs + vc);
for (int j = 0; j < vc; j++) {
Vector3 v = transform.xform(rvertices[j]);
Vector3 n = normal_basis.xform(rnormals[j]).normalized();
vertices[(j + vertex_ofs) * 3 + 0] = v.x;
vertices[(j + vertex_ofs) * 3 + 1] = v.y;
vertices[(j + vertex_ofs) * 3 + 2] = v.z;
normals[(j + vertex_ofs) * 3 + 0] = n.x;
normals[(j + vertex_ofs) * 3 + 1] = n.y;
normals[(j + vertex_ofs) * 3 + 2] = n.z;
uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
}
PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
int ic = rindices.size();
float eps = 1.19209290e-7F; // Taken from xatlas.h
if (ic == 0) {
for (int j = 0; j < vc / 3; j++) {
Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + j * 3 + 0);
indices.push_back(vertex_ofs + j * 3 + 1);
indices.push_back(vertex_ofs + j * 3 + 2);
}
} else {
for (int j = 0; j < ic / 3; j++) {
Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
}
}
lightmap_surfaces.push_back(s);
}
//unwrap
bool use_cache = p_generate_cache; // Used to request cache generation and to know if cache was used
uint8_t *gen_cache;
int gen_cache_size;
float *gen_uvs;
int *gen_vertices;
int *gen_indices;
int gen_vertex_count;
int gen_index_count;
int size_x;
int size_y;
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
if (!ok) {
return ERR_CANT_CREATE;
}
clear_surfaces();
//create surfacetools for each surface..
LocalVector<Ref<SurfaceTool>> surfaces_tools;
for (int i = 0; i < lightmap_surfaces.size(); i++) {
Ref<SurfaceTool> st;
st.instantiate();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
st->set_material(lightmap_surfaces[i].material);
surfaces_tools.push_back(st); //stay there
}
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
//go through all indices
for (int i = 0; i < gen_index_count; i += 3) {
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
for (int j = 0; j < 3; j++) {
SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) {
surfaces_tools[surface]->set_color(v.color);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) {
surfaces_tools[surface]->set_uv(v.uv);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) {
surfaces_tools[surface]->set_normal(v.normal);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) {
Plane t;
t.normal = v.tangent;
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
surfaces_tools[surface]->set_tangent(t);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) {
surfaces_tools[surface]->set_bones(v.bones);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) {
surfaces_tools[surface]->set_weights(v.weights);
}
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
surfaces_tools[surface]->set_uv2(uv2);
surfaces_tools[surface]->add_vertex(v.vertex);
}
}
//generate surfaces
for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
surfaces_tools[i]->index();
surfaces_tools[i]->commit(Ref<ArrayMesh>((ArrayMesh *)this), lightmap_surfaces[i].format);
}
set_lightmap_size_hint(Size2(size_x, size_y));
if (gen_cache_size > 0) {
r_dst_cache.resize(gen_cache_size);
memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
memfree(gen_cache);
}
if (!use_cache) {
// Cache was not used, free the buffers
memfree(gen_vertices);
memfree(gen_indices);
memfree(gen_uvs);
}
return OK;
}
void ArrayMesh::set_shadow_mesh(const Ref<ArrayMesh> &p_mesh) {
shadow_mesh = p_mesh;
if (shadow_mesh.is_valid()) {
RS::get_singleton()->mesh_set_shadow_mesh(mesh, shadow_mesh->get_rid());
} else {
RS::get_singleton()->mesh_set_shadow_mesh(mesh, RID());
}
}
Ref<ArrayMesh> ArrayMesh::get_shadow_mesh() const {
return shadow_mesh;
}
void ArrayMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape);
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count);
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name);
ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name);
ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes);
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode);
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode);
ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "lods", "flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(0));
ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces);
ClassDB::bind_method(D_METHOD("surface_update_vertex_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_vertex_region);
ClassDB::bind_method(D_METHOD("surface_update_attribute_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_attribute_region);
ClassDB::bind_method(D_METHOD("surface_update_skin_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_skin_region);
ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len);
ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len);
ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format);
ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type);
ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name);
ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name);
ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name);
#ifndef _3D_DISABLED
ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape);
ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false));
#endif // _3D_DISABLED
ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline);
ClassDB::bind_method(D_METHOD("regen_normal_maps"), &ArrayMesh::regen_normal_maps);
ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normal_maps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap);
ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh);
ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb);
ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb);
ClassDB::bind_method(D_METHOD("set_shadow_mesh", "mesh"), &ArrayMesh::set_shadow_mesh);
ClassDB::bind_method(D_METHOD("get_shadow_mesh"), &ArrayMesh::get_shadow_mesh);
ClassDB::bind_method(D_METHOD("_set_blend_shape_names", "blend_shape_names"), &ArrayMesh::_set_blend_shape_names);
ClassDB::bind_method(D_METHOD("_get_blend_shape_names"), &ArrayMesh::_get_blend_shape_names);
ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces);
ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces);
ADD_PROPERTY(PropertyInfo(Variant::PACKED_STRING_ARRAY, "_blend_shape_names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_blend_shape_names", "_get_blend_shape_names");
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces");
ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode");
ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_custom_aabb", "get_custom_aabb");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "shadow_mesh", PROPERTY_HINT_RESOURCE_TYPE, "ArrayMesh"), "set_shadow_mesh", "get_shadow_mesh");
}
void ArrayMesh::reload_from_file() {
RenderingServer::get_singleton()->mesh_clear(mesh);
surfaces.clear();
clear_blend_shapes();
clear_cache();
Resource::reload_from_file();
notify_property_list_changed();
}
ArrayMesh::ArrayMesh() {
//mesh is now created on demand
//mesh = RenderingServer::get_singleton()->mesh_create();
}
ArrayMesh::~ArrayMesh() {
if (mesh.is_valid()) {
ERR_FAIL_NULL(RenderingServer::get_singleton());
RenderingServer::get_singleton()->free(mesh);
}
}
///////////////
void PlaceholderMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_aabb", "aabb"), &PlaceholderMesh::set_aabb);
ADD_PROPERTY(PropertyInfo(Variant::AABB, "aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_aabb", "get_aabb");
}
PlaceholderMesh::PlaceholderMesh() {
rid = RS::get_singleton()->mesh_create();
}
PlaceholderMesh::~PlaceholderMesh() {
ERR_FAIL_NULL(RenderingServer::get_singleton());
RS::get_singleton()->free(rid);
}