godot/drivers/gles3/rasterizer_scene_gles3.cpp

3673 lines
112 KiB
C++

#include "rasterizer_scene_gles3.h"
#include "globals.h"
#include "os/os.h"
#include "rasterizer_canvas_gles3.h"
static const GLenum _cube_side_enum[6]={
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
};
static _FORCE_INLINE_ void store_matrix32(const Matrix32& p_mtx, float* p_array) {
p_array[ 0]=p_mtx.elements[0][0];
p_array[ 1]=p_mtx.elements[0][1];
p_array[ 2]=0;
p_array[ 3]=0;
p_array[ 4]=p_mtx.elements[1][0];
p_array[ 5]=p_mtx.elements[1][1];
p_array[ 6]=0;
p_array[ 7]=0;
p_array[ 8]=0;
p_array[ 9]=0;
p_array[10]=1;
p_array[11]=0;
p_array[12]=p_mtx.elements[2][0];
p_array[13]=p_mtx.elements[2][1];
p_array[14]=0;
p_array[15]=1;
}
static _FORCE_INLINE_ void store_transform(const Transform& p_mtx, float* p_array) {
p_array[ 0]=p_mtx.basis.elements[0][0];
p_array[ 1]=p_mtx.basis.elements[1][0];
p_array[ 2]=p_mtx.basis.elements[2][0];
p_array[ 3]=0;
p_array[ 4]=p_mtx.basis.elements[0][1];
p_array[ 5]=p_mtx.basis.elements[1][1];
p_array[ 6]=p_mtx.basis.elements[2][1];
p_array[ 7]=0;
p_array[ 8]=p_mtx.basis.elements[0][2];
p_array[ 9]=p_mtx.basis.elements[1][2];
p_array[10]=p_mtx.basis.elements[2][2];
p_array[11]=0;
p_array[12]=p_mtx.origin.x;
p_array[13]=p_mtx.origin.y;
p_array[14]=p_mtx.origin.z;
p_array[15]=1;
}
static _FORCE_INLINE_ void store_camera(const CameraMatrix& p_mtx, float* p_array) {
for (int i=0;i<4;i++) {
for (int j=0;j<4;j++) {
p_array[i*4+j]=p_mtx.matrix[i][j];
}
}
}
/* SHADOW ATLAS API */
RID RasterizerSceneGLES3::shadow_atlas_create() {
ShadowAtlas *shadow_atlas = memnew( ShadowAtlas );
shadow_atlas->fbo=0;
shadow_atlas->depth=0;
shadow_atlas->size=0;
shadow_atlas->smallest_subdiv=0;
for(int i=0;i<4;i++) {
shadow_atlas->size_order[i]=i;
}
return shadow_atlas_owner.make_rid(shadow_atlas);
}
void RasterizerSceneGLES3::shadow_atlas_set_size(RID p_atlas,int p_size){
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND(!shadow_atlas);
ERR_FAIL_COND(p_size<0);
p_size = nearest_power_of_2(p_size);
if (p_size==shadow_atlas->size)
return;
if (shadow_atlas->fbo) {
glDeleteTextures(1,&shadow_atlas->depth);
glDeleteFramebuffers(1,&shadow_atlas->fbo);
shadow_atlas->depth=0;
shadow_atlas->fbo=0;
}
for(int i=0;i<4;i++) {
//clear subdivisions
shadow_atlas->quadrants[i].shadows.resize(0);
shadow_atlas->quadrants[i].shadows.resize( 1<<shadow_atlas->quadrants[i].subdivision );
}
//erase shadow atlas reference from lights
for (Map<RID,uint32_t>::Element *E=shadow_atlas->shadow_owners.front();E;E=E->next()) {
LightInstance *li = light_instance_owner.getornull(E->key());
ERR_CONTINUE(!li);
li->shadow_atlases.erase(p_atlas);
}
//clear owners
shadow_atlas->shadow_owners.clear();
shadow_atlas->size=p_size;
if (shadow_atlas->size) {
glGenFramebuffers(1, &shadow_atlas->fbo);
glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
// Create a texture for storing the depth
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &shadow_atlas->depth);
glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, shadow_atlas->size, shadow_atlas->size, 0,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
//interpola nearest (though nvidia can improve this)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// We'll use a depth texture to store the depths in the shadow map
// Attach the depth texture to FBO depth attachment point
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D, shadow_atlas->depth, 0);
}
}
void RasterizerSceneGLES3::shadow_atlas_set_quadrant_subdivision(RID p_atlas,int p_quadrant,int p_subdivision){
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND(!shadow_atlas);
ERR_FAIL_INDEX(p_quadrant,4);
ERR_FAIL_INDEX(p_subdivision,16384);
uint32_t subdiv = nearest_power_of_2(p_subdivision);
if (subdiv&0xaaaaaaaa) { //sqrt(subdiv) must be integer
subdiv<<=1;
}
subdiv=int(Math::sqrt(subdiv));
//obtain the number that will be x*x
if (shadow_atlas->quadrants[p_quadrant].subdivision==subdiv)
return;
//erase all data from quadrant
for(int i=0;i<shadow_atlas->quadrants[p_quadrant].shadows.size();i++) {
if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
ERR_CONTINUE(!li);
li->shadow_atlases.erase(p_atlas);
}
}
shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv*subdiv);
shadow_atlas->quadrants[p_quadrant].subdivision=subdiv;
//cache the smallest subdiv (for faster allocation in light update)
shadow_atlas->smallest_subdiv=1<<30;
for(int i=0;i<4;i++) {
if (shadow_atlas->quadrants[i].subdivision) {
shadow_atlas->smallest_subdiv=MIN(shadow_atlas->smallest_subdiv,shadow_atlas->quadrants[i].subdivision);
}
}
if (shadow_atlas->smallest_subdiv==1<<30) {
shadow_atlas->smallest_subdiv=0;
}
//resort the size orders, simple bublesort for 4 elements..
int swaps=0;
do {
swaps=0;
for(int i=0;i<3;i++) {
if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i+1]].subdivision) {
SWAP(shadow_atlas->size_order[i],shadow_atlas->size_order[i+1]);
swaps++;
}
}
} while(swaps>0);
}
bool RasterizerSceneGLES3::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas,int *p_in_quadrants,int p_quadrant_count,int p_current_subdiv,uint64_t p_tick,int &r_quadrant,int &r_shadow) {
for(int i=p_quadrant_count-1;i>=0;i--) {
int qidx = p_in_quadrants[i];
if (shadow_atlas->quadrants[qidx].subdivision==p_current_subdiv) {
return false;
}
//look for an empty space
int sc = shadow_atlas->quadrants[qidx].shadows.size();
ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
int found_free_idx=-1; //found a free one
int found_used_idx=-1; //found existing one, must steal it
uint64_t min_pass; // pass of the existing one, try to use the least recently used one (LRU fashion)
for(int j=0;j<sc;j++) {
if (!sarr[j].owner.is_valid()) {
found_free_idx=j;
break;
}
LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
ERR_CONTINUE(!sli);
if (sli->last_scene_pass!=scene_pass) {
//was just allocated, don't kill it so soon, wait a bit..
if (p_tick-sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec)
continue;
if (found_used_idx==-1 || sli->last_scene_pass<min_pass) {
found_used_idx=j;
min_pass=sli->last_scene_pass;
}
}
}
if (found_free_idx==-1 && found_used_idx==-1)
continue; //nothing found
if (found_free_idx==-1 && found_used_idx!=-1) {
found_free_idx=found_used_idx;
}
r_quadrant=qidx;
r_shadow=found_free_idx;
return true;
}
return false;
}
bool RasterizerSceneGLES3::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version){
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!shadow_atlas,false);
LightInstance *li = light_instance_owner.getornull(p_light_intance);
ERR_FAIL_COND_V(!li,false);
if (shadow_atlas->size==0 || shadow_atlas->smallest_subdiv==0) {
return false;
}
uint32_t quad_size = shadow_atlas->size>>1;
int desired_fit = MIN(quad_size/shadow_atlas->smallest_subdiv,nearest_power_of_2(quad_size*p_coverage));
int valid_quadrants[4];
int valid_quadrant_count=0;
int best_size=-1; //best size found
int best_subdiv=-1; //subdiv for the best size
//find the quadrants this fits into, and the best possible size it can fit into
for(int i=0;i<4;i++) {
int q = shadow_atlas->size_order[i];
int sd = shadow_atlas->quadrants[q].subdivision;
if (sd==0)
continue; //unused
int max_fit = quad_size / sd;
if (best_size!=-1 && max_fit>best_size)
break; //too large
valid_quadrants[valid_quadrant_count++]=q;
best_subdiv=sd;
if (max_fit>=desired_fit) {
best_size=max_fit;
}
}
ERR_FAIL_COND_V(valid_quadrant_count==0,false);
uint64_t tick = OS::get_singleton()->get_ticks_msec();
//see if it already exists
if (shadow_atlas->shadow_owners.has(p_light_intance)) {
//it does!
uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
uint32_t q = (key>>ShadowAtlas::QUADRANT_SHIFT)&0x3;
uint32_t s = key&ShadowAtlas::SHADOW_INDEX_MASK;
bool should_realloc=shadow_atlas->quadrants[q].subdivision!=best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick-tick > shadow_atlas_realloc_tolerance_msec);
bool should_redraw=shadow_atlas->quadrants[q].shadows[s].version!=p_light_version;
if (!should_realloc) {
shadow_atlas->quadrants[q].shadows[s].version=p_light_version;
//already existing, see if it should redraw or it's just OK
return should_redraw;
}
int new_quadrant,new_shadow;
//find a better place
if (_shadow_atlas_find_shadow(shadow_atlas,valid_quadrants,valid_quadrant_count,shadow_atlas->quadrants[q].subdivision,tick,new_quadrant,new_shadow)) {
//found a better place!
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows[new_shadow];
if (sh->owner.is_valid()) {
//is taken, but is invalid, erasing it
shadow_atlas->shadow_owners.erase(sh->owner);
LightInstance *sli = light_instance_owner.get(sh->owner);
sli->shadow_atlases.erase(p_atlas);
}
//erase previous
shadow_atlas->quadrants[q].shadows[s].version=0;
shadow_atlas->quadrants[q].shadows[s].owner=RID();
sh->owner=p_light_intance;
sh->alloc_tick=tick;
sh->version=p_light_version;
//make new key
key=new_quadrant<<ShadowAtlas::QUADRANT_SHIFT;
key|=new_shadow;
//update it in map
shadow_atlas->shadow_owners[p_light_intance]=key;
//make it dirty, as it should redraw anyway
return true;
}
//no better place for this shadow found, keep current
//already existing, see if it should redraw or it's just OK
shadow_atlas->quadrants[q].shadows[s].version=p_light_version;
return should_redraw;
}
int new_quadrant,new_shadow;
//find a better place
if (_shadow_atlas_find_shadow(shadow_atlas,valid_quadrants,valid_quadrant_count,-1,tick,new_quadrant,new_shadow)) {
//found a better place!
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows[new_shadow];
if (sh->owner.is_valid()) {
//is taken, but is invalid, erasing it
shadow_atlas->shadow_owners.erase(sh->owner);
LightInstance *sli = light_instance_owner.get(sh->owner);
sli->shadow_atlases.erase(p_atlas);
}
sh->owner=p_light_intance;
sh->alloc_tick=tick;
sh->version=p_light_version;
//make new key
uint32_t key=new_quadrant<<ShadowAtlas::QUADRANT_SHIFT;
key|=new_shadow;
//update it in map
shadow_atlas->shadow_owners[p_light_intance]=key;
//make it dirty, as it should redraw anyway
return true;
}
//no place to allocate this light, apologies
return false;
}
void RasterizerSceneGLES3::set_directional_shadow_count(int p_count) {
directional_shadow.light_count=p_count;
directional_shadow.current_light=0;
}
int RasterizerSceneGLES3::get_directional_light_shadow_size(RID p_light_intance) {
ERR_FAIL_COND_V(directional_shadow.light_count==0,0);
int shadow_size;
if (directional_shadow.light_count==1) {
shadow_size = directional_shadow.size;
} else {
shadow_size = directional_shadow.size/2; //more than 4 not supported anyway
}
LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
ERR_FAIL_COND_V(!light_instance,0);
switch(light_instance->light_ptr->directional_shadow_mode) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: shadow_size/=2; break;
}
return shadow_size;
}
//////////////////////////////////////////////////////
RID RasterizerSceneGLES3::reflection_atlas_create() {
ReflectionAtlas *reflection_atlas = memnew( ReflectionAtlas );
reflection_atlas->subdiv=0;
reflection_atlas->color=0;
for(int i=0;i<6;i++) {
reflection_atlas->fbo[i]=0;
}
return reflection_atlas_owner.make_rid(reflection_atlas);
}
void RasterizerSceneGLES3::reflection_atlas_set_size(RID p_ref_atlas,int p_size) {
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas);
ERR_FAIL_COND(!reflection_atlas);
int size = nearest_power_of_2(p_size);
if (size==reflection_atlas->size)
return;
if (reflection_atlas->size) {
for(int i=0;i<6;i++) {
glDeleteFramebuffers(1,&reflection_atlas->fbo[i]);
reflection_atlas->fbo[i]=0;
}
glDeleteTextures(1,&reflection_atlas->color);
reflection_atlas->color=0;
}
reflection_atlas->size=size;
for(int i=0;i<reflection_atlas->reflections.size();i++) {
//erase probes reference to this
if (reflection_atlas->reflections[i].owner.is_valid()) {
ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner);
reflection_atlas->reflections[i].owner=RID();
ERR_CONTINUE(!reflection_probe_instance);
reflection_probe_instance->reflection_atlas_index=-1;
reflection_probe_instance->atlas=RID();
reflection_probe_instance->render_step=-1;
}
}
if (reflection_atlas->size) {
bool use_float=true;
GLenum internal_format = use_float?GL_RGBA16F:GL_RGB10_A2;
GLenum format = GL_RGBA;
GLenum type = use_float?GL_HALF_FLOAT:GL_UNSIGNED_INT_2_10_10_10_REV;
// Create a texture for storing the color
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &reflection_atlas->color);
glBindTexture(GL_TEXTURE_2D, reflection_atlas->color);
int mmsize=reflection_atlas->size;
for(int i=0;i<6;i++) {
glTexImage2D(GL_TEXTURE_2D, i, internal_format, mmsize, mmsize, 0,
format, type, NULL);
mmsize>>=1;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
mmsize=reflection_atlas->size;
for(int i=0;i<6;i++) {
glGenFramebuffers(1, &reflection_atlas->fbo[i]);
glBindFramebuffer(GL_FRAMEBUFFER, reflection_atlas->fbo[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, reflection_atlas->color, i);
glDisable(GL_SCISSOR_TEST);
glViewport(0,0,mmsize,mmsize);
glClearColor(0,0,0,0);
glClear(GL_COLOR_BUFFER_BIT); //it needs to be cleared, to avoid generating garbage
mmsize>>=1;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 5);
}
}
void RasterizerSceneGLES3::reflection_atlas_set_subdivision(RID p_ref_atlas,int p_subdiv) {
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas);
ERR_FAIL_COND(!reflection_atlas);
uint32_t subdiv = nearest_power_of_2(p_subdiv);
if (subdiv&0xaaaaaaaa) { //sqrt(subdiv) must be integer
subdiv<<=1;
}
subdiv=int(Math::sqrt(subdiv));
if (reflection_atlas->subdiv==subdiv)
return;
if (subdiv) {
for(int i=0;i<reflection_atlas->reflections.size();i++) {
//erase probes reference to this
if (reflection_atlas->reflections[i].owner.is_valid()) {
ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner);
reflection_atlas->reflections[i].owner=RID();
ERR_CONTINUE(!reflection_probe_instance);
reflection_probe_instance->reflection_atlas_index=-1;
reflection_probe_instance->atlas=RID();
reflection_probe_instance->render_step=-1;
}
}
}
reflection_atlas->subdiv=subdiv;
reflection_atlas->reflections.resize(subdiv*subdiv);
}
////////////////////////////////////////////////////
RID RasterizerSceneGLES3::reflection_probe_instance_create(RID p_probe) {
RasterizerStorageGLES3::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
ERR_FAIL_COND_V(!probe,RID());
ReflectionProbeInstance *rpi = memnew( ReflectionProbeInstance );
rpi->probe_ptr=probe;
rpi->self=reflection_probe_instance_owner.make_rid(rpi);
rpi->probe=p_probe;
rpi->reflection_atlas_index=-1;
rpi->render_step=-1;
rpi->last_pass=0;
return rpi->self;
}
void RasterizerSceneGLES3::reflection_probe_instance_set_transform(RID p_instance,const Transform& p_transform) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
rpi->transform=p_transform;
}
void RasterizerSceneGLES3::reflection_probe_release_atlas_index(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
if (rpi->reflection_atlas_index==-1)
return;
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas);
ERR_FAIL_COND(!reflection_atlas);
ERR_FAIL_INDEX(rpi->reflection_atlas_index,reflection_atlas->reflections.size());
ERR_FAIL_COND(reflection_atlas->reflections[rpi->reflection_atlas_index].owner!=rpi->self);
reflection_atlas->reflections[rpi->reflection_atlas_index].owner=RID();
rpi->reflection_atlas_index=-1;
rpi->atlas=RID();
rpi->render_step=-1;
}
bool RasterizerSceneGLES3::reflection_probe_instance_needs_redraw(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi,false);
return rpi->reflection_atlas_index==-1 || rpi->probe_ptr->update_mode==VS::REFLECTION_PROBE_UPDATE_ALWAYS;
}
bool RasterizerSceneGLES3::reflection_probe_instance_has_reflection(RID p_instance){
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi,false);
return rpi->reflection_atlas_index!=-1;
}
bool RasterizerSceneGLES3::reflection_probe_instance_begin_render(RID p_instance,RID p_reflection_atlas) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi,false);
rpi->render_step=0;
if (rpi->reflection_atlas_index!=-1) {
return true; //got one already
}
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
ERR_FAIL_COND_V(!reflection_atlas,false);
if (reflection_atlas->size==0 || reflection_atlas->subdiv==0) {
return false;
}
int best_free=-1;
int best_used=-1;
uint64_t best_used_frame;
for(int i=0;i<reflection_atlas->reflections.size();i++) {
if (reflection_atlas->reflections[i].owner==RID()) {
best_free=i;
break;
}
if (rpi->render_step<0 && reflection_atlas->reflections[i].last_frame<storage->frame.count &&
(best_used==-1 || reflection_atlas->reflections[i].last_frame<best_used_frame)) {
best_used=i;
best_used_frame=reflection_atlas->reflections[i].last_frame;
}
}
if (best_free==-1 && best_used==-1) {
return false ;// sorry, can not do. Try again next frame.
}
if (best_free==-1) {
//find best from what is used
best_free=best_used;
ReflectionProbeInstance *victim_rpi = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[best_free].owner);
ERR_FAIL_COND_V(!victim_rpi,false);
victim_rpi->atlas=RID();
victim_rpi->reflection_atlas_index=-1;
}
reflection_atlas->reflections[best_free].owner=p_instance;
reflection_atlas->reflections[best_free].last_frame=storage->frame.count;
rpi->reflection_atlas_index=best_free;
rpi->atlas=p_reflection_atlas;
rpi->render_step=0;
return true;
}
bool RasterizerSceneGLES3::reflection_probe_instance_postprocess_step(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi,true);
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas);
ERR_FAIL_COND_V(!reflection_atlas,false);
ERR_FAIL_COND_V(rpi->render_step>=6,true);
glBindFramebuffer(GL_FRAMEBUFFER,reflection_atlas->fbo[rpi->render_step]);
state.cube_to_dp_shader.bind();
int target_size=reflection_atlas->size/reflection_atlas->subdiv;
int cubemap_index=reflection_cubemaps.size()-1;
for(int i=reflection_cubemaps.size()-1;i>=0;i--) {
//find appropriate cubemap to render to
if (reflection_cubemaps[i].size>target_size*2)
break;
cubemap_index=i;
}
glDisable(GL_BLEND);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP,reflection_cubemaps[cubemap_index].cubemap);
glDisable(GL_CULL_FACE);
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID,true);
storage->shaders.cubemap_filter.bind();
int cell_size = reflection_atlas->size / reflection_atlas->subdiv;
for(int i=0;i<rpi->render_step;i++) {
cell_size>>=1; //mipmaps!
}
int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size;
int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size;
int width=cell_size;
int height=cell_size;
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE,rpi->render_step==0);
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY,rpi->probe_ptr->update_mode==VS::REFLECTION_PROBE_UPDATE_ALWAYS);
for(int i=0;i<2;i++) {
storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP,i>0);
storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS,rpi->render_step/5.0);
uint32_t local_width=width,local_height=height;
uint32_t local_x=x,local_y=y;
local_height/=2;
local_y+=i*local_height;
glViewport(local_x,local_y,local_width,local_height);
_copy_screen();
}
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE,false);
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY,false);
rpi->render_step++;
return rpi->render_step==6;
}
/* ENVIRONMENT API */
RID RasterizerSceneGLES3::environment_create(){
Environment *env = memnew( Environment );
return environment_owner.make_rid(env);
}
void RasterizerSceneGLES3::environment_set_background(RID p_env,VS::EnvironmentBG p_bg){
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->bg_mode=p_bg;
}
void RasterizerSceneGLES3::environment_set_skybox(RID p_env, RID p_skybox){
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->skybox=p_skybox;
}
void RasterizerSceneGLES3::environment_set_skybox_scale(RID p_env,float p_scale) {
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->skybox_scale=p_scale;
}
void RasterizerSceneGLES3::environment_set_bg_color(RID p_env,const Color& p_color){
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->bg_color=p_color;
}
void RasterizerSceneGLES3::environment_set_bg_energy(RID p_env,float p_energy) {
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->bg_energy=p_energy;
}
void RasterizerSceneGLES3::environment_set_canvas_max_layer(RID p_env,int p_max_layer){
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->canvas_max_layer=p_max_layer;
}
void RasterizerSceneGLES3::environment_set_ambient_light(RID p_env, const Color& p_color, float p_energy, float p_skybox_contribution){
Environment *env=environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->ambient_color=p_color;
env->ambient_energy=p_energy;
env->ambient_skybox_contribution=p_skybox_contribution;
}
void RasterizerSceneGLES3::environment_set_glow(RID p_env,bool p_enable,int p_radius,float p_intensity,float p_strength,float p_bloom_treshold,VS::EnvironmentGlowBlendMode p_blend_mode){
}
void RasterizerSceneGLES3::environment_set_fog(RID p_env,bool p_enable,float p_begin,float p_end,RID p_gradient_texture){
}
void RasterizerSceneGLES3::environment_set_tonemap(RID p_env, bool p_enable, float p_exposure, float p_white, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale, VS::EnvironmentToneMapper p_tone_mapper){
}
void RasterizerSceneGLES3::environment_set_adjustment(RID p_env,bool p_enable,float p_brightness,float p_contrast,float p_saturation,RID p_ramp) {
}
RID RasterizerSceneGLES3::light_instance_create(RID p_light) {
LightInstance *light_instance = memnew( LightInstance );
light_instance->last_pass=0;
light_instance->last_scene_pass=0;
light_instance->last_scene_shadow_pass=0;
light_instance->light=p_light;
light_instance->light_ptr=storage->light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light_instance->light_ptr,RID());
light_instance->self=light_instance_owner.make_rid(light_instance);
return light_instance->self;
}
void RasterizerSceneGLES3::light_instance_set_transform(RID p_light_instance,const Transform& p_transform){
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->transform=p_transform;
}
void RasterizerSceneGLES3::light_instance_set_shadow_transform(RID p_light_instance,const CameraMatrix& p_projection,const Transform& p_transform,float p_far,float p_split,int p_pass) {
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
if (light_instance->light_ptr->type!=VS::LIGHT_DIRECTIONAL) {
p_pass=0;
}
ERR_FAIL_INDEX(p_pass,4);
light_instance->shadow_transform[p_pass].camera=p_projection;
light_instance->shadow_transform[p_pass].transform=p_transform;
light_instance->shadow_transform[p_pass].far=p_far;
light_instance->shadow_transform[p_pass].split=p_split;
}
void RasterizerSceneGLES3::light_instance_mark_visible(RID p_light_instance) {
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->last_scene_pass=scene_pass;
}
////////////////////////////
////////////////////////////
////////////////////////////
bool RasterizerSceneGLES3::_setup_material(RasterizerStorageGLES3::Material* p_material,bool p_alpha_pass) {
if (p_material->shader->spatial.cull_mode==RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_DISABLED) {
glDisable(GL_CULL_FACE);
} else {
glEnable(GL_CULL_FACE);
}
if (state.current_line_width!=p_material->line_width) {
//glLineWidth(MAX(p_material->line_width,1.0));
state.current_line_width=p_material->line_width;
}
if (state.current_depth_draw!=p_material->shader->spatial.depth_draw_mode) {
switch(p_material->shader->spatial.depth_draw_mode) {
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
glDepthMask(!p_alpha_pass);
} break;
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
glDepthMask(GL_TRUE);
} break;
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_NEVER: {
glDepthMask(GL_FALSE);
} break;
}
state.current_depth_draw=p_material->shader->spatial.depth_draw_mode;
}
//glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
/*
if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
*/
//if (p_material->line_width)
// glLineWidth(p_material->line_width);
#if 0
//blend mode
if (state.current_blend_mode!=p_material->shader->spatial.blend_mode) {
switch(p_material->shader->spatial.blend_mode) {
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(p_alpha_pass?GL_SRC_ALPHA:GL_ONE,GL_ONE);
} break;
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
}
state.current_blend_mode=p_material->shader->spatial.blend_mode;
}
#endif
//material parameters
state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
bool rebind = state.scene_shader.bind();
if (p_material->ubo_id) {
glBindBufferBase(GL_UNIFORM_BUFFER,1,p_material->ubo_id);
}
int tc = p_material->textures.size();
RID* textures = p_material->textures.ptr();
ShaderLanguage::ShaderNode::Uniform::Hint* texture_hints = p_material->shader->texture_hints.ptr();
for(int i=0;i<tc;i++) {
glActiveTexture(GL_TEXTURE0+i);
RasterizerStorageGLES3::Texture *t = storage->texture_owner.getornull( textures[i] );
if (!t) {
//check hints
switch(texture_hints[i]) {
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
glBindTexture(GL_TEXTURE_2D,storage->resources.black_tex);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
glBindTexture(GL_TEXTURE_2D,storage->resources.aniso_tex);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
glBindTexture(GL_TEXTURE_2D,storage->resources.normal_tex);
} break;
default: {
glBindTexture(GL_TEXTURE_2D,storage->resources.white_tex);
} break;
}
continue;
}
if (storage->config.srgb_decode_supported) {
//if SRGB decode extension is present, simply switch the texture to whathever is needed
bool must_srgb=false;
if (t->srgb && (texture_hints[i]==ShaderLanguage::ShaderNode::Uniform::HINT_ALBEDO || texture_hints[i]==ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO)) {
must_srgb=true;
}
if (t->using_srgb!=must_srgb) {
if (must_srgb) {
glTexParameteri(t->target,_TEXTURE_SRGB_DECODE_EXT,_DECODE_EXT);
#ifdef TOOLS_ENABLED
if (!(t->flags&VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
t->flags|=VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
}
#endif
} else {
glTexParameteri(t->target,_TEXTURE_SRGB_DECODE_EXT,_SKIP_DECODE_EXT);
}
t->using_srgb=must_srgb;
}
}
glBindTexture(t->target,t->tex_id);
}
return rebind;
}
void RasterizerSceneGLES3::_setup_geometry(RenderList::Element *e) {
switch(e->instance->base_type) {
case VS::INSTANCE_MESH: {
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
glBindVertexArray(s->array_id); // everything is so easy nowadays
} break;
case VS::INSTANCE_MULTIMESH: {
RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES3::MultiMesh*>(e->owner);
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
glBindVertexArray(s->instancing_array_id); // use the instancing array ID
glBindBuffer(GL_ARRAY_BUFFER,multi_mesh->buffer); //modify the buffer
int stride = (multi_mesh->xform_floats+multi_mesh->color_floats)*4;
glEnableVertexAttribArray(8);
glVertexAttribPointer(8,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+0);
glVertexAttribDivisor(8,1);
glEnableVertexAttribArray(9);
glVertexAttribPointer(9,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+4*4);
glVertexAttribDivisor(9,1);
int color_ofs;
if (multi_mesh->transform_format==VS::MULTIMESH_TRANSFORM_3D) {
glEnableVertexAttribArray(10);
glVertexAttribPointer(10,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+8*4);
glVertexAttribDivisor(10,1);
color_ofs=12*4;
} else {
glDisableVertexAttribArray(10);
glVertexAttrib4f(10,0,0,1,0);
color_ofs=8*4;
}
switch(multi_mesh->color_format) {
case VS::MULTIMESH_COLOR_NONE: {
glDisableVertexAttribArray(11);
glVertexAttrib4f(11,1,1,1,1);
} break;
case VS::MULTIMESH_COLOR_8BIT: {
glEnableVertexAttribArray(11);
glVertexAttribPointer(11,4,GL_UNSIGNED_BYTE,GL_TRUE,stride,((uint8_t*)NULL)+color_ofs);
glVertexAttribDivisor(11,1);
} break;
case VS::MULTIMESH_COLOR_FLOAT: {
glEnableVertexAttribArray(11);
glVertexAttribPointer(11,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+color_ofs);
glVertexAttribDivisor(11,1);
} break;
}
} break;
}
}
static const GLenum gl_primitive[]={
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_LINE_LOOP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN
};
void RasterizerSceneGLES3::_render_geometry(RenderList::Element *e) {
switch(e->instance->base_type) {
case VS::INSTANCE_MESH: {
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
if (s->index_array_len>0) {
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>=(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0);
} else {
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
}
} break;
case VS::INSTANCE_MULTIMESH: {
RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES3::MultiMesh*>(e->owner);
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
int amount = MAX(multi_mesh->size,multi_mesh->visible_instances);
if (s->index_array_len>0) {
glDrawElementsInstanced(gl_primitive[s->primitive],s->index_array_len, (s->array_len>=(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0,amount);
} else {
glDrawArraysInstanced(gl_primitive[s->primitive],0,s->array_len,amount);
}
} break;
}
}
void RasterizerSceneGLES3::_setup_light(RenderList::Element *e) {
int omni_indices[16];
int omni_count=0;
int spot_indices[16];
int spot_count=0;
int reflection_indices[16];
int reflection_count=0;
int maxobj = MIN(16,state.max_forward_lights_per_object);
int lc = e->instance->light_instances.size();
if (lc) {
const RID* lights=e->instance->light_instances.ptr();
for(int i=0;i<lc;i++) {
LightInstance *li=light_instance_owner.getptr(lights[i]);
if (li->last_pass!=render_pass) //not visible
continue;
if (li->light_ptr->type==VS::LIGHT_OMNI) {
if (omni_count<maxobj && e->instance->layer_mask&li->light_ptr->cull_mask) {
omni_indices[omni_count++]=li->light_index;
}
}
if (li->light_ptr->type==VS::LIGHT_SPOT) {
if (spot_count<maxobj && e->instance->layer_mask&li->light_ptr->cull_mask) {
spot_indices[spot_count++]=li->light_index;
}
}
}
}
state.scene_shader.set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT,omni_count);
if (omni_count) {
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES),omni_count,omni_indices);
}
state.scene_shader.set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT,spot_count);
if (spot_count) {
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES),spot_count,spot_indices);
}
int rc = e->instance->reflection_probe_instances.size();
if (rc) {
const RID* reflections=e->instance->reflection_probe_instances.ptr();
for(int i=0;i<rc;i++) {
ReflectionProbeInstance *rpi=reflection_probe_instance_owner.getptr(reflections[i]);
if (rpi->last_pass!=render_pass) //not visible
continue;
if (reflection_count<maxobj) {
reflection_indices[reflection_count++]=rpi->reflection_index;
}
}
}
state.scene_shader.set_uniform(SceneShaderGLES3::REFLECTION_COUNT,reflection_count);
if (reflection_count) {
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::REFLECTION_INDICES),reflection_count,reflection_indices);
}
}
void RasterizerSceneGLES3::_setup_transform(InstanceBase *p_instance,const Transform& p_view_transform,const CameraMatrix& p_projection) {
if (p_instance->billboard || p_instance->billboard_y || p_instance->depth_scale) {
Transform xf=p_instance->transform;
if (p_instance->depth_scale) {
if (p_projection.matrix[3][3]) {
//orthogonal matrix, try to do about the same
//with viewport size
//real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) );
real_t h = Math::abs( 1.0/(2.0*p_projection.matrix[1][1]) );
float sc = (h*2.0); //consistent with Y-fov
xf.basis.scale( Vector3(sc,sc,sc));
} else {
//just scale by depth
real_t sc = Plane(p_view_transform.origin,-p_view_transform.get_basis().get_axis(2)).distance_to(xf.origin);
xf.basis.scale( Vector3(sc,sc,sc));
}
}
if (p_instance->billboard) {
Vector3 scale = xf.basis.get_scale();
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), -p_view_transform.get_basis().get_axis(1));
} else {
xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), p_view_transform.get_basis().get_axis(1));
}
xf.basis.scale(scale);
}
if (p_instance->billboard_y) {
Vector3 scale = xf.basis.get_scale();
Vector3 look_at = p_view_transform.get_origin();
look_at.y = 0.0;
Vector3 look_at_norm = look_at.normalized();
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
xf.set_look_at(xf.origin,xf.origin + look_at_norm, Vector3(0.0, -1.0, 0.0));
} else {
xf.set_look_at(xf.origin,xf.origin + look_at_norm, Vector3(0.0, 1.0, 0.0));
}
xf.basis.scale(scale);
}
state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, xf);
} else {
state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, p_instance->transform);
}
}
void RasterizerSceneGLES3::_set_cull(bool p_front,bool p_reverse_cull) {
bool front = p_front;
if (p_reverse_cull)
front=!front;
if (front!=state.cull_front) {
glCullFace(front?GL_FRONT:GL_BACK);
state.cull_front=front;
}
}
void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements,int p_element_count,const Transform& p_view_transform,const CameraMatrix& p_projection,GLuint p_base_env,bool p_reverse_cull,bool p_alpha_pass,bool p_shadow,bool p_directional_add,bool p_directional_shadows) {
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
//p_reverse_cull=!p_reverse_cull;
glFrontFace(GL_CCW);
} else {
glFrontFace(GL_CW);
}
glBindBufferBase(GL_UNIFORM_BUFFER,0,state.scene_ubo); //bind globals ubo
if (!p_shadow && !p_directional_add) {
glBindBufferBase(GL_UNIFORM_BUFFER,2,state.env_radiance_ubo); //bind environment radiance info
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-1);
glBindTexture(GL_TEXTURE_2D,state.brdf_texture);
if (p_base_env) {
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-2);
glBindTexture(GL_TEXTURE_2D,p_base_env);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,true);
} else {
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,false);
}
} else {
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,false);
}
state.cull_front=false;
glCullFace(GL_BACK);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON,false);
state.current_blend_mode=-1;
state.current_line_width=-1;
state.current_depth_draw=-1;
RasterizerStorageGLES3::Material* prev_material=NULL;
RasterizerStorageGLES3::Geometry* prev_geometry=NULL;
VS::InstanceType prev_base_type = VS::INSTANCE_MAX;
int current_blend_mode=-1;
int prev_shading=-1;
RID prev_skeleton;
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true); //by default unshaded (easier to set)
bool first=true;
for (int i=0;i<p_element_count;i++) {
RenderList::Element *e = p_elements[i];
RasterizerStorageGLES3::Material* material= e->material;
RID skeleton = e->instance->skeleton;
bool rebind=first;
int shading = (e->sort_key>>RenderList::SORT_KEY_SHADING_SHIFT)&RenderList::SORT_KEY_SHADING_MASK;
if (!p_shadow) {
if (p_directional_add) {
if (e->sort_key&RenderList::SORT_KEY_UNSHADED_FLAG || !(e->instance->layer_mask&directional_light->light_ptr->cull_mask)) {
continue;
}
shading&=~1; //ignore the ignore directional for base pass
}
if (shading!=prev_shading) {
if (e->sort_key&RenderList::SORT_KEY_UNSHADED_FLAG) {
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5,false);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13,false);
//state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true);
} else {
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING,!p_directional_add);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5,shadow_filter_mode==SHADOW_FILTER_PCF5);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13,shadow_filter_mode==SHADOW_FILTER_PCF13);
if (p_directional_add || (directional_light && (e->sort_key&RenderList::SORT_KEY_NO_DIRECTIONAL_FLAG)==0)) {
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,true);
if (p_directional_shadows && directional_light->light_ptr->shadow) {
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,true);
switch(directional_light->light_ptr->directional_shadow_mode) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,true);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,directional_light->light_ptr->directional_blend_splits);
break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,true);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,directional_light->light_ptr->directional_blend_splits);
break;
}
}
}
}
rebind=true;
}
if (p_alpha_pass || p_directional_add) {
int desired_blend_mode;
if (p_directional_add) {
desired_blend_mode=RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD;
} else {
desired_blend_mode=material->shader->spatial.blend_mode;
}
if (desired_blend_mode!=current_blend_mode) {
switch(desired_blend_mode) {
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
glBlendFunc(p_alpha_pass?GL_SRC_ALPHA:GL_ONE,GL_ONE);
} break;
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
} break;
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
} break;
}
current_blend_mode=desired_blend_mode;
}
}
}
if (prev_skeleton!=skeleton) {
if (prev_skeleton.is_valid() != skeleton.is_valid()) {
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON,skeleton.is_valid());
rebind=true;
}
if (skeleton.is_valid()) {
RasterizerStorageGLES3::Skeleton *sk = storage->skeleton_owner.getornull(skeleton);
if (sk->size) {
glBindBufferBase(GL_UNIFORM_BUFFER,7,sk->ubo);
}
}
}
if ((prev_base_type==VS::INSTANCE_MULTIMESH) != (e->instance->base_type==VS::INSTANCE_MULTIMESH)) {
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING,e->instance->base_type==VS::INSTANCE_MULTIMESH);
rebind=true;
}
if (material!=prev_material || rebind) {
rebind = _setup_material(material,p_alpha_pass);
// _rinfo.mat_change_count++;
}
if (!(e->sort_key&RenderList::SORT_KEY_UNSHADED_FLAG) && !p_directional_add && !p_shadow) {
_setup_light(e);
}
if (prev_base_type != e->instance->base_type || prev_geometry!=e->geometry) {
_setup_geometry(e);
}
_set_cull(e->sort_key&RenderList::SORT_KEY_MIRROR_FLAG,p_reverse_cull);
state.scene_shader.set_uniform(SceneShaderGLES3::NORMAL_MULT, e->instance->mirror?-1.0:1.0);
_setup_transform(e->instance,p_view_transform,p_projection);
_render_geometry(e);
prev_material=material;
prev_base_type=e->instance->base_type;
prev_geometry=e->geometry;
prev_shading=shading;
prev_skeleton=skeleton;
first=false;
}
glFrontFace(GL_CW);
glBindVertexArray(0);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,false);
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,false);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5,false);
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13,false);
}
void RasterizerSceneGLES3::_add_geometry( RasterizerStorageGLES3::Geometry* p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner,int p_material,bool p_shadow) {
RasterizerStorageGLES3::Material *m=NULL;
RID m_src=p_instance->material_override.is_valid() ? p_instance->material_override :(p_material>=0?p_instance->materials[p_material]:p_geometry->material);
/*
#ifdef DEBUG_ENABLED
if (current_debug==VS::SCENARIO_DEBUG_OVERDRAW) {
m_src=overdraw_material;
}
#endif
*/
if (m_src.is_valid()) {
m=storage->material_owner.getornull( m_src );
if (!m->shader) {
m=NULL;
}
}
if (!m) {
m=storage->material_owner.getptr( default_material );
}
ERR_FAIL_COND(!m);
bool has_base_alpha=(m->shader->spatial.uses_alpha);
bool has_blend_alpha=m->shader->spatial.blend_mode!=RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX || m->shader->spatial.ontop;
bool has_alpha = has_base_alpha || has_blend_alpha;
bool shadow = false;
bool mirror = p_instance->mirror;
if (m->shader->spatial.cull_mode==RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_FRONT) {
mirror=!mirror;
}
if (p_shadow) {
if (has_blend_alpha || (has_base_alpha && m->shader->spatial.depth_draw_mode!=RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS))
return; //bye
if (!m->shader->spatial.uses_vertex && !m->shader->spatial.uses_discard && m->shader->spatial.depth_draw_mode!=RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
//shader does not use discard and does not write a vertex position, use generic material
if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED)
m = storage->material_owner.getptr(default_material_twosided);
else
m = storage->material_owner.getptr(default_material);
}
has_alpha=false;
}
RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
if (!e)
return;
e->geometry=p_geometry;
e->material=m;
e->instance=p_instance;
e->owner=p_owner;
e->sort_key=0;
if (e->geometry->last_pass!=render_pass) {
e->geometry->last_pass=render_pass;
e->geometry->index=current_geometry_index++;
}
if (!p_shadow && directional_light && (directional_light->light_ptr->cull_mask&e->instance->layer_mask)==0) {
e->sort_key|=RenderList::SORT_KEY_NO_DIRECTIONAL_FLAG;
}
e->sort_key|=uint64_t(e->geometry->index)<<RenderList::SORT_KEY_GEOMETRY_INDEX_SHIFT;
e->sort_key|=uint64_t(e->instance->base_type)<<RenderList::SORT_KEY_GEOMETRY_TYPE_SHIFT;
if (!p_shadow) {
if (e->material->last_pass!=render_pass) {
e->material->last_pass=render_pass;
e->material->index=current_material_index++;
}
e->sort_key|=uint64_t(e->material->index)<<RenderList::SORT_KEY_MATERIAL_INDEX_SHIFT;
e->sort_key|=uint64_t(e->instance->depth_layer)<<RenderList::SORT_KEY_DEPTH_LAYER_SHIFT;
if (!has_blend_alpha && has_alpha && m->shader->spatial.depth_draw_mode==RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
//if nothing exists, add this element as opaque too
RenderList::Element *oe = render_list.add_element();
if (!oe)
return;
copymem(oe,e,sizeof(RenderList::Element));
}
}
//if (e->geometry->type==RasterizerStorageGLES3::Geometry::GEOMETRY_MULTISURFACE)
// e->sort_flags|=RenderList::SORT_FLAG_INSTANCING;
if (mirror) {
e->sort_key|=RenderList::SORT_KEY_MIRROR_FLAG;
}
//e->light_type=0xFF; // no lights!
if (shadow || m->shader->spatial.unshaded /*|| current_debug==VS::SCENARIO_DEBUG_SHADELESS*/) {
e->sort_key|=RenderList::SORT_KEY_UNSHADED_FLAG;
}
}
void RasterizerSceneGLES3::_draw_skybox(RasterizerStorageGLES3::SkyBox *p_skybox,const CameraMatrix& p_projection,const Transform& p_transform,bool p_vflip,float p_scale) {
if (!p_skybox)
return;
RasterizerStorageGLES3::Texture *tex = storage->texture_owner.getornull(p_skybox->cubemap);
ERR_FAIL_COND(!tex);
glActiveTexture(GL_TEXTURE0);
glBindTexture(tex->target,tex->tex_id);
if (storage->config.srgb_decode_supported && tex->srgb && !tex->using_srgb) {
glTexParameteri(tex->target,_TEXTURE_SRGB_DECODE_EXT,_DECODE_EXT);
tex->using_srgb=true;
#ifdef TOOLS_ENABLED
if (!(tex->flags&VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
tex->flags|=VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
}
#endif
}
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1,1,1,1);
float flip_sign = p_vflip?-1:1;
Vector3 vertices[8]={
Vector3(-1,-1*flip_sign,1),
Vector3( 0, 1, 0),
Vector3( 1,-1*flip_sign,1),
Vector3( 1, 1, 0),
Vector3( 1, 1*flip_sign,1),
Vector3( 1, 0, 0),
Vector3(-1, 1*flip_sign,1),
Vector3( 0, 0, 0)
};
//skybox uv vectors
float vw,vh,zn;
p_projection.get_viewport_size(vw,vh);
zn=p_projection.get_z_near();
float scale=p_scale;
for(int i=0;i<4;i++) {
Vector3 uv=vertices[i*2+1];
uv.x=(uv.x*2.0-1.0)*vw*scale;
uv.y=-(uv.y*2.0-1.0)*vh*scale;
uv.z=-zn;
vertices[i*2+1] = p_transform.basis.xform(uv).normalized();
vertices[i*2+1].z = -vertices[i*2+1].z;
}
glBindBuffer(GL_ARRAY_BUFFER,state.skybox_verts);
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Vector3)*8,vertices);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
glBindVertexArray(state.skybox_array);
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_CUBEMAP,true);
storage->shaders.copy.bind();
glDrawArrays(GL_TRIANGLE_FAN,0,4);
glBindVertexArray(0);
glColorMask(1,1,1,1);
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_CUBEMAP,false);
}
void RasterizerSceneGLES3::_setup_environment(Environment *env,const CameraMatrix& p_cam_projection,const Transform& p_cam_transform) {
//store camera into ubo
store_camera(p_cam_projection,state.ubo_data.projection_matrix);
store_transform(p_cam_transform,state.ubo_data.camera_matrix);
store_transform(p_cam_transform.affine_inverse(),state.ubo_data.camera_inverse_matrix);
//time global variables
for(int i=0;i<4;i++) {
state.ubo_data.time[i]=storage->frame.time[i];
}
//bg and ambient
if (env) {
state.ubo_data.bg_energy=env->bg_energy;
state.ubo_data.ambient_energy=env->ambient_energy;
Color linear_ambient_color = env->ambient_color.to_linear();
state.ubo_data.ambient_light_color[0]=linear_ambient_color.r;
state.ubo_data.ambient_light_color[1]=linear_ambient_color.g;
state.ubo_data.ambient_light_color[2]=linear_ambient_color.b;
state.ubo_data.ambient_light_color[3]=linear_ambient_color.a;
Color bg_color;
switch(env->bg_mode) {
case VS::ENV_BG_CLEAR_COLOR: {
bg_color=storage->frame.clear_request_color.to_linear();
} break;
case VS::ENV_BG_COLOR: {
bg_color=env->bg_color.to_linear();
} break;
default: {
bg_color=Color(0,0,0,1);
} break;
}
state.ubo_data.bg_color[0]=bg_color.r;
state.ubo_data.bg_color[1]=bg_color.g;
state.ubo_data.bg_color[2]=bg_color.b;
state.ubo_data.bg_color[3]=bg_color.a;
state.env_radiance_data.ambient_contribution=env->ambient_skybox_contribution;
} else {
state.ubo_data.bg_energy=1.0;
state.ubo_data.ambient_energy=1.0;
//use from clear color instead, since there is no ambient
Color linear_ambient_color = storage->frame.clear_request_color.to_linear();
state.ubo_data.ambient_light_color[0]=linear_ambient_color.r;
state.ubo_data.ambient_light_color[1]=linear_ambient_color.g;
state.ubo_data.ambient_light_color[2]=linear_ambient_color.b;
state.ubo_data.ambient_light_color[3]=linear_ambient_color.a;
state.ubo_data.bg_color[0]=linear_ambient_color.r;
state.ubo_data.bg_color[1]=linear_ambient_color.g;
state.ubo_data.bg_color[2]=linear_ambient_color.b;
state.ubo_data.bg_color[3]=linear_ambient_color.a;
state.env_radiance_data.ambient_contribution=0;
}
{
//directional shadow
state.ubo_data.shadow_directional_pixel_size[0]=1.0/directional_shadow.size;
state.ubo_data.shadow_directional_pixel_size[1]=1.0/directional_shadow.size;
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-4);
glBindTexture(GL_TEXTURE_2D,directional_shadow.depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
}
glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo);
glBufferSubData(GL_UNIFORM_BUFFER, 0,sizeof(State::SceneDataUBO), &state.ubo_data);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
//fill up environment
store_transform(p_cam_transform,state.env_radiance_data.transform);
glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo);
glBufferSubData(GL_UNIFORM_BUFFER, 0,sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_data);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
void RasterizerSceneGLES3::_setup_directional_light(int p_index,const Transform& p_camera_inverse_transform,bool p_use_shadows) {
LightInstance *li = directional_lights[p_index];
LightDataUBO ubo_data; //used for filling
float sign = li->light_ptr->negative?-1:1;
Color linear_col = li->light_ptr->color.to_linear();
ubo_data.light_color_energy[0]=linear_col.r*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[1]=linear_col.g*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[2]=linear_col.b*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[3]=0;
//omni, keep at 0
ubo_data.light_pos_inv_radius[0]=0.0;
ubo_data.light_pos_inv_radius[1]=0.0;
ubo_data.light_pos_inv_radius[2]=0.0;
ubo_data.light_pos_inv_radius[3]=0.0;
Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0,0,-1))).normalized();
ubo_data.light_direction_attenuation[0]=direction.x;
ubo_data.light_direction_attenuation[1]=direction.y;
ubo_data.light_direction_attenuation[2]=direction.z;
ubo_data.light_direction_attenuation[3]=1.0;
ubo_data.light_params[0]=0;
ubo_data.light_params[1]=li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
ubo_data.light_params[2]=0;
ubo_data.light_params[3]=0;
Color shadow_color = li->light_ptr->shadow_color.to_linear();
ubo_data.light_shadow_color[0]=shadow_color.r;
ubo_data.light_shadow_color[1]=shadow_color.g;
ubo_data.light_shadow_color[2]=shadow_color.b;
ubo_data.light_shadow_color[3]=1.0;
if (p_use_shadows && li->light_ptr->shadow) {
int shadow_count=0;
switch(li->light_ptr->directional_shadow_mode) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
shadow_count=1;
} break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
shadow_count=2;
} break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
shadow_count=4;
} break;
}
for(int j=0;j<shadow_count;j++) {
uint32_t x=li->directional_rect.pos.x;
uint32_t y=li->directional_rect.pos.y;
uint32_t width=li->directional_rect.size.x;
uint32_t height=li->directional_rect.size.y;
if (li->light_ptr->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
width/=2;
height/=2;
if (j==0) {
} else if (j==1) {
x+=width;
} else if (j==2) {
y+=height;
} else if (j==3) {
x+=width;
y+=height;
}
} else if (li->light_ptr->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
height/=2;
if (j==0) {
} else {
y+=height;
}
}
ubo_data.shadow_split_offsets[j]=1.0/li->shadow_transform[j].split;
Transform modelview = (p_camera_inverse_transform * li->shadow_transform[j].transform).inverse();
CameraMatrix bias;
bias.set_light_bias();
CameraMatrix rectm;
Rect2 atlas_rect = Rect2(float(x)/directional_shadow.size,float(y)/directional_shadow.size,float(width)/directional_shadow.size,float(height)/directional_shadow.size);
rectm.set_light_atlas_rect(atlas_rect);
CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[j].camera * modelview;
store_camera(shadow_mtx,&ubo_data.shadow_matrix1[16*j]);
ubo_data.light_clamp[0]=atlas_rect.pos.x;
ubo_data.light_clamp[1]=atlas_rect.pos.y;
ubo_data.light_clamp[2]=atlas_rect.size.x;
ubo_data.light_clamp[3]=atlas_rect.size.y;
}
}
glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightDataUBO), &ubo_data);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
directional_light=li;
glBindBufferBase(GL_UNIFORM_BUFFER,3,state.directional_ubo);
}
void RasterizerSceneGLES3::_setup_lights(RID *p_light_cull_result,int p_light_cull_count,const Transform& p_camera_inverse_transform,const CameraMatrix& p_camera_projection,RID p_shadow_atlas) {
state.omni_light_count=0;
state.spot_light_count=0;
state.directional_light_count=0;
directional_light=NULL;
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
for(int i=0;i<p_light_cull_count;i++) {
ERR_BREAK( i>=RenderList::MAX_LIGHTS );
LightInstance *li = light_instance_owner.getptr(p_light_cull_result[i]);
LightDataUBO ubo_data; //used for filling
switch(li->light_ptr->type) {
case VS::LIGHT_DIRECTIONAL: {
if (state.directional_light_count<RenderList::MAX_DIRECTIONAL_LIGHTS) {
directional_lights[state.directional_light_count++]=li;
}
} break;
case VS::LIGHT_OMNI: {
float sign = li->light_ptr->negative?-1:1;
Color linear_col = li->light_ptr->color.to_linear();
ubo_data.light_color_energy[0]=linear_col.r*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[1]=linear_col.g*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[2]=linear_col.b*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[3]=0;
Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin);
//directional, keep at 0
ubo_data.light_pos_inv_radius[0]=pos.x;
ubo_data.light_pos_inv_radius[1]=pos.y;
ubo_data.light_pos_inv_radius[2]=pos.z;
ubo_data.light_pos_inv_radius[3]=1.0/MAX(0.001,li->light_ptr->param[VS::LIGHT_PARAM_RANGE]);
ubo_data.light_direction_attenuation[0]=0;
ubo_data.light_direction_attenuation[1]=0;
ubo_data.light_direction_attenuation[2]=0;
ubo_data.light_direction_attenuation[3]=li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
ubo_data.light_params[0]=0;
ubo_data.light_params[1]=0;
ubo_data.light_params[2]=li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
ubo_data.light_params[3]=0;
Color shadow_color = li->light_ptr->shadow_color.to_linear();
ubo_data.light_shadow_color[0]=shadow_color.r;
ubo_data.light_shadow_color[1]=shadow_color.g;
ubo_data.light_shadow_color[2]=shadow_color.b;
ubo_data.light_shadow_color[3]=1.0;
if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
// fill in the shadow information
uint32_t key = shadow_atlas->shadow_owners[li->self];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT)&0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_CONTINUE(shadow>=shadow_atlas->quadrants[quadrant].shadows.size());
uint32_t atlas_size = shadow_atlas->size;
uint32_t quadrant_size = atlas_size>>1;
uint32_t x=(quadrant&1)*quadrant_size;
uint32_t y=(quadrant>>1)*quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
x+=(shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
y+=(shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
uint32_t width=shadow_size;
uint32_t height=shadow_size;
if (li->light_ptr->omni_shadow_detail==VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
height/=2;
} else {
width/=2;
}
Transform proj = (p_camera_inverse_transform * li->transform).inverse();
store_transform(proj,ubo_data.shadow_matrix1);
ubo_data.light_params[3]=1.0; //means it has shadow
ubo_data.light_clamp[0]=float(x)/atlas_size;
ubo_data.light_clamp[1]=float(y)/atlas_size;
ubo_data.light_clamp[2]=float(width)/atlas_size;
ubo_data.light_clamp[3]=float(height)/atlas_size;
}
li->light_index=state.omni_light_count;
copymem(&state.omni_array_tmp[li->light_index*state.ubo_light_size],&ubo_data,state.ubo_light_size);
state.omni_light_count++;
#if 0
if (li->light_ptr->shadow_enabled) {
li->shadow_projection[0] = Transform(camera_transform_inverse * li->transform).inverse();
lights_use_shadow=true;
}
#endif
} break;
case VS::LIGHT_SPOT: {
float sign = li->light_ptr->negative?-1:1;
Color linear_col = li->light_ptr->color.to_linear();
ubo_data.light_color_energy[0]=linear_col.r*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[1]=linear_col.g*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[2]=linear_col.b*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
ubo_data.light_color_energy[3]=0;
Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin);
//directional, keep at 0
ubo_data.light_pos_inv_radius[0]=pos.x;
ubo_data.light_pos_inv_radius[1]=pos.y;
ubo_data.light_pos_inv_radius[2]=pos.z;
ubo_data.light_pos_inv_radius[3]=1.0/MAX(0.001,li->light_ptr->param[VS::LIGHT_PARAM_RANGE]);
Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0,0,-1))).normalized();
ubo_data.light_direction_attenuation[0]=direction.x;
ubo_data.light_direction_attenuation[1]=direction.y;
ubo_data.light_direction_attenuation[2]=direction.z;
ubo_data.light_direction_attenuation[3]=li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
ubo_data.light_params[0]=li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
ubo_data.light_params[1]=Math::cos(Math::deg2rad(li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]));
ubo_data.light_params[2]=li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
ubo_data.light_params[3]=0;
Color shadow_color = li->light_ptr->shadow_color.to_linear();
ubo_data.light_shadow_color[0]=shadow_color.r;
ubo_data.light_shadow_color[1]=shadow_color.g;
ubo_data.light_shadow_color[2]=shadow_color.b;
ubo_data.light_shadow_color[3]=1.0;
if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
// fill in the shadow information
uint32_t key = shadow_atlas->shadow_owners[li->self];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT)&0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_CONTINUE(shadow>=shadow_atlas->quadrants[quadrant].shadows.size());
uint32_t atlas_size = shadow_atlas->size;
uint32_t quadrant_size = atlas_size>>1;
uint32_t x=(quadrant&1)*quadrant_size;
uint32_t y=(quadrant>>1)*quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
x+=(shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
y+=(shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
uint32_t width=shadow_size;
uint32_t height=shadow_size;
Rect2 rect(float(x)/atlas_size,float(y)/atlas_size,float(width)/atlas_size,float(height)/atlas_size);
ubo_data.light_params[3]=1.0; //means it has shadow
ubo_data.light_clamp[0]=rect.pos.x;
ubo_data.light_clamp[1]=rect.pos.y;
ubo_data.light_clamp[2]=rect.size.x;
ubo_data.light_clamp[3]=rect.size.y;
Transform modelview = (p_camera_inverse_transform * li->transform).inverse();
CameraMatrix bias;
bias.set_light_bias();
CameraMatrix rectm;
rectm.set_light_atlas_rect(rect);
CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[0].camera * modelview;
store_camera(shadow_mtx,ubo_data.shadow_matrix1);
}
li->light_index=state.spot_light_count;
copymem(&state.spot_array_tmp[li->light_index*state.ubo_light_size],&ubo_data,state.ubo_light_size);
state.spot_light_count++;
#if 0
if (li->light_ptr->shadow_enabled) {
CameraMatrix bias;
bias.set_light_bias();
Transform modelview=Transform(camera_transform_inverse * li->transform).inverse();
li->shadow_projection[0] = bias * li->projection * modelview;
lights_use_shadow=true;
}
#endif
} break;
}
li->last_pass=render_pass;
//update UBO for forward rendering, blit to texture for clustered
}
if (state.omni_light_count) {
glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo);
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.omni_light_count*state.ubo_light_size, state.omni_array_tmp);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER,4,state.omni_array_ubo);
}
if (state.spot_light_count) {
glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo);
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.spot_light_count*state.ubo_light_size, state.spot_array_tmp);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER,5,state.spot_array_ubo);
}
}
void RasterizerSceneGLES3::_setup_reflections(RID *p_reflection_probe_cull_result,int p_reflection_probe_cull_count,const Transform& p_camera_inverse_transform,const CameraMatrix& p_camera_projection,RID p_reflection_atlas,Environment *p_env) {
state.reflection_probe_count=0;
for(int i=0;i<p_reflection_probe_cull_count;i++) {
ReflectionProbeInstance *rpi=reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
ERR_CONTINUE(!rpi);
ReflectionAtlas *reflection_atlas=reflection_atlas_owner.getornull(p_reflection_atlas);
ERR_CONTINUE(!reflection_atlas);
ERR_CONTINUE(rpi->reflection_atlas_index<0);
if (state.reflection_probe_count>=state.max_ubo_reflections)
break;
rpi->last_pass=render_pass;
ReflectionProbeDataUBO reflection_ubo;
reflection_ubo.box_extents[0]=rpi->probe_ptr->extents.x;
reflection_ubo.box_extents[1]=rpi->probe_ptr->extents.y;
reflection_ubo.box_extents[2]=rpi->probe_ptr->extents.z;
reflection_ubo.box_extents[3]=0;
reflection_ubo.box_ofs[0]=rpi->probe_ptr->origin_offset.x;
reflection_ubo.box_ofs[1]=rpi->probe_ptr->origin_offset.y;
reflection_ubo.box_ofs[2]=rpi->probe_ptr->origin_offset.z;
reflection_ubo.box_ofs[3]=0;
reflection_ubo.params[0]=rpi->probe_ptr->intensity;
reflection_ubo.params[1]=0;
reflection_ubo.params[2]=rpi->probe_ptr->interior?1.0:0.0;
reflection_ubo.params[3]=rpi->probe_ptr->box_projection?1.0:0.0;
if (rpi->probe_ptr->interior) {
Color ambient_linear = rpi->probe_ptr->interior_ambient.to_linear();
reflection_ubo.ambient[0]=ambient_linear.r*rpi->probe_ptr->interior_ambient_energy;
reflection_ubo.ambient[1]=ambient_linear.g*rpi->probe_ptr->interior_ambient_energy;
reflection_ubo.ambient[2]=ambient_linear.b*rpi->probe_ptr->interior_ambient_energy;
reflection_ubo.ambient[3]=rpi->probe_ptr->interior_ambient_probe_contrib;
} else {
Color ambient_linear;
float contrib=0;
if (p_env) {
ambient_linear=p_env->ambient_color.to_linear();
ambient_linear.r*=p_env->ambient_energy;
ambient_linear.g*=p_env->ambient_energy;
ambient_linear.b*=p_env->ambient_energy;
contrib=p_env->ambient_skybox_contribution;
}
reflection_ubo.ambient[0]=ambient_linear.r;
reflection_ubo.ambient[1]=ambient_linear.g;
reflection_ubo.ambient[2]=ambient_linear.b;
reflection_ubo.ambient[3]=0;
}
int cell_size = reflection_atlas->size / reflection_atlas->subdiv;
int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size;
int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size;
int width=cell_size;
int height=cell_size;
reflection_ubo.atlas_clamp[0]=float(x)/reflection_atlas->size;
reflection_ubo.atlas_clamp[1]=float(y)/reflection_atlas->size;
reflection_ubo.atlas_clamp[2]=float(width)/reflection_atlas->size;
reflection_ubo.atlas_clamp[3]=float(height/2)/reflection_atlas->size;
Transform proj = (p_camera_inverse_transform * rpi->transform).inverse();
store_transform(proj,reflection_ubo.local_matrix);
rpi->reflection_index=state.reflection_probe_count;
copymem(&state.reflection_array_tmp[rpi->reflection_index*sizeof(ReflectionProbeDataUBO)],&reflection_ubo,sizeof(ReflectionProbeDataUBO));
state.reflection_probe_count++;
}
if (state.reflection_probe_count) {
glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo);
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.reflection_probe_count*sizeof(ReflectionProbeDataUBO), state.reflection_array_tmp);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER,6,state.reflection_array_ubo);
}
}
void RasterizerSceneGLES3::_copy_screen() {
glBindVertexArray(storage->resources.quadie_array);
glDrawArrays(GL_TRIANGLE_FAN,0,4);
glBindVertexArray(0);
}
void RasterizerSceneGLES3::_copy_to_front_buffer(Environment *env) {
//copy to front buffer
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->front.fbo);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1,1,1,1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,true);
if (!env) {
//no environment, simply convert from linear to srgb
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,true);
} else {
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,true);
}
storage->shaders.copy.bind();
_copy_screen();
//turn off everything used
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,false);
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,false);
}
void RasterizerSceneGLES3::_copy_texture_to_front_buffer(GLuint p_texture) {
//copy to front buffer
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->front.fbo);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
glColorMask(1,1,1,1);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,p_texture);
glViewport(0,0,storage->frame.current_rt->width*0.5,storage->frame.current_rt->height*0.5);
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,true);
storage->shaders.copy.bind();
_copy_screen();
//turn off everything used
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,false);
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,false);
}
void RasterizerSceneGLES3::_fill_render_list(InstanceBase** p_cull_result,int p_cull_count,bool p_shadow){
current_geometry_index=0;
current_material_index=0;
//fill list
for(int i=0;i<p_cull_count;i++) {
InstanceBase *inst = p_cull_result[i];
switch(inst->base_type) {
case VS::INSTANCE_MESH: {
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(inst->base);
ERR_CONTINUE(!mesh);
int ssize = mesh->surfaces.size();
for (int i=0;i<ssize;i++) {
int mat_idx = inst->materials[i].is_valid() ? i : -1;
RasterizerStorageGLES3::Surface *s = mesh->surfaces[i];
_add_geometry(s,inst,NULL,mat_idx,p_shadow);
}
//mesh->last_pass=frame;
} break;
case VS::INSTANCE_MULTIMESH: {
RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(inst->base);
ERR_CONTINUE(!multi_mesh);
if (multi_mesh->size==0 || multi_mesh->visible_instances==0)
continue;
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
if (!mesh)
continue; //mesh not assigned
int ssize = mesh->surfaces.size();
for (int i=0;i<ssize;i++) {
RasterizerStorageGLES3::Surface *s = mesh->surfaces[i];
_add_geometry(s,inst,multi_mesh,-1,p_shadow);
}
} break;
case VS::INSTANCE_IMMEDIATE: {
} break;
}
}
}
void RasterizerSceneGLES3::render_scene(const Transform& p_cam_transform,const CameraMatrix& p_cam_projection,bool p_cam_ortogonal,InstanceBase** p_cull_result,int p_cull_count,RID* p_light_cull_result,int p_light_cull_count,RID* p_reflection_probe_cull_result,int p_reflection_probe_cull_count,RID p_environment,RID p_shadow_atlas,RID p_reflection_atlas,RID p_reflection_probe,int p_reflection_probe_pass){
//first of all, make a new render pass
render_pass++;
//fill up ubo
Environment *env = environment_owner.getornull(p_environment);
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
if (shadow_atlas && shadow_atlas->size) {
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-3);
glBindTexture(GL_TEXTURE_2D,shadow_atlas->depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
state.ubo_data.shadow_atlas_pixel_size[0]=1.0/shadow_atlas->size;
state.ubo_data.shadow_atlas_pixel_size[1]=1.0/shadow_atlas->size;
}
if (reflection_atlas && reflection_atlas->size) {
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-5);
glBindTexture(GL_TEXTURE_2D,reflection_atlas->color);
}
if (p_reflection_probe.is_valid()) {
state.ubo_data.reflection_multiplier=0.0;
} else {
state.ubo_data.reflection_multiplier=1.0;
}
_setup_environment(env,p_cam_projection,p_cam_transform);
_setup_lights(p_light_cull_result,p_light_cull_count,p_cam_transform.affine_inverse(),p_cam_projection,p_shadow_atlas);
_setup_reflections(p_reflection_probe_cull_result,p_reflection_probe_cull_count,p_cam_transform.affine_inverse(),p_cam_projection,p_reflection_atlas,env);
render_list.clear();
bool use_mrt=false;
_fill_render_list(p_cull_result,p_cull_count,false);
//
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
GLuint current_fbo;
if (probe) {
ReflectionAtlas *ref_atlas = reflection_atlas_owner.getptr(probe->atlas);
ERR_FAIL_COND(!ref_atlas);
int target_size=ref_atlas->size/ref_atlas->subdiv;
int cubemap_index=reflection_cubemaps.size()-1;
for(int i=reflection_cubemaps.size()-1;i>=0;i--) {
//find appropriate cubemap to render to
if (reflection_cubemaps[i].size>target_size*2)
break;
cubemap_index=i;
}
current_fbo=reflection_cubemaps[cubemap_index].fbo_id[p_reflection_probe_pass];
use_mrt=false;
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,false);
glViewport(0,0,reflection_cubemaps[cubemap_index].size,reflection_cubemaps[cubemap_index].size);
glBindFramebuffer(GL_FRAMEBUFFER,current_fbo);
} else {
glViewport(0,0,storage->frame.current_rt->width,storage->frame.current_rt->height);
if (use_mrt) {
current_fbo=storage->frame.current_rt->buffers.fbo;
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.fbo);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,true);
Color black(0,0,0,0);
glClearBufferfv(GL_COLOR,1,black.components); // specular
glClearBufferfv(GL_COLOR,2,black.components); // normal metal rough
} else {
current_fbo = storage->frame.current_rt->buffers.alpha_fbo;
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.alpha_fbo);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,false);
}
}
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
Color clear_color(0,0,0,0);
RasterizerStorageGLES3::SkyBox *skybox=NULL;
GLuint env_radiance_tex=0;
if (!env || env->bg_mode==VS::ENV_BG_CLEAR_COLOR) {
if (storage->frame.clear_request) {
clear_color = storage->frame.clear_request_color.to_linear();
storage->frame.clear_request=false;
}
} else if (env->bg_mode==VS::ENV_BG_COLOR) {
clear_color = env->bg_color.to_linear();
storage->frame.clear_request=false;
} else if (env->bg_mode==VS::ENV_BG_SKYBOX) {
skybox = storage->skybox_owner.getornull(env->skybox);
if (skybox) {
env_radiance_tex=skybox->radiance;
}
storage->frame.clear_request=false;
} else {
storage->frame.clear_request=false;
}
glClearBufferfv(GL_COLOR,0,clear_color.components); // specular
state.texscreen_copied=false;
glBlendEquation(GL_FUNC_ADD);
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
glDisable(GL_BLEND);
render_list.sort_by_key(false);
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
if (state.directional_light_count==0) {
directional_light=NULL;
_render_list(render_list.elements,render_list.element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,false,false,false,shadow_atlas!=NULL);
} else {
for(int i=0;i<state.directional_light_count;i++) {
directional_light=directional_lights[i];
if (i>0) {
glEnable(GL_BLEND);
}
_setup_directional_light(i,p_cam_transform.affine_inverse(),shadow_atlas!=NULL);
_render_list(render_list.elements,render_list.element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,false,false,i>0,shadow_atlas!=NULL);
}
}
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,false);
if (env && env->bg_mode==VS::ENV_BG_SKYBOX) {
if (use_mrt) {
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.alpha_fbo); //switch to alpha fbo for skybox, only diffuse/ambient matters
}
_draw_skybox(skybox,p_cam_projection,p_cam_transform,storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP],env->skybox_scale);
}
//_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true);
//glColorMask(1,1,1,1);
// state.scene_shader.set_conditional( SceneShaderGLES3::USE_FOG,false);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glEnable(GL_BLEND);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
if (use_mrt) {
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.alpha_fbo);
}
render_list.sort_by_depth(true);
if (state.directional_light_count==0) {
directional_light=NULL;
_render_list(&render_list.elements[render_list.max_elements-render_list.alpha_element_count],render_list.alpha_element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,true,false,false,shadow_atlas!=NULL);
} else {
for(int i=0;i<state.directional_light_count;i++) {
directional_light=directional_lights[i];
_setup_directional_light(i,p_cam_transform.affine_inverse(),shadow_atlas!=NULL);
_render_list(&render_list.elements[render_list.max_elements-render_list.alpha_element_count],render_list.alpha_element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,true,false,i>0,shadow_atlas!=NULL);
}
}
if (probe) {
//rendering a probe, do no more!
return;
}
_copy_to_front_buffer(env);
/* if (shadow_atlas) {
//_copy_texture_to_front_buffer(shadow_atlas->depth);
storage->canvas->canvas_begin();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,shadow_atlas->depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
}
*/
if (false && reflection_atlas && storage->frame.current_rt) {
//_copy_texture_to_front_buffer(shadow_atlas->depth);
storage->canvas->canvas_begin();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,reflection_atlas->color);
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
}
if (false && directional_shadow.fbo) {
//_copy_texture_to_front_buffer(shadow_atlas->depth);
storage->canvas->canvas_begin();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,directional_shadow.depth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
}
if (false && env_radiance_tex) {
//_copy_texture_to_front_buffer(shadow_atlas->depth);
storage->canvas->canvas_begin();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,env_radiance_tex);
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
}
#if 0
if (use_fb) {
for(int i=0;i<VS::ARRAY_MAX;i++) {
glDisableVertexAttribArray(i);
}
glBindBuffer(GL_ARRAY_BUFFER,0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_SCISSOR_TEST);
glDepthMask(false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
int hdr_tm = current_env->fx_param[VS::ENV_FX_PARAM_HDR_TONEMAPPER];
switch(hdr_tm) {
case VS::ENV_FX_HDR_TONE_MAPPER_LINEAR: {
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_LOG: {
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER,true);
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT: {
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,true);
} break;
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT_AUTOWHITE: {
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,true);
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE,true);
} break;
}
_process_hdr();
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
_process_glow_bloom();
int glow_transfer_mode=current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_BLEND_MODE];
if (glow_transfer_mode==1)
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN,true);
if (glow_transfer_mode==2)
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT,true);
}
glBindFramebuffer(GL_FRAMEBUFFER, current_rt?current_rt->fbo:base_framebuffer);
Size2 size;
if (current_rt) {
glBindFramebuffer(GL_FRAMEBUFFER, current_rt->fbo);
glViewport( 0,0,viewport.width,viewport.height);
size=Size2(viewport.width,viewport.height);
} else {
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
size=Size2(viewport.width,viewport.height);
}
//time to copy!!!
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS,current_env && current_env->fx_enabled[VS::ENV_FX_BCS]);
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB,current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW,current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,current_env && current_env->fx_enabled[VS::ENV_FX_HDR]);
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA,true);
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA,current_env && current_env->fx_enabled[VS::ENV_FX_FXAA]);
copy_shader.bind();
//copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0);
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::GLOW_SOURCE),1);
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE),2);
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE]));
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE]));
}
if (current_env && current_env->fx_enabled[VS::ENV_FX_FXAA])
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Size2(1.0/size.x,1.0/size.y));
if (current_env && current_env->fx_enabled[VS::ENV_FX_BCS]) {
Vector3 bcs;
bcs.x=current_env->fx_param[VS::ENV_FX_PARAM_BCS_BRIGHTNESS];
bcs.y=current_env->fx_param[VS::ENV_FX_PARAM_BCS_CONTRAST];
bcs.z=current_env->fx_param[VS::ENV_FX_PARAM_BCS_SATURATION];
copy_shader.set_uniform(CopyShaderGLES2::BCS,bcs);
}
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, framebuffer.color );
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
_copy_screen_quad();
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE,false);
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER,false);
state.scene_shader.set_conditional(SceneShaderGLES3::USE_8BIT_HDR,false);
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR] && GLOBAL_DEF("rasterizer/debug_hdr",false)) {
_debug_luminances();
}
}
current_env=NULL;
current_debug=VS::SCENARIO_DEBUG_DISABLED;
if (GLOBAL_DEF("rasterizer/debug_shadow_maps",false)) {
_debug_shadows();
}
// _debug_luminances();
// _debug_samplers();
if (using_canvas_bg) {
using_canvas_bg=false;
glColorMask(1,1,1,1); //don't touch alpha
}
#endif
}
void RasterizerSceneGLES3::render_shadow(RID p_light,RID p_shadow_atlas,int p_pass,InstanceBase** p_cull_result,int p_cull_count) {
render_pass++;
directional_light=NULL;
LightInstance *light_instance = light_instance_owner.getornull(p_light);
ERR_FAIL_COND(!light_instance);
RasterizerStorageGLES3::Light *light = storage->light_owner.getornull(light_instance->light);
ERR_FAIL_COND(!light);
uint32_t x,y,width,height,vp_height;
float dp_direction=0.0;
float zfar=0;
bool flip_facing=false;
int custom_vp_size=0;
GLuint fbo;
int current_cubemap=-1;
float bias=0;
float normal_bias=0;
CameraMatrix light_projection;
Transform light_transform;
if (light->type==VS::LIGHT_DIRECTIONAL) {
//set pssm stuff
if (light_instance->last_scene_shadow_pass!=scene_pass) {
//assign rect if unassigned
light_instance->light_directional_index = directional_shadow.current_light;
light_instance->last_scene_shadow_pass=scene_pass;
directional_shadow.current_light++;
if (directional_shadow.light_count==1) {
light_instance->directional_rect=Rect2(0,0,directional_shadow.size,directional_shadow.size);
} else if (directional_shadow.light_count==2) {
light_instance->directional_rect=Rect2(0,0,directional_shadow.size,directional_shadow.size/2);
if (light_instance->light_directional_index==1) {
light_instance->directional_rect.pos.x+=light_instance->directional_rect.size.x;
}
} else { //3 and 4
light_instance->directional_rect=Rect2(0,0,directional_shadow.size/2,directional_shadow.size/2);
if (light_instance->light_directional_index&1) {
light_instance->directional_rect.pos.x+=light_instance->directional_rect.size.x;
}
if (light_instance->light_directional_index/2) {
light_instance->directional_rect.pos.y+=light_instance->directional_rect.size.y;
}
}
}
light_projection=light_instance->shadow_transform[p_pass].camera;
light_transform=light_instance->shadow_transform[p_pass].transform;
x=light_instance->directional_rect.pos.x;
y=light_instance->directional_rect.pos.y;
width=light_instance->directional_rect.size.x;
height=light_instance->directional_rect.size.y;
if (light->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
width/=2;
height/=2;
if (p_pass==0) {
} else if (p_pass==1) {
x+=width;
} else if (p_pass==2) {
y+=height;
} else if (p_pass==3) {
x+=width;
y+=height;
}
} else if (light->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
height/=2;
if (p_pass==0) {
} else {
y+=height;
}
}
zfar=light->param[VS::LIGHT_PARAM_RANGE];
bias=light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
normal_bias=light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
fbo=directional_shadow.fbo;
vp_height=directional_shadow.size;
} else {
//set from shadow atlas
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
ERR_FAIL_COND(!shadow_atlas);
ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
fbo=shadow_atlas->fbo;
vp_height=shadow_atlas->size;
uint32_t key = shadow_atlas->shadow_owners[p_light];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT)&0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_FAIL_INDEX(shadow,shadow_atlas->quadrants[quadrant].shadows.size());
uint32_t quadrant_size = shadow_atlas->size>>1;
x=(quadrant&1)*quadrant_size;
y=(quadrant>>1)*quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
x+=(shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
y+=(shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
width=shadow_size;
height=shadow_size;
if (light->type==VS::LIGHT_OMNI) {
if (light->omni_shadow_mode==VS::LIGHT_OMNI_SHADOW_CUBE) {
int cubemap_index=shadow_cubemaps.size()-1;
for(int i=shadow_cubemaps.size()-1;i>=0;i--) {
//find appropriate cubemap to render to
if (shadow_cubemaps[i].size>shadow_size*2)
break;
cubemap_index=i;
}
fbo=shadow_cubemaps[cubemap_index].fbo_id[p_pass];
light_projection=light_instance->shadow_transform[0].camera;
light_transform=light_instance->shadow_transform[0].transform;
custom_vp_size=shadow_cubemaps[cubemap_index].size;
zfar=light->param[VS::LIGHT_PARAM_RANGE];
current_cubemap=cubemap_index;
} else {
light_projection=light_instance->shadow_transform[0].camera;
light_transform=light_instance->shadow_transform[0].transform;
if (light->omni_shadow_detail==VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
height/=2;
y+=p_pass*height;
} else {
width/=2;
x+=p_pass*width;
}
dp_direction = p_pass==0?1.0:-1.0;
flip_facing = (p_pass == 1);
zfar=light->param[VS::LIGHT_PARAM_RANGE];
bias=light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW_DUAL_PARABOLOID,true);
}
} else if (light->type==VS::LIGHT_SPOT) {
light_projection=light_instance->shadow_transform[0].camera;
light_transform=light_instance->shadow_transform[0].transform;
dp_direction = 1.0;
flip_facing = false;
zfar=light->param[VS::LIGHT_PARAM_RANGE];
bias=light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
normal_bias=light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
}
}
//todo hacer que se redibuje cuando corresponde
render_list.clear();
_fill_render_list(p_cull_result,p_cull_count,true);
render_list.sort_by_depth(false); //shadow is front to back for performance
glDepthMask(true);
glColorMask(0,0,0,0);
glDisable(GL_BLEND);
glDisable(GL_DITHER);
glEnable(GL_DEPTH_TEST);
glBindFramebuffer(GL_FRAMEBUFFER,fbo);
if (custom_vp_size) {
glViewport(0,0,custom_vp_size,custom_vp_size);
glScissor(0,0,custom_vp_size,custom_vp_size);
} else {
glViewport(x,y,width,height);
glScissor(x,y,width,height);
}
//glViewport(x,vp_height-(height+y),width,height);
//glScissor(x,vp_height-(height+y),width,height);
glEnable(GL_SCISSOR_TEST);
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
state.ubo_data.shadow_z_offset=bias;
state.ubo_data.shadow_slope_scale=normal_bias;
state.ubo_data.shadow_dual_paraboloid_render_side=dp_direction;
state.ubo_data.shadow_dual_paraboloid_render_zfar=zfar;
_setup_environment(NULL,light_projection,light_transform);
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW,true);
_render_list(render_list.elements,render_list.element_count,light_transform,light_projection,NULL,!flip_facing,false,true,false,false);
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW,false);
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW_DUAL_PARABOLOID,false);
if (light->type==VS::LIGHT_OMNI && light->omni_shadow_mode==VS::LIGHT_OMNI_SHADOW_CUBE && p_pass==5) {
//convert the chosen cubemap to dual paraboloid!
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
glBindFramebuffer(GL_FRAMEBUFFER,shadow_atlas->fbo);
state.cube_to_dp_shader.bind();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP,shadow_cubemaps[current_cubemap].cubemap);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE);
glDisable(GL_CULL_FACE);
for(int i=0;i<2;i++) {
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FLIP,i==1);
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_NEAR,light_projection.get_z_near());
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FAR,light_projection.get_z_far());
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::BIAS,light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
uint32_t local_width=width,local_height=height;
uint32_t local_x=x,local_y=y;
if (light->omni_shadow_detail==VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
local_height/=2;
local_y+=i*local_height;
} else {
local_width/=2;
local_x+=i*local_width;
}
glViewport(local_x,local_y,local_width,local_height);
glScissor(local_x,local_y,local_width,local_height);
glEnable(GL_SCISSOR_TEST);
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
glDisable(GL_SCISSOR_TEST);
//glDisable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
_copy_screen();
}
}
glColorMask(1,1,1,1);
}
void RasterizerSceneGLES3::set_scene_pass(uint64_t p_pass) {
scene_pass=p_pass;
}
bool RasterizerSceneGLES3::free(RID p_rid) {
if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.getptr(p_rid);
//remove from shadow atlases..
for(Set<RID>::Element *E=light_instance->shadow_atlases.front();E;E=E->next()) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
uint32_t key = shadow_atlas->shadow_owners[p_rid];
uint32_t q = (key>>ShadowAtlas::QUADRANT_SHIFT)&0x3;
uint32_t s = key&ShadowAtlas::SHADOW_INDEX_MASK;
shadow_atlas->quadrants[q].shadows[s].owner=RID();
shadow_atlas->shadow_owners.erase(p_rid);
}
light_instance_owner.free(p_rid);
memdelete(light_instance);
} else if (shadow_atlas_owner.owns(p_rid)) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
shadow_atlas_set_size(p_rid,0);
shadow_atlas_owner.free(p_rid);
memdelete(shadow_atlas);
} else if (reflection_atlas_owner.owns(p_rid)) {
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.get(p_rid);
reflection_atlas_set_size(p_rid,0);
reflection_atlas_owner.free(p_rid);
memdelete(reflection_atlas);
} else if (reflection_probe_instance_owner.owns(p_rid)) {
ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
reflection_probe_release_atlas_index(p_rid);
reflection_probe_instance_owner.free(p_rid);
memdelete(reflection_instance);
} else {
return false;
}
return true;
}
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
static _FORCE_INLINE_ float radicalInverse_VdC(uint32_t bits) {
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10f; // / 0x100000000
}
static _FORCE_INLINE_ Vector2 Hammersley(uint32_t i, uint32_t N) {
return Vector2(float(i) / float(N), radicalInverse_VdC(i));
}
static _FORCE_INLINE_ Vector3 ImportanceSampleGGX(Vector2 Xi, float Roughness, Vector3 N) {
float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
// Compute distribution direction
float Phi = 2.0f * M_PI * Xi.x;
float CosTheta = Math::sqrt((1.0f - Xi.y) / (1.0f + (a*a - 1.0f) * Xi.y));
float SinTheta = Math::sqrt((float)Math::abs(1.0f - CosTheta * CosTheta));
// Convert to spherical direction
Vector3 H;
H.x = SinTheta * Math::cos(Phi);
H.y = SinTheta * Math::sin(Phi);
H.z = CosTheta;
Vector3 UpVector = Math::abs(N.z) < 0.999 ? Vector3(0.0, 0.0, 1.0) : Vector3(1.0, 0.0, 0.0);
Vector3 TangentX = UpVector.cross(N);
TangentX.normalize();
Vector3 TangentY = N.cross(TangentX);
// Tangent to world space
return TangentX * H.x + TangentY * H.y + N * H.z;
}
static _FORCE_INLINE_ float GGX(float NdotV, float a) {
float k = a / 2.0;
return NdotV / (NdotV * (1.0 - k) + k);
}
// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
float _FORCE_INLINE_ G_Smith(float a, float nDotV, float nDotL)
{
return GGX(nDotL, a * a) * GGX(nDotV, a * a);
}
void RasterizerSceneGLES3::_generate_brdf() {
int brdf_size=GLOBAL_DEF("rendering/gles3/brdf_texture_size",64);
DVector<uint8_t> brdf;
brdf.resize(brdf_size*brdf_size*2);
DVector<uint8_t>::Write w = brdf.write();
for(int i=0;i<brdf_size;i++) {
for(int j=0;j<brdf_size;j++) {
float Roughness = float(j)/(brdf_size-1);
float NoV = float(i+1)/(brdf_size); //avoid storing nov0
Vector3 V;
V.x = Math::sqrt( 1.0 - NoV * NoV );
V.y = 0.0;
V.z = NoV;
Vector3 N = Vector3(0.0, 0.0, 1.0);
float A = 0;
float B = 0;
for(int s=0;s<512;s++) {
Vector2 xi = Hammersley(s,512);
Vector3 H = ImportanceSampleGGX( xi, Roughness, N );
Vector3 L = 2.0 * V.dot(H) * H - V;
float NoL = CLAMP( L.z, 0.0, 1.0 );
float NoH = CLAMP( H.z, 0.0, 1.0 );
float VoH = CLAMP( V.dot(H), 0.0, 1.0 );
if ( NoL > 0.0 ) {
float G = G_Smith( Roughness, NoV, NoL );
float G_Vis = G * VoH / (NoH * NoV);
float Fc = pow(1.0 - VoH, 5.0);
A += (1.0 - Fc) * G_Vis;
B += Fc * G_Vis;
}
}
A/=512.0;
B/=512.0;
int tofs = ((brdf_size-j-1)*brdf_size+i)*2;
w[tofs+0]=CLAMP(A*255,0,255);
w[tofs+1]=CLAMP(B*255,0,255);
}
}
//set up brdf texture
glGenTextures(1, &state.brdf_texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,state.brdf_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, brdf_size, brdf_size, 0, GL_RG, GL_UNSIGNED_BYTE,w.ptr());
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D,0);
}
void RasterizerSceneGLES3::initialize() {
state.scene_shader.init();
default_shader = storage->shader_create(VS::SHADER_SPATIAL);
default_material = storage->material_create();
storage->material_set_shader(default_material,default_shader);
default_shader_twosided = storage->shader_create(VS::SHADER_SPATIAL);
default_material_twosided = storage->material_create();
storage->shader_set_code(default_shader_twosided,"render_mode cull_disabled;\n");
storage->material_set_shader(default_material_twosided,default_shader_twosided);
glGenBuffers(1, &state.scene_ubo);
glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::SceneDataUBO), &state.scene_ubo, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glGenBuffers(1, &state.env_radiance_ubo);
glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_ubo, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
render_list.max_elements=GLOBAL_DEF("rendering/gles3/max_renderable_elements",(int)RenderList::DEFAULT_MAX_ELEMENTS);
if (render_list.max_elements>1000000)
render_list.max_elements=1000000;
if (render_list.max_elements<1024)
render_list.max_elements=1024;
{
//quad buffers
glGenBuffers(1,&state.skybox_verts);
glBindBuffer(GL_ARRAY_BUFFER,state.skybox_verts);
glBufferData(GL_ARRAY_BUFFER,sizeof(Vector3)*8,NULL,GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
glGenVertexArrays(1,&state.skybox_array);
glBindVertexArray(state.skybox_array);
glBindBuffer(GL_ARRAY_BUFFER,state.skybox_verts);
glVertexAttribPointer(VS::ARRAY_VERTEX,3,GL_FLOAT,GL_FALSE,sizeof(Vector3)*2,0);
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
glVertexAttribPointer(VS::ARRAY_TEX_UV,3,GL_FLOAT,GL_FALSE,sizeof(Vector3)*2,((uint8_t*)NULL)+sizeof(Vector3));
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
}
render_list.init();
state.cube_to_dp_shader.init();
_generate_brdf();
shadow_atlas_realloc_tolerance_msec=500;
int max_shadow_cubemap_sampler_size=512;
int cube_size = max_shadow_cubemap_sampler_size;
glActiveTexture(GL_TEXTURE0);
while(cube_size>=32) {
ShadowCubeMap cube;
cube.size=cube_size;
glGenTextures(1,&cube.cubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP,cube.cubemap);
//gen cubemap first
for(int i=0;i<6;i++) {
glTexImage2D(_cube_side_enum[i], 0, GL_DEPTH_COMPONENT, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Remove artifact on the edges of the shadowmap
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
//gen renderbuffers second, because it needs a complete cubemap
for(int i=0;i<6;i++) {
glGenFramebuffers(1, &cube.fbo_id[i]);
glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,_cube_side_enum[i], cube.cubemap, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_CONTINUE(status!=GL_FRAMEBUFFER_COMPLETE);
}
shadow_cubemaps.push_back(cube);
cube_size>>=1;
}
{
//directional light shadow
directional_shadow.light_count=0;
directional_shadow.size=nearest_power_of_2(GLOBAL_DEF("renderer/directional_shadow_size",2048));
glGenFramebuffers(1,&directional_shadow.fbo);
glBindFramebuffer(GL_FRAMEBUFFER,directional_shadow.fbo);
glGenTextures(1,&directional_shadow.depth);
glBindTexture(GL_TEXTURE_2D,directional_shadow.depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D, directional_shadow.depth, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status!=GL_FRAMEBUFFER_COMPLETE) {
ERR_PRINT("Directional shadow framebuffer status invalid");
}
}
{
//spot and omni ubos
int max_ubo_size;
glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE,&max_ubo_size);
const int ubo_light_size=160;
state.ubo_light_size=ubo_light_size;
state.max_ubo_lights=max_ubo_size/ubo_light_size;
print_line("max ubo light: "+itos(state.max_ubo_lights));
state.spot_array_tmp = (uint8_t*)memalloc(ubo_light_size*state.max_ubo_lights);
state.omni_array_tmp = (uint8_t*)memalloc(ubo_light_size*state.max_ubo_lights);
glGenBuffers(1, &state.spot_array_ubo);
glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo);
glBufferData(GL_UNIFORM_BUFFER, ubo_light_size*state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glGenBuffers(1, &state.omni_array_ubo);
glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo);
glBufferData(GL_UNIFORM_BUFFER, ubo_light_size*state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glGenBuffers(1, &state.directional_ubo);
glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(LightDataUBO), NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
state.max_forward_lights_per_object=8;
state.scene_shader.add_custom_define("#define MAX_LIGHT_DATA_STRUCTS "+itos(state.max_ubo_lights)+"\n");
state.scene_shader.add_custom_define("#define MAX_FORWARD_LIGHTS "+itos(state.max_forward_lights_per_object)+"\n");
state.max_ubo_reflections=max_ubo_size/sizeof(ReflectionProbeDataUBO);
print_line("max ubo reflections: "+itos(state.max_ubo_reflections)+" ubo size: "+itos(sizeof(ReflectionProbeDataUBO)));
state.reflection_array_tmp = (uint8_t*)memalloc(sizeof(ReflectionProbeDataUBO)*state.max_ubo_reflections);
glGenBuffers(1, &state.reflection_array_ubo);
glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeDataUBO)*state.max_ubo_reflections, NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
state.scene_shader.add_custom_define("#define MAX_REFLECTION_DATA_STRUCTS "+itos(state.max_ubo_reflections)+"\n");
state.max_skeleton_bones=max_ubo_size/(12*sizeof(float));
state.scene_shader.add_custom_define("#define MAX_SKELETON_BONES "+itos(state.max_skeleton_bones)+"\n");
}
GLOBAL_DEF("rendering/gles3/shadow_filter_mode",1);
Globals::get_singleton()->set_custom_property_info("rendering/gles3/shadow_filter_mode",PropertyInfo(Variant::INT,"rendering/gles3/shadow_filter_mode",PROPERTY_HINT_ENUM,"Disabled,PCF5,PCF13"));
shadow_filter_mode=SHADOW_FILTER_NEAREST;
{ //reflection cubemaps
int max_reflection_cubemap_sampler_size=512;
int cube_size = max_reflection_cubemap_sampler_size;
glActiveTexture(GL_TEXTURE0);
bool use_float=true;
GLenum internal_format = use_float?GL_RGBA16F:GL_RGB10_A2;
GLenum format = GL_RGBA;
GLenum type = use_float?GL_HALF_FLOAT:GL_UNSIGNED_INT_2_10_10_10_REV;
while(cube_size>=32) {
ReflectionCubeMap cube;
cube.size=cube_size;
glGenTextures(1,&cube.depth);
glBindTexture(GL_TEXTURE_2D,cube.depth);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glGenTextures(1,&cube.cubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP,cube.cubemap);
//gen cubemap first
for(int i=0;i<6;i++) {
glTexImage2D(_cube_side_enum[i], 0, internal_format, cube.size, cube.size, 0, format, type, NULL);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Remove artifact on the edges of the reflectionmap
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
//gen renderbuffers second, because it needs a complete cubemap
for(int i=0;i<6;i++) {
glGenFramebuffers(1, &cube.fbo_id[i]);
glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,_cube_side_enum[i], cube.cubemap, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D, cube.depth, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ERR_CONTINUE(status!=GL_FRAMEBUFFER_COMPLETE);
}
reflection_cubemaps.push_back(cube);
cube_size>>=1;
}
}
#ifdef GLES_OVER_GL
//"desktop" opengl needs this.
glEnable(GL_PROGRAM_POINT_SIZE);
#endif
}
void RasterizerSceneGLES3::iteration() {
shadow_filter_mode=ShadowFilterMode(int(Globals::get_singleton()->get("rendering/gles3/shadow_filter_mode")));
}
void RasterizerSceneGLES3::finalize(){
}
RasterizerSceneGLES3::RasterizerSceneGLES3()
{
}