godot/thirdparty/bullet/BulletSoftBody/btSoftBody.h

1365 lines
43 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btSoftBody implementation by Nathanael Presson
#ifndef _BT_SOFT_BODY_H
#define _BT_SOFT_BODY_H
#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btVector3.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletCollision/CollisionShapes/btConcaveShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "btSparseSDF.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
//#ifdef BT_USE_DOUBLE_PRECISION
//#define btRigidBodyData btRigidBodyDoubleData
//#define btRigidBodyDataName "btRigidBodyDoubleData"
//#else
#define btSoftBodyData btSoftBodyFloatData
#define btSoftBodyDataName "btSoftBodyFloatData"
static const btScalar OVERLAP_REDUCTION_FACTOR = 0.1;
static unsigned long seed = 243703;
//#endif //BT_USE_DOUBLE_PRECISION
class btBroadphaseInterface;
class btDispatcher;
class btSoftBodySolver;
/* btSoftBodyWorldInfo */
struct btSoftBodyWorldInfo
{
btScalar air_density;
btScalar water_density;
btScalar water_offset;
btScalar m_maxDisplacement;
btVector3 water_normal;
btBroadphaseInterface* m_broadphase;
btDispatcher* m_dispatcher;
btVector3 m_gravity;
btSparseSdf<3> m_sparsesdf;
btSoftBodyWorldInfo()
: air_density((btScalar)1.2),
water_density(0),
water_offset(0),
m_maxDisplacement(1000.f), //avoid soft body from 'exploding' so use some upper threshold of maximum motion that a node can travel per frame
water_normal(0, 0, 0),
m_broadphase(0),
m_dispatcher(0),
m_gravity(0, -10, 0)
{
}
};
///The btSoftBody is an class to simulate cloth and volumetric soft bodies.
///There is two-way interaction between btSoftBody and btRigidBody/btCollisionObject.
class btSoftBody : public btCollisionObject
{
public:
btAlignedObjectArray<const class btCollisionObject*> m_collisionDisabledObjects;
// The solver object that handles this soft body
btSoftBodySolver* m_softBodySolver;
//
// Enumerations
//
///eAeroModel
struct eAeroModel
{
enum _
{
V_Point, ///Vertex normals are oriented toward velocity
V_TwoSided, ///Vertex normals are flipped to match velocity
V_TwoSidedLiftDrag, ///Vertex normals are flipped to match velocity and lift and drag forces are applied
V_OneSided, ///Vertex normals are taken as it is
F_TwoSided, ///Face normals are flipped to match velocity
F_TwoSidedLiftDrag, ///Face normals are flipped to match velocity and lift and drag forces are applied
F_OneSided, ///Face normals are taken as it is
END
};
};
///eVSolver : velocities solvers
struct eVSolver
{
enum _
{
Linear, ///Linear solver
END
};
};
///ePSolver : positions solvers
struct ePSolver
{
enum _
{
Linear, ///Linear solver
Anchors, ///Anchor solver
RContacts, ///Rigid contacts solver
SContacts, ///Soft contacts solver
END
};
};
///eSolverPresets
struct eSolverPresets
{
enum _
{
Positions,
Velocities,
Default = Positions,
END
};
};
///eFeature
struct eFeature
{
enum _
{
None,
Node,
Link,
Face,
Tetra,
END
};
};
typedef btAlignedObjectArray<eVSolver::_> tVSolverArray;
typedef btAlignedObjectArray<ePSolver::_> tPSolverArray;
//
// Flags
//
///fCollision
struct fCollision
{
enum _
{
RVSmask = 0x000f, ///Rigid versus soft mask
SDF_RS = 0x0001, ///SDF based rigid vs soft
CL_RS = 0x0002, ///Cluster vs convex rigid vs soft
SDF_RD = 0x0004, ///rigid vs deformable
SVSmask = 0x00f0, ///Rigid versus soft mask
VF_SS = 0x0010, ///Vertex vs face soft vs soft handling
CL_SS = 0x0020, ///Cluster vs cluster soft vs soft handling
CL_SELF = 0x0040, ///Cluster soft body self collision
VF_DD = 0x0080, ///Vertex vs face soft vs soft handling
RVDFmask = 0x0f00, /// Rigid versus deformable face mask
SDF_RDF = 0x0100, /// GJK based Rigid vs. deformable face
SDF_MDF = 0x0200, /// GJK based Multibody vs. deformable face
SDF_RDN = 0x0400, /// SDF based Rigid vs. deformable node
/* presets */
Default = SDF_RS,
END
};
};
///fMaterial
struct fMaterial
{
enum _
{
DebugDraw = 0x0001, /// Enable debug draw
/* presets */
Default = DebugDraw,
END
};
};
//
// API Types
//
/* sRayCast */
struct sRayCast
{
btSoftBody* body; /// soft body
eFeature::_ feature; /// feature type
int index; /// feature index
btScalar fraction; /// time of impact fraction (rayorg+(rayto-rayfrom)*fraction)
};
/* ImplicitFn */
struct ImplicitFn
{
virtual ~ImplicitFn() {}
virtual btScalar Eval(const btVector3& x) = 0;
};
//
// Internal types
//
typedef btAlignedObjectArray<btScalar> tScalarArray;
typedef btAlignedObjectArray<btVector3> tVector3Array;
/* sCti is Softbody contact info */
struct sCti
{
const btCollisionObject* m_colObj; /* Rigid body */
btVector3 m_normal; /* Outward normal */
btScalar m_offset; /* Offset from origin */
btVector3 m_bary; /* Barycentric weights for faces */
};
/* sMedium */
struct sMedium
{
btVector3 m_velocity; /* Velocity */
btScalar m_pressure; /* Pressure */
btScalar m_density; /* Density */
};
/* Base type */
struct Element
{
void* m_tag; // User data
Element() : m_tag(0) {}
};
/* Material */
struct Material : Element
{
btScalar m_kLST; // Linear stiffness coefficient [0,1]
btScalar m_kAST; // Area/Angular stiffness coefficient [0,1]
btScalar m_kVST; // Volume stiffness coefficient [0,1]
int m_flags; // Flags
};
/* Feature */
struct Feature : Element
{
Material* m_material; // Material
};
/* Node */
struct Node : Feature
{
btVector3 m_x; // Position
btVector3 m_q; // Previous step position/Test position
btVector3 m_v; // Velocity
btVector3 m_vn; // Previous step velocity
btVector3 m_f; // Force accumulator
btVector3 m_n; // Normal
btScalar m_im; // 1/mass
btScalar m_area; // Area
btDbvtNode* m_leaf; // Leaf data
btScalar m_penetration; // depth of penetration
int m_battach : 1; // Attached
int index;
};
/* Link */
ATTRIBUTE_ALIGNED16(struct)
Link : Feature
{
btVector3 m_c3; // gradient
Node* m_n[2]; // Node pointers
btScalar m_rl; // Rest length
int m_bbending : 1; // Bending link
btScalar m_c0; // (ima+imb)*kLST
btScalar m_c1; // rl^2
btScalar m_c2; // |gradient|^2/c0
BT_DECLARE_ALIGNED_ALLOCATOR();
};
/* Face */
struct Face : Feature
{
Node* m_n[3]; // Node pointers
btVector3 m_normal; // Normal
btScalar m_ra; // Rest area
btDbvtNode* m_leaf; // Leaf data
btVector4 m_pcontact; // barycentric weights of the persistent contact
btVector3 m_n0, m_n1, m_vn;
int m_index;
};
/* Tetra */
struct Tetra : Feature
{
Node* m_n[4]; // Node pointers
btScalar m_rv; // Rest volume
btDbvtNode* m_leaf; // Leaf data
btVector3 m_c0[4]; // gradients
btScalar m_c1; // (4*kVST)/(im0+im1+im2+im3)
btScalar m_c2; // m_c1/sum(|g0..3|^2)
btMatrix3x3 m_Dm_inverse; // rest Dm^-1
btMatrix3x3 m_F;
btScalar m_element_measure;
};
/* TetraScratch */
struct TetraScratch
{
btMatrix3x3 m_F; // deformation gradient F
btScalar m_trace; // trace of F^T * F
btScalar m_J; // det(F)
btMatrix3x3 m_cofF; // cofactor of F
};
/* RContact */
struct RContact
{
sCti m_cti; // Contact infos
Node* m_node; // Owner node
btMatrix3x3 m_c0; // Impulse matrix
btVector3 m_c1; // Relative anchor
btScalar m_c2; // ima*dt
btScalar m_c3; // Friction
btScalar m_c4; // Hardness
// jacobians and unit impulse responses for multibody
btMultiBodyJacobianData jacobianData_normal;
btMultiBodyJacobianData jacobianData_t1;
btMultiBodyJacobianData jacobianData_t2;
btVector3 t1;
btVector3 t2;
};
class DeformableRigidContact
{
public:
sCti m_cti; // Contact infos
btMatrix3x3 m_c0; // Impulse matrix
btVector3 m_c1; // Relative anchor
btScalar m_c2; // inverse mass of node/face
btScalar m_c3; // Friction
btScalar m_c4; // Hardness
// jacobians and unit impulse responses for multibody
btMultiBodyJacobianData jacobianData_normal;
btMultiBodyJacobianData jacobianData_t1;
btMultiBodyJacobianData jacobianData_t2;
btVector3 t1;
btVector3 t2;
};
class DeformableNodeRigidContact : public DeformableRigidContact
{
public:
Node* m_node; // Owner node
};
class DeformableNodeRigidAnchor : public DeformableNodeRigidContact
{
public:
btVector3 m_local; // Anchor position in body space
};
class DeformableFaceRigidContact : public DeformableRigidContact
{
public:
Face* m_face; // Owner face
btVector3 m_contactPoint; // Contact point
btVector3 m_bary; // Barycentric weights
btVector3 m_weights; // v_contactPoint * m_weights[i] = m_face->m_node[i]->m_v;
};
struct DeformableFaceNodeContact
{
Node* m_node; // Node
Face* m_face; // Face
btVector3 m_bary; // Barycentric weights
btVector3 m_weights; // v_contactPoint * m_weights[i] = m_face->m_node[i]->m_v;
btVector3 m_normal; // Normal
btScalar m_margin; // Margin
btScalar m_friction; // Friction
btScalar m_imf; // inverse mass of the face at contact point
btScalar m_c0; // scale of the impulse matrix;
};
/* SContact */
struct SContact
{
Node* m_node; // Node
Face* m_face; // Face
btVector3 m_weights; // Weigths
btVector3 m_normal; // Normal
btScalar m_margin; // Margin
btScalar m_friction; // Friction
btScalar m_cfm[2]; // Constraint force mixing
};
/* Anchor */
struct Anchor
{
Node* m_node; // Node pointer
btVector3 m_local; // Anchor position in body space
btRigidBody* m_body; // Body
btScalar m_influence;
btMatrix3x3 m_c0; // Impulse matrix
btVector3 m_c1; // Relative anchor
btScalar m_c2; // ima*dt
};
/* Note */
struct Note : Element
{
const char* m_text; // Text
btVector3 m_offset; // Offset
int m_rank; // Rank
Node* m_nodes[4]; // Nodes
btScalar m_coords[4]; // Coordinates
};
/* Pose */
struct Pose
{
bool m_bvolume; // Is valid
bool m_bframe; // Is frame
btScalar m_volume; // Rest volume
tVector3Array m_pos; // Reference positions
tScalarArray m_wgh; // Weights
btVector3 m_com; // COM
btMatrix3x3 m_rot; // Rotation
btMatrix3x3 m_scl; // Scale
btMatrix3x3 m_aqq; // Base scaling
};
/* Cluster */
struct Cluster
{
tScalarArray m_masses;
btAlignedObjectArray<Node*> m_nodes;
tVector3Array m_framerefs;
btTransform m_framexform;
btScalar m_idmass;
btScalar m_imass;
btMatrix3x3 m_locii;
btMatrix3x3 m_invwi;
btVector3 m_com;
btVector3 m_vimpulses[2];
btVector3 m_dimpulses[2];
int m_nvimpulses;
int m_ndimpulses;
btVector3 m_lv;
btVector3 m_av;
btDbvtNode* m_leaf;
btScalar m_ndamping; /* Node damping */
btScalar m_ldamping; /* Linear damping */
btScalar m_adamping; /* Angular damping */
btScalar m_matching;
btScalar m_maxSelfCollisionImpulse;
btScalar m_selfCollisionImpulseFactor;
bool m_containsAnchor;
bool m_collide;
int m_clusterIndex;
Cluster() : m_leaf(0), m_ndamping(0), m_ldamping(0), m_adamping(0), m_matching(0), m_maxSelfCollisionImpulse(100.f), m_selfCollisionImpulseFactor(0.01f), m_containsAnchor(false)
{
}
};
/* Impulse */
struct Impulse
{
btVector3 m_velocity;
btVector3 m_drift;
int m_asVelocity : 1;
int m_asDrift : 1;
Impulse() : m_velocity(0, 0, 0), m_drift(0, 0, 0), m_asVelocity(0), m_asDrift(0) {}
Impulse operator-() const
{
Impulse i = *this;
i.m_velocity = -i.m_velocity;
i.m_drift = -i.m_drift;
return (i);
}
Impulse operator*(btScalar x) const
{
Impulse i = *this;
i.m_velocity *= x;
i.m_drift *= x;
return (i);
}
};
/* Body */
struct Body
{
Cluster* m_soft;
btRigidBody* m_rigid;
const btCollisionObject* m_collisionObject;
Body() : m_soft(0), m_rigid(0), m_collisionObject(0) {}
Body(Cluster* p) : m_soft(p), m_rigid(0), m_collisionObject(0) {}
Body(const btCollisionObject* colObj) : m_soft(0), m_collisionObject(colObj)
{
m_rigid = (btRigidBody*)btRigidBody::upcast(m_collisionObject);
}
void activate() const
{
if (m_rigid)
m_rigid->activate();
if (m_collisionObject)
m_collisionObject->activate();
}
const btMatrix3x3& invWorldInertia() const
{
static const btMatrix3x3 iwi(0, 0, 0, 0, 0, 0, 0, 0, 0);
if (m_rigid) return (m_rigid->getInvInertiaTensorWorld());
if (m_soft) return (m_soft->m_invwi);
return (iwi);
}
btScalar invMass() const
{
if (m_rigid) return (m_rigid->getInvMass());
if (m_soft) return (m_soft->m_imass);
return (0);
}
const btTransform& xform() const
{
static const btTransform identity = btTransform::getIdentity();
if (m_collisionObject) return (m_collisionObject->getWorldTransform());
if (m_soft) return (m_soft->m_framexform);
return (identity);
}
btVector3 linearVelocity() const
{
if (m_rigid) return (m_rigid->getLinearVelocity());
if (m_soft) return (m_soft->m_lv);
return (btVector3(0, 0, 0));
}
btVector3 angularVelocity(const btVector3& rpos) const
{
if (m_rigid) return (btCross(m_rigid->getAngularVelocity(), rpos));
if (m_soft) return (btCross(m_soft->m_av, rpos));
return (btVector3(0, 0, 0));
}
btVector3 angularVelocity() const
{
if (m_rigid) return (m_rigid->getAngularVelocity());
if (m_soft) return (m_soft->m_av);
return (btVector3(0, 0, 0));
}
btVector3 velocity(const btVector3& rpos) const
{
return (linearVelocity() + angularVelocity(rpos));
}
void applyVImpulse(const btVector3& impulse, const btVector3& rpos) const
{
if (m_rigid) m_rigid->applyImpulse(impulse, rpos);
if (m_soft) btSoftBody::clusterVImpulse(m_soft, rpos, impulse);
}
void applyDImpulse(const btVector3& impulse, const btVector3& rpos) const
{
if (m_rigid) m_rigid->applyImpulse(impulse, rpos);
if (m_soft) btSoftBody::clusterDImpulse(m_soft, rpos, impulse);
}
void applyImpulse(const Impulse& impulse, const btVector3& rpos) const
{
if (impulse.m_asVelocity)
{
// printf("impulse.m_velocity = %f,%f,%f\n",impulse.m_velocity.getX(),impulse.m_velocity.getY(),impulse.m_velocity.getZ());
applyVImpulse(impulse.m_velocity, rpos);
}
if (impulse.m_asDrift)
{
// printf("impulse.m_drift = %f,%f,%f\n",impulse.m_drift.getX(),impulse.m_drift.getY(),impulse.m_drift.getZ());
applyDImpulse(impulse.m_drift, rpos);
}
}
void applyVAImpulse(const btVector3& impulse) const
{
if (m_rigid) m_rigid->applyTorqueImpulse(impulse);
if (m_soft) btSoftBody::clusterVAImpulse(m_soft, impulse);
}
void applyDAImpulse(const btVector3& impulse) const
{
if (m_rigid) m_rigid->applyTorqueImpulse(impulse);
if (m_soft) btSoftBody::clusterDAImpulse(m_soft, impulse);
}
void applyAImpulse(const Impulse& impulse) const
{
if (impulse.m_asVelocity) applyVAImpulse(impulse.m_velocity);
if (impulse.m_asDrift) applyDAImpulse(impulse.m_drift);
}
void applyDCImpulse(const btVector3& impulse) const
{
if (m_rigid) m_rigid->applyCentralImpulse(impulse);
if (m_soft) btSoftBody::clusterDCImpulse(m_soft, impulse);
}
};
/* Joint */
struct Joint
{
struct eType
{
enum _
{
Linear = 0,
Angular,
Contact
};
};
struct Specs
{
Specs() : erp(1), cfm(1), split(1) {}
btScalar erp;
btScalar cfm;
btScalar split;
};
Body m_bodies[2];
btVector3 m_refs[2];
btScalar m_cfm;
btScalar m_erp;
btScalar m_split;
btVector3 m_drift;
btVector3 m_sdrift;
btMatrix3x3 m_massmatrix;
bool m_delete;
virtual ~Joint() {}
Joint() : m_delete(false) {}
virtual void Prepare(btScalar dt, int iterations);
virtual void Solve(btScalar dt, btScalar sor) = 0;
virtual void Terminate(btScalar dt) = 0;
virtual eType::_ Type() const = 0;
};
/* LJoint */
struct LJoint : Joint
{
struct Specs : Joint::Specs
{
btVector3 position;
};
btVector3 m_rpos[2];
void Prepare(btScalar dt, int iterations);
void Solve(btScalar dt, btScalar sor);
void Terminate(btScalar dt);
eType::_ Type() const { return (eType::Linear); }
};
/* AJoint */
struct AJoint : Joint
{
struct IControl
{
virtual ~IControl() {}
virtual void Prepare(AJoint*) {}
virtual btScalar Speed(AJoint*, btScalar current) { return (current); }
static IControl* Default()
{
static IControl def;
return (&def);
}
};
struct Specs : Joint::Specs
{
Specs() : icontrol(IControl::Default()) {}
btVector3 axis;
IControl* icontrol;
};
btVector3 m_axis[2];
IControl* m_icontrol;
void Prepare(btScalar dt, int iterations);
void Solve(btScalar dt, btScalar sor);
void Terminate(btScalar dt);
eType::_ Type() const { return (eType::Angular); }
};
/* CJoint */
struct CJoint : Joint
{
int m_life;
int m_maxlife;
btVector3 m_rpos[2];
btVector3 m_normal;
btScalar m_friction;
void Prepare(btScalar dt, int iterations);
void Solve(btScalar dt, btScalar sor);
void Terminate(btScalar dt);
eType::_ Type() const { return (eType::Contact); }
};
/* Config */
struct Config
{
eAeroModel::_ aeromodel; // Aerodynamic model (default: V_Point)
btScalar kVCF; // Velocities correction factor (Baumgarte)
btScalar kDP; // Damping coefficient [0,1]
btScalar kDG; // Drag coefficient [0,+inf]
btScalar kLF; // Lift coefficient [0,+inf]
btScalar kPR; // Pressure coefficient [-inf,+inf]
btScalar kVC; // Volume conversation coefficient [0,+inf]
btScalar kDF; // Dynamic friction coefficient [0,1]
btScalar kMT; // Pose matching coefficient [0,1]
btScalar kCHR; // Rigid contacts hardness [0,1]
btScalar kKHR; // Kinetic contacts hardness [0,1]
btScalar kSHR; // Soft contacts hardness [0,1]
btScalar kAHR; // Anchors hardness [0,1]
btScalar kSRHR_CL; // Soft vs rigid hardness [0,1] (cluster only)
btScalar kSKHR_CL; // Soft vs kinetic hardness [0,1] (cluster only)
btScalar kSSHR_CL; // Soft vs soft hardness [0,1] (cluster only)
btScalar kSR_SPLT_CL; // Soft vs rigid impulse split [0,1] (cluster only)
btScalar kSK_SPLT_CL; // Soft vs rigid impulse split [0,1] (cluster only)
btScalar kSS_SPLT_CL; // Soft vs rigid impulse split [0,1] (cluster only)
btScalar maxvolume; // Maximum volume ratio for pose
btScalar timescale; // Time scale
int viterations; // Velocities solver iterations
int piterations; // Positions solver iterations
int diterations; // Drift solver iterations
int citerations; // Cluster solver iterations
int collisions; // Collisions flags
tVSolverArray m_vsequence; // Velocity solvers sequence
tPSolverArray m_psequence; // Position solvers sequence
tPSolverArray m_dsequence; // Drift solvers sequence
btScalar drag; // deformable air drag
btScalar m_maxStress; // Maximum principle first Piola stress
};
/* SolverState */
struct SolverState
{
//if you add new variables, always initialize them!
SolverState()
:sdt(0),
isdt(0),
velmrg(0),
radmrg(0),
updmrg(0)
{
}
btScalar sdt; // dt*timescale
btScalar isdt; // 1/sdt
btScalar velmrg; // velocity margin
btScalar radmrg; // radial margin
btScalar updmrg; // Update margin
};
/// RayFromToCaster takes a ray from, ray to (instead of direction!)
struct RayFromToCaster : btDbvt::ICollide
{
btVector3 m_rayFrom;
btVector3 m_rayTo;
btVector3 m_rayNormalizedDirection;
btScalar m_mint;
Face* m_face;
int m_tests;
RayFromToCaster(const btVector3& rayFrom, const btVector3& rayTo, btScalar mxt);
void Process(const btDbvtNode* leaf);
static /*inline*/ btScalar rayFromToTriangle(const btVector3& rayFrom,
const btVector3& rayTo,
const btVector3& rayNormalizedDirection,
const btVector3& a,
const btVector3& b,
const btVector3& c,
btScalar maxt = SIMD_INFINITY);
};
//
// Typedefs
//
typedef void (*psolver_t)(btSoftBody*, btScalar, btScalar);
typedef void (*vsolver_t)(btSoftBody*, btScalar);
typedef btAlignedObjectArray<Cluster*> tClusterArray;
typedef btAlignedObjectArray<Note> tNoteArray;
typedef btAlignedObjectArray<Node> tNodeArray;
typedef btAlignedObjectArray<btDbvtNode*> tLeafArray;
typedef btAlignedObjectArray<Link> tLinkArray;
typedef btAlignedObjectArray<Face> tFaceArray;
typedef btAlignedObjectArray<Tetra> tTetraArray;
typedef btAlignedObjectArray<Anchor> tAnchorArray;
typedef btAlignedObjectArray<RContact> tRContactArray;
typedef btAlignedObjectArray<SContact> tSContactArray;
typedef btAlignedObjectArray<Material*> tMaterialArray;
typedef btAlignedObjectArray<Joint*> tJointArray;
typedef btAlignedObjectArray<btSoftBody*> tSoftBodyArray;
//
// Fields
//
Config m_cfg; // Configuration
SolverState m_sst; // Solver state
Pose m_pose; // Pose
void* m_tag; // User data
btSoftBodyWorldInfo* m_worldInfo; // World info
tNoteArray m_notes; // Notes
tNodeArray m_nodes; // Nodes
tNodeArray m_renderNodes; // Nodes
tLinkArray m_links; // Links
tFaceArray m_faces; // Faces
tFaceArray m_renderFaces; // Faces
tTetraArray m_tetras; // Tetras
btAlignedObjectArray<TetraScratch> m_tetraScratches;
btAlignedObjectArray<TetraScratch> m_tetraScratchesTn;
tAnchorArray m_anchors; // Anchors
btAlignedObjectArray<DeformableNodeRigidAnchor> m_deformableAnchors;
tRContactArray m_rcontacts; // Rigid contacts
btAlignedObjectArray<DeformableNodeRigidContact> m_nodeRigidContacts;
btAlignedObjectArray<DeformableFaceNodeContact> m_faceNodeContacts;
btAlignedObjectArray<DeformableFaceRigidContact> m_faceRigidContacts;
tSContactArray m_scontacts; // Soft contacts
tJointArray m_joints; // Joints
tMaterialArray m_materials; // Materials
btScalar m_timeacc; // Time accumulator
btVector3 m_bounds[2]; // Spatial bounds
bool m_bUpdateRtCst; // Update runtime constants
btDbvt m_ndbvt; // Nodes tree
btDbvt m_fdbvt; // Faces tree
btDbvntNode* m_fdbvnt; // Faces tree with normals
btDbvt m_cdbvt; // Clusters tree
tClusterArray m_clusters; // Clusters
btScalar m_dampingCoefficient; // Damping Coefficient
btScalar m_sleepingThreshold;
btScalar m_maxSpeedSquared;
btAlignedObjectArray<btVector3> m_quads; // quadrature points for collision detection
btScalar m_repulsionStiffness;
btAlignedObjectArray<btVector3> m_X; // initial positions
btAlignedObjectArray<btVector4> m_renderNodesInterpolationWeights;
btAlignedObjectArray<btAlignedObjectArray<const btSoftBody::Node*> > m_renderNodesParents;
btAlignedObjectArray<btScalar> m_z; // vertical distance used in extrapolation
bool m_useSelfCollision;
bool m_softSoftCollision;
btAlignedObjectArray<bool> m_clusterConnectivity; //cluster connectivity, for self-collision
btVector3 m_windVelocity;
btScalar m_restLengthScale;
//
// Api
//
/* ctor */
btSoftBody(btSoftBodyWorldInfo* worldInfo, int node_count, const btVector3* x, const btScalar* m);
/* ctor */
btSoftBody(btSoftBodyWorldInfo* worldInfo);
void initDefaults();
/* dtor */
virtual ~btSoftBody();
/* Check for existing link */
btAlignedObjectArray<int> m_userIndexMapping;
btSoftBodyWorldInfo* getWorldInfo()
{
return m_worldInfo;
}
void setDampingCoefficient(btScalar damping_coeff)
{
m_dampingCoefficient = damping_coeff;
}
///@todo: avoid internal softbody shape hack and move collision code to collision library
virtual void setCollisionShape(btCollisionShape* collisionShape)
{
}
bool checkLink(int node0,
int node1) const;
bool checkLink(const Node* node0,
const Node* node1) const;
/* Check for existring face */
bool checkFace(int node0,
int node1,
int node2) const;
/* Append material */
Material* appendMaterial();
/* Append note */
void appendNote(const char* text,
const btVector3& o,
const btVector4& c = btVector4(1, 0, 0, 0),
Node* n0 = 0,
Node* n1 = 0,
Node* n2 = 0,
Node* n3 = 0);
void appendNote(const char* text,
const btVector3& o,
Node* feature);
void appendNote(const char* text,
const btVector3& o,
Link* feature);
void appendNote(const char* text,
const btVector3& o,
Face* feature);
/* Append node */
void appendNode(const btVector3& x, btScalar m);
/* Append link */
void appendLink(int model = -1, Material* mat = 0);
void appendLink(int node0,
int node1,
Material* mat = 0,
bool bcheckexist = false);
void appendLink(Node* node0,
Node* node1,
Material* mat = 0,
bool bcheckexist = false);
/* Append face */
void appendFace(int model = -1, Material* mat = 0);
void appendFace(int node0,
int node1,
int node2,
Material* mat = 0);
void appendTetra(int model, Material* mat);
//
void appendTetra(int node0,
int node1,
int node2,
int node3,
Material* mat = 0);
/* Append anchor */
void appendDeformableAnchor(int node, btRigidBody* body);
void appendDeformableAnchor(int node, btMultiBodyLinkCollider* link);
void appendAnchor(int node,
btRigidBody* body, bool disableCollisionBetweenLinkedBodies = false, btScalar influence = 1);
void appendAnchor(int node, btRigidBody* body, const btVector3& localPivot, bool disableCollisionBetweenLinkedBodies = false, btScalar influence = 1);
/* Append linear joint */
void appendLinearJoint(const LJoint::Specs& specs, Cluster* body0, Body body1);
void appendLinearJoint(const LJoint::Specs& specs, Body body = Body());
void appendLinearJoint(const LJoint::Specs& specs, btSoftBody* body);
/* Append linear joint */
void appendAngularJoint(const AJoint::Specs& specs, Cluster* body0, Body body1);
void appendAngularJoint(const AJoint::Specs& specs, Body body = Body());
void appendAngularJoint(const AJoint::Specs& specs, btSoftBody* body);
/* Add force (or gravity) to the entire body */
void addForce(const btVector3& force);
/* Add force (or gravity) to a node of the body */
void addForce(const btVector3& force,
int node);
/* Add aero force to a node of the body */
void addAeroForceToNode(const btVector3& windVelocity, int nodeIndex);
/* Add aero force to a face of the body */
void addAeroForceToFace(const btVector3& windVelocity, int faceIndex);
/* Add velocity to the entire body */
void addVelocity(const btVector3& velocity);
/* Set velocity for the entire body */
void setVelocity(const btVector3& velocity);
/* Add velocity to a node of the body */
void addVelocity(const btVector3& velocity,
int node);
/* Set mass */
void setMass(int node,
btScalar mass);
/* Get mass */
btScalar getMass(int node) const;
/* Get total mass */
btScalar getTotalMass() const;
/* Set total mass (weighted by previous masses) */
void setTotalMass(btScalar mass,
bool fromfaces = false);
/* Set total density */
void setTotalDensity(btScalar density);
/* Set volume mass (using tetrahedrons) */
void setVolumeMass(btScalar mass);
/* Set volume density (using tetrahedrons) */
void setVolumeDensity(btScalar density);
/* Get the linear velocity of the center of mass */
btVector3 getLinearVelocity();
/* Set the linear velocity of the center of mass */
void setLinearVelocity(const btVector3& linVel);
/* Set the angular velocity of the center of mass */
void setAngularVelocity(const btVector3& angVel);
/* Get best fit rigid transform */
btTransform getRigidTransform();
/* Transform to given pose */
void transformTo(const btTransform& trs);
/* Transform */
void transform(const btTransform& trs);
/* Translate */
void translate(const btVector3& trs);
/* Rotate */
void rotate(const btQuaternion& rot);
/* Scale */
void scale(const btVector3& scl);
/* Get link resting lengths scale */
btScalar getRestLengthScale();
/* Scale resting length of all springs */
void setRestLengthScale(btScalar restLength);
/* Set current state as pose */
void setPose(bool bvolume,
bool bframe);
/* Set current link lengths as resting lengths */
void resetLinkRestLengths();
/* Return the volume */
btScalar getVolume() const;
/* Cluster count */
btVector3 getCenterOfMass() const
{
btVector3 com(0, 0, 0);
for (int i = 0; i < m_nodes.size(); i++)
{
com += (m_nodes[i].m_x * this->getMass(i));
}
com /= this->getTotalMass();
return com;
}
int clusterCount() const;
/* Cluster center of mass */
static btVector3 clusterCom(const Cluster* cluster);
btVector3 clusterCom(int cluster) const;
/* Cluster velocity at rpos */
static btVector3 clusterVelocity(const Cluster* cluster, const btVector3& rpos);
/* Cluster impulse */
static void clusterVImpulse(Cluster* cluster, const btVector3& rpos, const btVector3& impulse);
static void clusterDImpulse(Cluster* cluster, const btVector3& rpos, const btVector3& impulse);
static void clusterImpulse(Cluster* cluster, const btVector3& rpos, const Impulse& impulse);
static void clusterVAImpulse(Cluster* cluster, const btVector3& impulse);
static void clusterDAImpulse(Cluster* cluster, const btVector3& impulse);
static void clusterAImpulse(Cluster* cluster, const Impulse& impulse);
static void clusterDCImpulse(Cluster* cluster, const btVector3& impulse);
/* Generate bending constraints based on distance in the adjency graph */
int generateBendingConstraints(int distance,
Material* mat = 0);
/* Randomize constraints to reduce solver bias */
void randomizeConstraints();
/* Release clusters */
void releaseCluster(int index);
void releaseClusters();
/* Generate clusters (K-mean) */
///generateClusters with k=0 will create a convex cluster for each tetrahedron or triangle
///otherwise an approximation will be used (better performance)
int generateClusters(int k, int maxiterations = 8192);
/* Refine */
void refine(ImplicitFn* ifn, btScalar accurary, bool cut);
/* CutLink */
bool cutLink(int node0, int node1, btScalar position);
bool cutLink(const Node* node0, const Node* node1, btScalar position);
///Ray casting using rayFrom and rayTo in worldspace, (not direction!)
bool rayTest(const btVector3& rayFrom,
const btVector3& rayTo,
sRayCast& results);
bool rayFaceTest(const btVector3& rayFrom,
const btVector3& rayTo,
sRayCast& results);
int rayFaceTest(const btVector3& rayFrom, const btVector3& rayTo,
btScalar& mint, int& index) const;
/* Solver presets */
void setSolver(eSolverPresets::_ preset);
/* predictMotion */
void predictMotion(btScalar dt);
/* solveConstraints */
void solveConstraints();
/* staticSolve */
void staticSolve(int iterations);
/* solveCommonConstraints */
static void solveCommonConstraints(btSoftBody** bodies, int count, int iterations);
/* solveClusters */
static void solveClusters(const btAlignedObjectArray<btSoftBody*>& bodies);
/* integrateMotion */
void integrateMotion();
/* defaultCollisionHandlers */
void defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap);
void defaultCollisionHandler(btSoftBody* psb);
void setSelfCollision(bool useSelfCollision);
bool useSelfCollision();
void updateDeactivation(btScalar timeStep);
void setZeroVelocity();
bool wantsSleeping();
//
// Functionality to deal with new accelerated solvers.
//
/**
* Set a wind velocity for interaction with the air.
*/
void setWindVelocity(const btVector3& velocity);
/**
* Return the wind velocity for interaction with the air.
*/
const btVector3& getWindVelocity();
//
// Set the solver that handles this soft body
// Should not be allowed to get out of sync with reality
// Currently called internally on addition to the world
void setSoftBodySolver(btSoftBodySolver* softBodySolver)
{
m_softBodySolver = softBodySolver;
}
//
// Return the solver that handles this soft body
//
btSoftBodySolver* getSoftBodySolver()
{
return m_softBodySolver;
}
//
// Return the solver that handles this soft body
//
btSoftBodySolver* getSoftBodySolver() const
{
return m_softBodySolver;
}
//
// Cast
//
static const btSoftBody* upcast(const btCollisionObject* colObj)
{
if (colObj->getInternalType() == CO_SOFT_BODY)
return (const btSoftBody*)colObj;
return 0;
}
static btSoftBody* upcast(btCollisionObject* colObj)
{
if (colObj->getInternalType() == CO_SOFT_BODY)
return (btSoftBody*)colObj;
return 0;
}
//
// ::btCollisionObject
//
virtual void getAabb(btVector3& aabbMin, btVector3& aabbMax) const
{
aabbMin = m_bounds[0];
aabbMax = m_bounds[1];
}
//
// Private
//
void pointersToIndices();
void indicesToPointers(const int* map = 0);
int rayTest(const btVector3& rayFrom, const btVector3& rayTo,
btScalar& mint, eFeature::_& feature, int& index, bool bcountonly) const;
void initializeFaceTree();
void rebuildNodeTree();
btVector3 evaluateCom() const;
bool checkDeformableContact(const btCollisionObjectWrapper* colObjWrap, const btVector3& x, btScalar margin, btSoftBody::sCti& cti, bool predict = false) const;
bool checkDeformableFaceContact(const btCollisionObjectWrapper* colObjWrap, Face& f, btVector3& contact_point, btVector3& bary, btScalar margin, btSoftBody::sCti& cti, bool predict = false) const;
bool checkContact(const btCollisionObjectWrapper* colObjWrap, const btVector3& x, btScalar margin, btSoftBody::sCti& cti) const;
void updateNormals();
void updateBounds();
void updatePose();
void updateConstants();
void updateLinkConstants();
void updateArea(bool averageArea = true);
void initializeClusters();
void updateClusters();
void cleanupClusters();
void prepareClusters(int iterations);
void solveClusters(btScalar sor);
void applyClusters(bool drift);
void dampClusters();
void setSpringStiffness(btScalar k);
void initializeDmInverse();
void updateDeformation();
void advanceDeformation();
void applyForces();
void setMaxStress(btScalar maxStress);
void interpolateRenderMesh();
void setCollisionQuadrature(int N);
static void PSolve_Anchors(btSoftBody* psb, btScalar kst, btScalar ti);
static void PSolve_RContacts(btSoftBody* psb, btScalar kst, btScalar ti);
static void PSolve_SContacts(btSoftBody* psb, btScalar, btScalar ti);
static void PSolve_Links(btSoftBody* psb, btScalar kst, btScalar ti);
static void VSolve_Links(btSoftBody* psb, btScalar kst);
static psolver_t getSolver(ePSolver::_ solver);
static vsolver_t getSolver(eVSolver::_ solver);
void geometricCollisionHandler(btSoftBody* psb);
#define SAFE_EPSILON SIMD_EPSILON*100.0
void updateNode(btDbvtNode* node, bool use_velocity, bool margin)
{
if (node->isleaf())
{
btSoftBody::Node* n = (btSoftBody::Node*)(node->data);
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
btScalar pad = margin ? m_sst.radmrg : SAFE_EPSILON; // use user defined margin or margin for floating point precision
if (use_velocity)
{
btVector3 points[2] = {n->m_x, n->m_x + m_sst.sdt * n->m_v};
vol = btDbvtVolume::FromPoints(points, 2);
vol.Expand(btVector3(pad, pad, pad));
}
else
{
vol = btDbvtVolume::FromCR(n->m_x, pad);
}
node->volume = vol;
return;
}
else
{
updateNode(node->childs[0], use_velocity, margin);
updateNode(node->childs[1], use_velocity, margin);
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
Merge(node->childs[0]->volume, node->childs[1]->volume, vol);
node->volume = vol;
}
}
void updateNodeTree(bool use_velocity, bool margin)
{
if (m_ndbvt.m_root)
updateNode(m_ndbvt.m_root, use_velocity, margin);
}
template <class DBVTNODE> // btDbvtNode or btDbvntNode
void updateFace(DBVTNODE* node, bool use_velocity, bool margin)
{
if (node->isleaf())
{
btSoftBody::Face* f = (btSoftBody::Face*)(node->data);
btScalar pad = margin ? m_sst.radmrg : SAFE_EPSILON; // use user defined margin or margin for floating point precision
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
if (use_velocity)
{
btVector3 points[6] = {f->m_n[0]->m_x, f->m_n[0]->m_x + m_sst.sdt * f->m_n[0]->m_v,
f->m_n[1]->m_x, f->m_n[1]->m_x + m_sst.sdt * f->m_n[1]->m_v,
f->m_n[2]->m_x, f->m_n[2]->m_x + m_sst.sdt * f->m_n[2]->m_v};
vol = btDbvtVolume::FromPoints(points, 6);
}
else
{
btVector3 points[3] = {f->m_n[0]->m_x,
f->m_n[1]->m_x,
f->m_n[2]->m_x};
vol = btDbvtVolume::FromPoints(points, 3);
}
vol.Expand(btVector3(pad, pad, pad));
node->volume = vol;
return;
}
else
{
updateFace(node->childs[0], use_velocity, margin);
updateFace(node->childs[1], use_velocity, margin);
ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
Merge(node->childs[0]->volume, node->childs[1]->volume, vol);
node->volume = vol;
}
}
void updateFaceTree(bool use_velocity, bool margin)
{
if (m_fdbvt.m_root)
updateFace(m_fdbvt.m_root, use_velocity, margin);
if (m_fdbvnt)
updateFace(m_fdbvnt, use_velocity, margin);
}
template <typename T>
static inline T BaryEval(const T& a,
const T& b,
const T& c,
const btVector3& coord)
{
return (a * coord.x() + b * coord.y() + c * coord.z());
}
void applyRepulsionForce(btScalar timeStep, bool applySpringForce)
{
btAlignedObjectArray<int> indices;
{
// randomize the order of repulsive force
indices.resize(m_faceNodeContacts.size());
for (int i = 0; i < m_faceNodeContacts.size(); ++i)
indices[i] = i;
#define NEXTRAND (seed = (1664525L * seed + 1013904223L) & 0xffffffff)
int i, ni;
for (i = 0, ni = indices.size(); i < ni; ++i)
{
btSwap(indices[i], indices[NEXTRAND % ni]);
}
}
for (int k = 0; k < m_faceNodeContacts.size(); ++k)
{
int i = indices[k];
btSoftBody::DeformableFaceNodeContact& c = m_faceNodeContacts[i];
btSoftBody::Node* node = c.m_node;
btSoftBody::Face* face = c.m_face;
const btVector3& w = c.m_bary;
const btVector3& n = c.m_normal;
btVector3 l = node->m_x - BaryEval(face->m_n[0]->m_x, face->m_n[1]->m_x, face->m_n[2]->m_x, w);
btScalar d = c.m_margin - n.dot(l);
d = btMax(btScalar(0),d);
const btVector3& va = node->m_v;
btVector3 vb = BaryEval(face->m_n[0]->m_v, face->m_n[1]->m_v, face->m_n[2]->m_v, w);
btVector3 vr = va - vb;
const btScalar vn = btDot(vr, n); // dn < 0 <==> opposing
if (vn > OVERLAP_REDUCTION_FACTOR * d / timeStep)
continue;
btVector3 vt = vr - vn*n;
btScalar I = 0;
btScalar mass = node->m_im == 0 ? 0 : btScalar(1)/node->m_im;
if (applySpringForce)
I = -btMin(m_repulsionStiffness * timeStep * d, mass * (OVERLAP_REDUCTION_FACTOR * d / timeStep - vn));
if (vn < 0)
I += 0.5 * mass * vn;
btScalar face_penetration = 0, node_penetration = node->m_penetration;
for (int i = 0; i < 3; ++i)
face_penetration = btMax(face_penetration, face->m_n[i]->m_penetration);
btScalar I_tilde = .5 *I /(1.0+w.length2());
// double the impulse if node or face is constrained.
if (face_penetration > 0 || node_penetration > 0)
I_tilde *= 2.0;
if (face_penetration <= node_penetration)
{
for (int j = 0; j < 3; ++j)
face->m_n[j]->m_v += w[j]*n*I_tilde*node->m_im;
}
if (face_penetration >= node_penetration)
{
node->m_v -= I_tilde*node->m_im*n;
}
// apply frictional impulse
btScalar vt_norm = vt.safeNorm();
if (vt_norm > SIMD_EPSILON)
{
btScalar delta_vn = -2 * I * node->m_im;
btScalar mu = c.m_friction;
btScalar vt_new = btMax(btScalar(1) - mu * delta_vn / (vt_norm + SIMD_EPSILON), btScalar(0))*vt_norm;
I = 0.5 * mass * (vt_norm-vt_new);
vt.safeNormalize();
I_tilde = .5 *I /(1.0+w.length2());
// double the impulse if node or face is constrained.
// if (face_penetration > 0 || node_penetration > 0)
// I_tilde *= 2.0;
if (face_penetration <= node_penetration)
{
for (int j = 0; j < 3; ++j)
face->m_n[j]->m_v += w[j] * vt * I_tilde * (face->m_n[j])->m_im;
}
if (face_penetration >= node_penetration)
{
node->m_v -= I_tilde * node->m_im * vt;
}
}
}
}
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
};
#endif //_BT_SOFT_BODY_H