godot/core/string/ustring.cpp
2024-02-28 11:34:26 -03:00

5441 lines
120 KiB
C++
Raw Blame History

/**************************************************************************/
/* ustring.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "ustring.h"
#include "core/crypto/crypto_core.h"
#include "core/math/color.h"
#include "core/math/math_funcs.h"
#include "core/os/memory.h"
#include "core/string/print_string.h"
#include "core/string/string_name.h"
#include "core/string/translation.h"
#include "core/string/ucaps.h"
#include "core/variant/variant.h"
#include "core/version_generated.gen.h"
#include <stdio.h>
#include <stdlib.h>
#include <cstdint>
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS // to disable build-time warning which suggested to use strcpy_s instead strcpy
#endif
#if defined(MINGW_ENABLED) || defined(_MSC_VER)
#define snprintf _snprintf_s
#endif
static const int MAX_DECIMALS = 32;
static _FORCE_INLINE_ char32_t lower_case(char32_t c) {
return (is_ascii_upper_case(c) ? (c + ('a' - 'A')) : c);
}
const char CharString::_null = 0;
const char16_t Char16String::_null = 0;
const char32_t String::_null = 0;
const char32_t String::_replacement_char = 0xfffd;
bool select_word(const String &p_s, int p_col, int &r_beg, int &r_end) {
const String &s = p_s;
int beg = CLAMP(p_col, 0, s.length());
int end = beg;
if (s[beg] > 32 || beg == s.length()) {
bool symbol = beg < s.length() && is_symbol(s[beg]);
while (beg > 0 && s[beg - 1] > 32 && (symbol == is_symbol(s[beg - 1]))) {
beg--;
}
while (end < s.length() && s[end + 1] > 32 && (symbol == is_symbol(s[end + 1]))) {
end++;
}
if (end < s.length()) {
end += 1;
}
r_beg = beg;
r_end = end;
return true;
} else {
return false;
}
}
/*************************************************************************/
/* Char16String */
/*************************************************************************/
bool Char16String::operator<(const Char16String &p_right) const {
if (length() == 0) {
return p_right.length() != 0;
}
return is_str_less(get_data(), p_right.get_data());
}
Char16String &Char16String::operator+=(char16_t p_char) {
const int lhs_len = length();
resize(lhs_len + 2);
char16_t *dst = ptrw();
dst[lhs_len] = p_char;
dst[lhs_len + 1] = 0;
return *this;
}
void Char16String::operator=(const char16_t *p_cstr) {
copy_from(p_cstr);
}
const char16_t *Char16String::get_data() const {
if (size()) {
return &operator[](0);
} else {
return u"";
}
}
void Char16String::copy_from(const char16_t *p_cstr) {
if (!p_cstr) {
resize(0);
return;
}
const char16_t *s = p_cstr;
for (; *s; s++) {
}
size_t len = s - p_cstr;
if (len == 0) {
resize(0);
return;
}
Error err = resize(++len); // include terminating null char
ERR_FAIL_COND_MSG(err != OK, "Failed to copy char16_t string.");
memcpy(ptrw(), p_cstr, len * sizeof(char16_t));
}
/*************************************************************************/
/* CharString */
/*************************************************************************/
bool CharString::operator<(const CharString &p_right) const {
if (length() == 0) {
return p_right.length() != 0;
}
return is_str_less(get_data(), p_right.get_data());
}
bool CharString::operator==(const CharString &p_right) const {
if (length() == 0) {
// True if both have length 0, false if only p_right has a length
return p_right.length() == 0;
} else if (p_right.length() == 0) {
// False due to unequal length
return false;
}
return strcmp(ptr(), p_right.ptr()) == 0;
}
CharString &CharString::operator+=(char p_char) {
const int lhs_len = length();
resize(lhs_len + 2);
char *dst = ptrw();
dst[lhs_len] = p_char;
dst[lhs_len + 1] = 0;
return *this;
}
void CharString::operator=(const char *p_cstr) {
copy_from(p_cstr);
}
const char *CharString::get_data() const {
if (size()) {
return &operator[](0);
} else {
return "";
}
}
void CharString::copy_from(const char *p_cstr) {
if (!p_cstr) {
resize(0);
return;
}
size_t len = strlen(p_cstr);
if (len == 0) {
resize(0);
return;
}
Error err = resize(++len); // include terminating null char
ERR_FAIL_COND_MSG(err != OK, "Failed to copy C-string.");
memcpy(ptrw(), p_cstr, len);
}
/*************************************************************************/
/* String */
/*************************************************************************/
Error String::parse_url(String &r_scheme, String &r_host, int &r_port, String &r_path) const {
// Splits the URL into scheme, host, port, path. Strip credentials when present.
String base = *this;
r_scheme = "";
r_host = "";
r_port = 0;
r_path = "";
int pos = base.find("://");
// Scheme
if (pos != -1) {
r_scheme = base.substr(0, pos + 3).to_lower();
base = base.substr(pos + 3, base.length() - pos - 3);
}
pos = base.find("/");
// Path
if (pos != -1) {
r_path = base.substr(pos, base.length() - pos);
base = base.substr(0, pos);
}
// Host
pos = base.find("@");
if (pos != -1) {
// Strip credentials
base = base.substr(pos + 1, base.length() - pos - 1);
}
if (base.begins_with("[")) {
// Literal IPv6
pos = base.rfind("]");
if (pos == -1) {
return ERR_INVALID_PARAMETER;
}
r_host = base.substr(1, pos - 1);
base = base.substr(pos + 1, base.length() - pos - 1);
} else {
// Anything else
if (base.get_slice_count(":") > 2) {
return ERR_INVALID_PARAMETER;
}
pos = base.rfind(":");
if (pos == -1) {
r_host = base;
base = "";
} else {
r_host = base.substr(0, pos);
base = base.substr(pos, base.length() - pos);
}
}
if (r_host.is_empty()) {
return ERR_INVALID_PARAMETER;
}
r_host = r_host.to_lower();
// Port
if (base.begins_with(":")) {
base = base.substr(1, base.length() - 1);
if (!base.is_valid_int()) {
return ERR_INVALID_PARAMETER;
}
r_port = base.to_int();
if (r_port < 1 || r_port > 65535) {
return ERR_INVALID_PARAMETER;
}
}
return OK;
}
void String::copy_from(const char *p_cstr) {
// copy Latin-1 encoded c-string directly
if (!p_cstr) {
resize(0);
return;
}
const size_t len = strlen(p_cstr);
if (len == 0) {
resize(0);
return;
}
resize(len + 1); // include 0
char32_t *dst = ptrw();
for (size_t i = 0; i <= len; i++) {
#if CHAR_MIN == 0
uint8_t c = p_cstr[i];
#else
uint8_t c = p_cstr[i] >= 0 ? p_cstr[i] : uint8_t(256 + p_cstr[i]);
#endif
if (c == 0 && i < len) {
print_unicode_error("NUL character", true);
dst[i] = _replacement_char;
} else {
dst[i] = c;
}
}
}
void String::copy_from(const char *p_cstr, const int p_clip_to) {
// copy Latin-1 encoded c-string directly
if (!p_cstr) {
resize(0);
return;
}
int len = 0;
const char *ptr = p_cstr;
while ((p_clip_to < 0 || len < p_clip_to) && *(ptr++) != 0) {
len++;
}
if (len == 0) {
resize(0);
return;
}
resize(len + 1); // include 0
char32_t *dst = ptrw();
for (int i = 0; i < len; i++) {
#if CHAR_MIN == 0
uint8_t c = p_cstr[i];
#else
uint8_t c = p_cstr[i] >= 0 ? p_cstr[i] : uint8_t(256 + p_cstr[i]);
#endif
if (c == 0) {
print_unicode_error("NUL character", true);
dst[i] = _replacement_char;
} else {
dst[i] = c;
}
}
dst[len] = 0;
}
void String::copy_from(const wchar_t *p_cstr) {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit, parse as UTF-16
parse_utf16((const char16_t *)p_cstr);
#else
// wchar_t is 32-bit, copy directly
copy_from((const char32_t *)p_cstr);
#endif
}
void String::copy_from(const wchar_t *p_cstr, const int p_clip_to) {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit, parse as UTF-16
parse_utf16((const char16_t *)p_cstr, p_clip_to);
#else
// wchar_t is 32-bit, copy directly
copy_from((const char32_t *)p_cstr, p_clip_to);
#endif
}
void String::copy_from(const char32_t &p_char) {
if (p_char == 0) {
print_unicode_error("NUL character", true);
return;
}
resize(2);
char32_t *dst = ptrw();
if ((p_char & 0xfffff800) == 0xd800) {
print_unicode_error(vformat("Unpaired surrogate (%x)", (uint32_t)p_char));
dst[0] = _replacement_char;
} else if (p_char > 0x10ffff) {
print_unicode_error(vformat("Invalid unicode codepoint (%x)", (uint32_t)p_char));
dst[0] = _replacement_char;
} else {
dst[0] = p_char;
}
dst[1] = 0;
}
void String::copy_from(const char32_t *p_cstr) {
if (!p_cstr) {
resize(0);
return;
}
int len = 0;
const char32_t *ptr = p_cstr;
while (*(ptr++) != 0) {
len++;
}
if (len == 0) {
resize(0);
return;
}
copy_from_unchecked(p_cstr, len);
}
void String::copy_from(const char32_t *p_cstr, const int p_clip_to) {
if (!p_cstr) {
resize(0);
return;
}
int len = 0;
const char32_t *ptr = p_cstr;
while ((p_clip_to < 0 || len < p_clip_to) && *(ptr++) != 0) {
len++;
}
if (len == 0) {
resize(0);
return;
}
copy_from_unchecked(p_cstr, len);
}
// assumes the following have already been validated:
// p_char != nullptr
// p_length > 0
// p_length <= p_char strlen
void String::copy_from_unchecked(const char32_t *p_char, const int p_length) {
resize(p_length + 1);
char32_t *dst = ptrw();
dst[p_length] = 0;
for (int i = 0; i < p_length; i++) {
if (p_char[i] == 0) {
print_unicode_error("NUL character", true);
dst[i] = _replacement_char;
continue;
}
if ((p_char[i] & 0xfffff800) == 0xd800) {
print_unicode_error(vformat("Unpaired surrogate (%x)", (uint32_t)p_char[i]));
dst[i] = _replacement_char;
continue;
}
if (p_char[i] > 0x10ffff) {
print_unicode_error(vformat("Invalid unicode codepoint (%x)", (uint32_t)p_char[i]));
dst[i] = _replacement_char;
continue;
}
dst[i] = p_char[i];
}
}
void String::operator=(const char *p_str) {
copy_from(p_str);
}
void String::operator=(const char32_t *p_str) {
copy_from(p_str);
}
void String::operator=(const wchar_t *p_str) {
copy_from(p_str);
}
String String::operator+(const String &p_str) const {
String res = *this;
res += p_str;
return res;
}
String String::operator+(char32_t p_char) const {
String res = *this;
res += p_char;
return res;
}
String operator+(const char *p_chr, const String &p_str) {
String tmp = p_chr;
tmp += p_str;
return tmp;
}
String operator+(const wchar_t *p_chr, const String &p_str) {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit
String tmp = String::utf16((const char16_t *)p_chr);
#else
// wchar_t is 32-bit
String tmp = (const char32_t *)p_chr;
#endif
tmp += p_str;
return tmp;
}
String operator+(char32_t p_chr, const String &p_str) {
return (String::chr(p_chr) + p_str);
}
String &String::operator+=(const String &p_str) {
const int lhs_len = length();
if (lhs_len == 0) {
*this = p_str;
return *this;
}
const int rhs_len = p_str.length();
if (rhs_len == 0) {
return *this;
}
resize(lhs_len + rhs_len + 1);
const char32_t *src = p_str.ptr();
char32_t *dst = ptrw() + lhs_len;
// Don't copy the terminating null with `memcpy` to avoid undefined behavior when string is being added to itself (it would overlap the destination).
memcpy(dst, src, rhs_len * sizeof(char32_t));
*(dst + rhs_len) = _null;
return *this;
}
String &String::operator+=(const char *p_str) {
if (!p_str || p_str[0] == 0) {
return *this;
}
const int lhs_len = length();
const size_t rhs_len = strlen(p_str);
resize(lhs_len + rhs_len + 1);
char32_t *dst = ptrw() + lhs_len;
for (size_t i = 0; i <= rhs_len; i++) {
#if CHAR_MIN == 0
uint8_t c = p_str[i];
#else
uint8_t c = p_str[i] >= 0 ? p_str[i] : uint8_t(256 + p_str[i]);
#endif
if (c == 0 && i < rhs_len) {
print_unicode_error("NUL character", true);
dst[i] = _replacement_char;
} else {
dst[i] = c;
}
}
return *this;
}
String &String::operator+=(const wchar_t *p_str) {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit
*this += String::utf16((const char16_t *)p_str);
#else
// wchar_t is 32-bit
*this += String((const char32_t *)p_str);
#endif
return *this;
}
String &String::operator+=(const char32_t *p_str) {
*this += String(p_str);
return *this;
}
String &String::operator+=(char32_t p_char) {
if (p_char == 0) {
print_unicode_error("NUL character", true);
return *this;
}
const int lhs_len = length();
resize(lhs_len + 2);
char32_t *dst = ptrw();
if ((p_char & 0xfffff800) == 0xd800) {
print_unicode_error(vformat("Unpaired surrogate (%x)", (uint32_t)p_char));
dst[lhs_len] = _replacement_char;
} else if (p_char > 0x10ffff) {
print_unicode_error(vformat("Invalid unicode codepoint (%x)", (uint32_t)p_char));
dst[lhs_len] = _replacement_char;
} else {
dst[lhs_len] = p_char;
}
dst[lhs_len + 1] = 0;
return *this;
}
bool String::operator==(const char *p_str) const {
// compare Latin-1 encoded c-string
int len = 0;
const char *aux = p_str;
while (*(aux++) != 0) {
len++;
}
if (length() != len) {
return false;
}
if (is_empty()) {
return true;
}
int l = length();
const char32_t *dst = get_data();
// Compare char by char
for (int i = 0; i < l; i++) {
if ((char32_t)p_str[i] != dst[i]) {
return false;
}
}
return true;
}
bool String::operator==(const wchar_t *p_str) const {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit, parse as UTF-16
return *this == String::utf16((const char16_t *)p_str);
#else
// wchar_t is 32-bit, compare char by char
return *this == (const char32_t *)p_str;
#endif
}
bool String::operator==(const char32_t *p_str) const {
int len = 0;
const char32_t *aux = p_str;
while (*(aux++) != 0) {
len++;
}
if (length() != len) {
return false;
}
if (is_empty()) {
return true;
}
int l = length();
const char32_t *dst = get_data();
/* Compare char by char */
for (int i = 0; i < l; i++) {
if (p_str[i] != dst[i]) {
return false;
}
}
return true;
}
bool String::operator==(const String &p_str) const {
if (length() != p_str.length()) {
return false;
}
if (is_empty()) {
return true;
}
int l = length();
const char32_t *src = get_data();
const char32_t *dst = p_str.get_data();
/* Compare char by char */
for (int i = 0; i < l; i++) {
if (src[i] != dst[i]) {
return false;
}
}
return true;
}
bool String::operator==(const StrRange &p_str_range) const {
int len = p_str_range.len;
if (length() != len) {
return false;
}
if (is_empty()) {
return true;
}
const char32_t *c_str = p_str_range.c_str;
const char32_t *dst = &operator[](0);
/* Compare char by char */
for (int i = 0; i < len; i++) {
if (c_str[i] != dst[i]) {
return false;
}
}
return true;
}
bool operator==(const char *p_chr, const String &p_str) {
return p_str == p_chr;
}
bool operator==(const wchar_t *p_chr, const String &p_str) {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit
return p_str == String::utf16((const char16_t *)p_chr);
#else
// wchar_t is 32-bi
return p_str == String((const char32_t *)p_chr);
#endif
}
bool operator!=(const char *p_chr, const String &p_str) {
return !(p_str == p_chr);
}
bool operator!=(const wchar_t *p_chr, const String &p_str) {
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit
return !(p_str == String::utf16((const char16_t *)p_chr));
#else
// wchar_t is 32-bi
return !(p_str == String((const char32_t *)p_chr));
#endif
}
bool String::operator!=(const char *p_str) const {
return (!(*this == p_str));
}
bool String::operator!=(const wchar_t *p_str) const {
return (!(*this == p_str));
}
bool String::operator!=(const char32_t *p_str) const {
return (!(*this == p_str));
}
bool String::operator!=(const String &p_str) const {
return !((*this == p_str));
}
bool String::operator<=(const String &p_str) const {
return !(p_str < *this);
}
bool String::operator>(const String &p_str) const {
return p_str < *this;
}
bool String::operator>=(const String &p_str) const {
return !(*this < p_str);
}
bool String::operator<(const char *p_str) const {
if (is_empty() && p_str[0] == 0) {
return false;
}
if (is_empty()) {
return true;
}
return is_str_less(get_data(), p_str);
}
bool String::operator<(const wchar_t *p_str) const {
if (is_empty() && p_str[0] == 0) {
return false;
}
if (is_empty()) {
return true;
}
#ifdef WINDOWS_ENABLED
// wchar_t is 16-bit
return is_str_less(get_data(), String::utf16((const char16_t *)p_str).get_data());
#else
// wchar_t is 32-bit
return is_str_less(get_data(), (const char32_t *)p_str);
#endif
}
bool String::operator<(const char32_t *p_str) const {
if (is_empty() && p_str[0] == 0) {
return false;
}
if (is_empty()) {
return true;
}
return is_str_less(get_data(), p_str);
}
bool String::operator<(const String &p_str) const {
return operator<(p_str.get_data());
}
signed char String::nocasecmp_to(const String &p_str) const {
if (is_empty() && p_str.is_empty()) {
return 0;
}
if (is_empty()) {
return -1;
}
if (p_str.is_empty()) {
return 1;
}
const char32_t *that_str = p_str.get_data();
const char32_t *this_str = get_data();
while (true) {
if (*that_str == 0 && *this_str == 0) { // If both strings are at the end, they are equal.
return 0;
} else if (*this_str == 0) { // If at the end of this, and not of other, we are less.
return -1;
} else if (*that_str == 0) { // If at end of other, and not of this, we are greater.
return 1;
} else if (_find_upper(*this_str) < _find_upper(*that_str)) { // If current character in this is less, we are less.
return -1;
} else if (_find_upper(*this_str) > _find_upper(*that_str)) { // If current character in this is greater, we are greater.
return 1;
}
this_str++;
that_str++;
}
}
signed char String::casecmp_to(const String &p_str) const {
if (is_empty() && p_str.is_empty()) {
return 0;
}
if (is_empty()) {
return -1;
}
if (p_str.is_empty()) {
return 1;
}
const char32_t *that_str = p_str.get_data();
const char32_t *this_str = get_data();
while (true) {
if (*that_str == 0 && *this_str == 0) { // If both strings are at the end, they are equal.
return 0;
} else if (*this_str == 0) { // If at the end of this, and not of other, we are less.
return -1;
} else if (*that_str == 0) { // If at end of other, and not of this, we are greater.
return 1;
} else if (*this_str < *that_str) { // If current character in this is less, we are less.
return -1;
} else if (*this_str > *that_str) { // If current character in this is greater, we are greater.
return 1;
}
this_str++;
that_str++;
}
}
static _FORCE_INLINE_ signed char natural_cmp_common(const char32_t *&r_this_str, const char32_t *&r_that_str) {
// Keep ptrs to start of numerical sequences.
const char32_t *this_substr = r_this_str;
const char32_t *that_substr = r_that_str;
// Compare lengths of both numerical sequences, ignoring leading zeros.
while (is_digit(*r_this_str)) {
r_this_str++;
}
while (is_digit(*r_that_str)) {
r_that_str++;
}
while (*this_substr == '0') {
this_substr++;
}
while (*that_substr == '0') {
that_substr++;
}
int this_len = r_this_str - this_substr;
int that_len = r_that_str - that_substr;
if (this_len < that_len) {
return -1;
} else if (this_len > that_len) {
return 1;
}
// If lengths equal, compare lexicographically.
while (this_substr != r_this_str && that_substr != r_that_str) {
if (*this_substr < *that_substr) {
return -1;
} else if (*this_substr > *that_substr) {
return 1;
}
this_substr++;
that_substr++;
}
return 0;
}
signed char String::naturalcasecmp_to(const String &p_str) const {
const char32_t *this_str = get_data();
const char32_t *that_str = p_str.get_data();
if (this_str && that_str) {
while (*this_str == '.' || *that_str == '.') {
if (*this_str++ != '.') {
return 1;
}
if (*that_str++ != '.') {
return -1;
}
if (!*that_str) {
return 1;
}
if (!*this_str) {
return -1;
}
}
while (*this_str) {
if (!*that_str) {
return 1;
} else if (is_digit(*this_str)) {
if (!is_digit(*that_str)) {
return -1;
}
signed char ret = natural_cmp_common(this_str, that_str);
if (ret) {
return ret;
}
} else if (is_digit(*that_str)) {
return 1;
} else {
if (*this_str < *that_str) { // If current character in this is less, we are less.
return -1;
} else if (*this_str > *that_str) { // If current character in this is greater, we are greater.
return 1;
}
this_str++;
that_str++;
}
}
if (*that_str) {
return -1;
}
}
return 0;
}
signed char String::naturalnocasecmp_to(const String &p_str) const {
const char32_t *this_str = get_data();
const char32_t *that_str = p_str.get_data();
if (this_str && that_str) {
while (*this_str == '.' || *that_str == '.') {
if (*this_str++ != '.') {
return 1;
}
if (*that_str++ != '.') {
return -1;
}
if (!*that_str) {
return 1;
}
if (!*this_str) {
return -1;
}
}
while (*this_str) {
if (!*that_str) {
return 1;
} else if (is_digit(*this_str)) {
if (!is_digit(*that_str)) {
return -1;
}
signed char ret = natural_cmp_common(this_str, that_str);
if (ret) {
return ret;
}
} else if (is_digit(*that_str)) {
return 1;
} else {
if (_find_upper(*this_str) < _find_upper(*that_str)) { // If current character in this is less, we are less.
return -1;
} else if (_find_upper(*this_str) > _find_upper(*that_str)) { // If current character in this is greater, we are greater.
return 1;
}
this_str++;
that_str++;
}
}
if (*that_str) {
return -1;
}
}
return 0;
}
const char32_t *String::get_data() const {
static const char32_t zero = 0;
return size() ? &operator[](0) : &zero;
}
String String::_camelcase_to_underscore() const {
const char32_t *cstr = get_data();
String new_string;
int start_index = 0;
for (int i = 1; i < size(); i++) {
bool is_prev_upper = is_unicode_upper_case(cstr[i - 1]);
bool is_prev_lower = is_unicode_lower_case(cstr[i - 1]);
bool is_prev_digit = is_digit(cstr[i - 1]);
bool is_curr_upper = is_unicode_upper_case(cstr[i]);
bool is_curr_lower = is_unicode_lower_case(cstr[i]);
bool is_curr_digit = is_digit(cstr[i]);
bool is_next_lower = false;
if (i + 1 < size()) {
is_next_lower = is_unicode_lower_case(cstr[i + 1]);
}
const bool cond_a = is_prev_lower && is_curr_upper; // aA
const bool cond_b = (is_prev_upper || is_prev_digit) && is_curr_upper && is_next_lower; // AAa, 2Aa
const bool cond_c = is_prev_digit && is_curr_lower && is_next_lower; // 2aa
const bool cond_d = (is_prev_upper || is_prev_lower) && is_curr_digit; // A2, a2
if (cond_a || cond_b || cond_c || cond_d) {
new_string += substr(start_index, i - start_index) + "_";
start_index = i;
}
}
new_string += substr(start_index, size() - start_index);
return new_string.to_lower();
}
String String::capitalize() const {
String aux = _camelcase_to_underscore().replace("_", " ").strip_edges();
String cap;
for (int i = 0; i < aux.get_slice_count(" "); i++) {
String slice = aux.get_slicec(' ', i);
if (slice.length() > 0) {
slice[0] = _find_upper(slice[0]);
if (i > 0) {
cap += " ";
}
cap += slice;
}
}
return cap;
}
String String::to_camel_case() const {
String s = to_pascal_case();
if (!s.is_empty()) {
s[0] = _find_lower(s[0]);
}
return s;
}
String String::to_pascal_case() const {
return capitalize().replace(" ", "");
}
String String::to_snake_case() const {
return _camelcase_to_underscore().replace(" ", "_").strip_edges();
}
String String::get_with_code_lines() const {
const Vector<String> lines = split("\n");
String ret;
for (int i = 0; i < lines.size(); i++) {
if (i > 0) {
ret += "\n";
}
ret += vformat("%4d | %s", i + 1, lines[i]);
}
return ret;
}
int String::get_slice_count(const String &p_splitter) const {
if (is_empty()) {
return 0;
}
if (p_splitter.is_empty()) {
return 0;
}
int pos = 0;
int slices = 1;
while ((pos = find(p_splitter, pos)) >= 0) {
slices++;
pos += p_splitter.length();
}
return slices;
}
String String::get_slice(const String &p_splitter, int p_slice) const {
if (is_empty() || p_splitter.is_empty()) {
return "";
}
int pos = 0;
int prev_pos = 0;
//int slices=1;
if (p_slice < 0) {
return "";
}
if (find(p_splitter) == -1) {
return *this;
}
int i = 0;
while (true) {
pos = find(p_splitter, pos);
if (pos == -1) {
pos = length(); //reached end
}
int from = prev_pos;
//int to=pos;
if (p_slice == i) {
return substr(from, pos - from);
}
if (pos == length()) { //reached end and no find
break;
}
pos += p_splitter.length();
prev_pos = pos;
i++;
}
return ""; //no find!
}
String String::get_slicec(char32_t p_splitter, int p_slice) const {
if (is_empty()) {
return String();
}
if (p_slice < 0) {
return String();
}
const char32_t *c = ptr();
int i = 0;
int prev = 0;
int count = 0;
while (true) {
if (c[i] == 0 || c[i] == p_splitter) {
if (p_slice == count) {
return substr(prev, i - prev);
} else if (c[i] == 0) {
return String();
} else {
count++;
prev = i + 1;
}
}
i++;
}
}
Vector<String> String::split_spaces() const {
Vector<String> ret;
int from = 0;
int i = 0;
int len = length();
if (len == 0) {
return ret;
}
bool inside = false;
while (true) {
bool empty = operator[](i) < 33;
if (i == 0) {
inside = !empty;
}
if (!empty && !inside) {
inside = true;
from = i;
}
if (empty && inside) {
ret.push_back(substr(from, i - from));
inside = false;
}
if (i == len) {
break;
}
i++;
}
return ret;
}
Vector<String> String::split(const String &p_splitter, bool p_allow_empty, int p_maxsplit) const {
Vector<String> ret;
if (is_empty()) {
if (p_allow_empty) {
ret.push_back("");
}
return ret;
}
int from = 0;
int len = length();
while (true) {
int end;
if (p_splitter.is_empty()) {
end = from + 1;
} else {
end = find(p_splitter, from);
if (end < 0) {
end = len;
}
}
if (p_allow_empty || (end > from)) {
if (p_maxsplit <= 0) {
ret.push_back(substr(from, end - from));
} else {
// Put rest of the string and leave cycle.
if (p_maxsplit == ret.size()) {
ret.push_back(substr(from, len));
break;
}
// Otherwise, push items until positive limit is reached.
ret.push_back(substr(from, end - from));
}
}
if (end == len) {
break;
}
from = end + p_splitter.length();
}
return ret;
}
Vector<String> String::rsplit(const String &p_splitter, bool p_allow_empty, int p_maxsplit) const {
Vector<String> ret;
const int len = length();
int remaining_len = len;
while (true) {
if (remaining_len < p_splitter.length() || (p_maxsplit > 0 && p_maxsplit == ret.size())) {
// no room for another splitter or hit max splits, push what's left and we're done
if (p_allow_empty || remaining_len > 0) {
ret.push_back(substr(0, remaining_len));
}
break;
}
int left_edge;
if (p_splitter.is_empty()) {
left_edge = remaining_len - 1;
if (left_edge == 0) {
left_edge--; // Skip to the < 0 condition.
}
} else {
left_edge = rfind(p_splitter, remaining_len - p_splitter.length());
}
if (left_edge < 0) {
// no more splitters, we're done
ret.push_back(substr(0, remaining_len));
break;
}
int substr_start = left_edge + p_splitter.length();
if (p_allow_empty || substr_start < remaining_len) {
ret.push_back(substr(substr_start, remaining_len - substr_start));
}
remaining_len = left_edge;
}
ret.reverse();
return ret;
}
Vector<double> String::split_floats(const String &p_splitter, bool p_allow_empty) const {
Vector<double> ret;
int from = 0;
int len = length();
while (true) {
int end = find(p_splitter, from);
if (end < 0) {
end = len;
}
if (p_allow_empty || (end > from)) {
ret.push_back(String::to_float(&get_data()[from]));
}
if (end == len) {
break;
}
from = end + p_splitter.length();
}
return ret;
}
Vector<float> String::split_floats_mk(const Vector<String> &p_splitters, bool p_allow_empty) const {
Vector<float> ret;
int from = 0;
int len = length();
while (true) {
int idx;
int end = findmk(p_splitters, from, &idx);
int spl_len = 1;
if (end < 0) {
end = len;
} else {
spl_len = p_splitters[idx].length();
}
if (p_allow_empty || (end > from)) {
ret.push_back(String::to_float(&get_data()[from]));
}
if (end == len) {
break;
}
from = end + spl_len;
}
return ret;
}
Vector<int> String::split_ints(const String &p_splitter, bool p_allow_empty) const {
Vector<int> ret;
int from = 0;
int len = length();
while (true) {
int end = find(p_splitter, from);
if (end < 0) {
end = len;
}
if (p_allow_empty || (end > from)) {
ret.push_back(String::to_int(&get_data()[from], end - from));
}
if (end == len) {
break;
}
from = end + p_splitter.length();
}
return ret;
}
Vector<int> String::split_ints_mk(const Vector<String> &p_splitters, bool p_allow_empty) const {
Vector<int> ret;
int from = 0;
int len = length();
while (true) {
int idx;
int end = findmk(p_splitters, from, &idx);
int spl_len = 1;
if (end < 0) {
end = len;
} else {
spl_len = p_splitters[idx].length();
}
if (p_allow_empty || (end > from)) {
ret.push_back(String::to_int(&get_data()[from], end - from));
}
if (end == len) {
break;
}
from = end + spl_len;
}
return ret;
}
String String::join(const Vector<String> &parts) const {
String ret;
for (int i = 0; i < parts.size(); ++i) {
if (i > 0) {
ret += *this;
}
ret += parts[i];
}
return ret;
}
char32_t String::char_uppercase(char32_t p_char) {
return _find_upper(p_char);
}
char32_t String::char_lowercase(char32_t p_char) {
return _find_lower(p_char);
}
String String::to_upper() const {
String upper = *this;
for (int i = 0; i < upper.size(); i++) {
const char32_t s = upper[i];
const char32_t t = _find_upper(s);
if (s != t) { // avoid copy on write
upper[i] = t;
}
}
return upper;
}
String String::to_lower() const {
String lower = *this;
for (int i = 0; i < lower.size(); i++) {
const char32_t s = lower[i];
const char32_t t = _find_lower(s);
if (s != t) { // avoid copy on write
lower[i] = t;
}
}
return lower;
}
String String::chr(char32_t p_char) {
char32_t c[2] = { p_char, 0 };
return String(c);
}
String String::num(double p_num, int p_decimals) {
if (Math::is_nan(p_num)) {
return "nan";
}
if (Math::is_inf(p_num)) {
if (signbit(p_num)) {
return "-inf";
} else {
return "inf";
}
}
if (p_decimals < 0) {
p_decimals = 14;
const double abs_num = Math::abs(p_num);
if (abs_num > 10) {
// We want to align the digits to the above reasonable default, so we only
// need to subtract log10 for numbers with a positive power of ten.
p_decimals -= (int)floor(log10(abs_num));
}
}
if (p_decimals > MAX_DECIMALS) {
p_decimals = MAX_DECIMALS;
}
char fmt[7];
fmt[0] = '%';
fmt[1] = '.';
if (p_decimals < 0) {
fmt[1] = 'l';
fmt[2] = 'f';
fmt[3] = 0;
} else if (p_decimals < 10) {
fmt[2] = '0' + p_decimals;
fmt[3] = 'l';
fmt[4] = 'f';
fmt[5] = 0;
} else {
fmt[2] = '0' + (p_decimals / 10);
fmt[3] = '0' + (p_decimals % 10);
fmt[4] = 'l';
fmt[5] = 'f';
fmt[6] = 0;
}
// if we want to convert a double with as much decimal places as
// DBL_MAX or DBL_MIN then we would theoretically need a buffer of at least
// DBL_MAX_10_EXP + 2 for DBL_MAX and DBL_MAX_10_EXP + 4 for DBL_MIN.
// BUT those values where still giving me exceptions, so I tested from
// DBL_MAX_10_EXP + 10 incrementing one by one and DBL_MAX_10_EXP + 17 (325)
// was the first buffer size not to throw an exception
char buf[325];
#if defined(__GNUC__) || defined(_MSC_VER)
// PLEASE NOTE that, albeit vcrt online reference states that snprintf
// should safely truncate the output to the given buffer size, we have
// found a case where this is not true, so we should create a buffer
// as big as needed
snprintf(buf, 325, fmt, p_num);
#else
sprintf(buf, fmt, p_num);
#endif
buf[324] = 0;
//destroy trailing zeroes
{
bool period = false;
int z = 0;
while (buf[z]) {
if (buf[z] == '.') {
period = true;
}
z++;
}
if (period) {
z--;
while (z > 0) {
if (buf[z] == '0') {
buf[z] = 0;
} else if (buf[z] == '.') {
buf[z] = 0;
break;
} else {
break;
}
z--;
}
}
}
return buf;
}
String String::num_int64(int64_t p_num, int base, bool capitalize_hex) {
bool sign = p_num < 0;
int64_t n = p_num;
int chars = 0;
do {
n /= base;
chars++;
} while (n);
if (sign) {
chars++;
}
String s;
s.resize(chars + 1);
char32_t *c = s.ptrw();
c[chars] = 0;
n = p_num;
do {
int mod = ABS(n % base);
if (mod >= 10) {
char a = (capitalize_hex ? 'A' : 'a');
c[--chars] = a + (mod - 10);
} else {
c[--chars] = '0' + mod;
}
n /= base;
} while (n);
if (sign) {
c[0] = '-';
}
return s;
}
String String::num_uint64(uint64_t p_num, int base, bool capitalize_hex) {
uint64_t n = p_num;
int chars = 0;
do {
n /= base;
chars++;
} while (n);
String s;
s.resize(chars + 1);
char32_t *c = s.ptrw();
c[chars] = 0;
n = p_num;
do {
int mod = n % base;
if (mod >= 10) {
char a = (capitalize_hex ? 'A' : 'a');
c[--chars] = a + (mod - 10);
} else {
c[--chars] = '0' + mod;
}
n /= base;
} while (n);
return s;
}
String String::num_real(double p_num, bool p_trailing) {
if (p_num == (double)(int64_t)p_num) {
if (p_trailing) {
return num_int64((int64_t)p_num) + ".0";
} else {
return num_int64((int64_t)p_num);
}
}
#ifdef REAL_T_IS_DOUBLE
int decimals = 14;
#else
int decimals = 6;
#endif
// We want to align the digits to the above sane default, so we only need
// to subtract log10 for numbers with a positive power of ten magnitude.
double abs_num = Math::abs(p_num);
if (abs_num > 10) {
decimals -= (int)floor(log10(abs_num));
}
return num(p_num, decimals);
}
String String::num_scientific(double p_num) {
if (Math::is_nan(p_num)) {
return "nan";
}
if (Math::is_inf(p_num)) {
if (signbit(p_num)) {
return "-inf";
} else {
return "inf";
}
}
char buf[256];
#if defined(__GNUC__) || defined(_MSC_VER)
#if defined(__MINGW32__) && defined(_TWO_DIGIT_EXPONENT) && !defined(_UCRT)
// MinGW requires _set_output_format() to conform to C99 output for printf
unsigned int old_exponent_format = _set_output_format(_TWO_DIGIT_EXPONENT);
#endif
snprintf(buf, 256, "%lg", p_num);
#if defined(__MINGW32__) && defined(_TWO_DIGIT_EXPONENT) && !defined(_UCRT)
_set_output_format(old_exponent_format);
#endif
#else
sprintf(buf, "%.16lg", p_num);
#endif
buf[255] = 0;
return buf;
}
String String::md5(const uint8_t *p_md5) {
return String::hex_encode_buffer(p_md5, 16);
}
String String::hex_encode_buffer(const uint8_t *p_buffer, int p_len) {
static const char hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
String ret;
char v[2] = { 0, 0 };
for (int i = 0; i < p_len; i++) {
v[0] = hex[p_buffer[i] >> 4];
ret += v;
v[0] = hex[p_buffer[i] & 0xF];
ret += v;
}
return ret;
}
Vector<uint8_t> String::hex_decode() const {
ERR_FAIL_COND_V_MSG(length() % 2 != 0, Vector<uint8_t>(), "Hexadecimal string of uneven length.");
#define HEX_TO_BYTE(m_output, m_index) \
uint8_t m_output; \
c = operator[](m_index); \
if (is_digit(c)) { \
m_output = c - '0'; \
} else if (c >= 'a' && c <= 'f') { \
m_output = c - 'a' + 10; \
} else if (c >= 'A' && c <= 'F') { \
m_output = c - 'A' + 10; \
} else { \
ERR_FAIL_V_MSG(Vector<uint8_t>(), "Invalid hexadecimal character \"" + chr(c) + "\" at index " + m_index + "."); \
}
Vector<uint8_t> out;
int len = length() / 2;
out.resize(len);
for (int i = 0; i < len; i++) {
char32_t c;
HEX_TO_BYTE(first, i * 2);
HEX_TO_BYTE(second, i * 2 + 1);
out.write[i] = first * 16 + second;
}
return out;
#undef HEX_TO_BYTE
}
void String::print_unicode_error(const String &p_message, bool p_critical) const {
if (p_critical) {
print_error(vformat(U"Unicode parsing error, some characters were replaced with <20> (U+FFFD): %s", p_message));
} else {
print_error(vformat("Unicode parsing error: %s", p_message));
}
}
CharString String::ascii(bool p_allow_extended) const {
if (!length()) {
return CharString();
}
CharString cs;
cs.resize(size());
for (int i = 0; i < size(); i++) {
char32_t c = operator[](i);
if ((c <= 0x7f) || (c <= 0xff && p_allow_extended)) {
cs[i] = c;
} else {
print_unicode_error(vformat("Invalid unicode codepoint (%x), cannot represent as ASCII/Latin-1", (uint32_t)c));
cs[i] = 0x20; // ascii doesn't have a replacement character like unicode, 0x1a is sometimes used but is kinda arcane
}
}
return cs;
}
String String::utf8(const char *p_utf8, int p_len) {
String ret;
ret.parse_utf8(p_utf8, p_len);
return ret;
}
Error String::parse_utf8(const char *p_utf8, int p_len, bool p_skip_cr) {
if (!p_utf8) {
return ERR_INVALID_DATA;
}
String aux;
int cstr_size = 0;
int str_size = 0;
/* HANDLE BOM (Byte Order Mark) */
if (p_len < 0 || p_len >= 3) {
bool has_bom = uint8_t(p_utf8[0]) == 0xef && uint8_t(p_utf8[1]) == 0xbb && uint8_t(p_utf8[2]) == 0xbf;
if (has_bom) {
//8-bit encoding, byte order has no meaning in UTF-8, just skip it
if (p_len >= 0) {
p_len -= 3;
}
p_utf8 += 3;
}
}
bool decode_error = false;
bool decode_failed = false;
{
const char *ptrtmp = p_utf8;
const char *ptrtmp_limit = &p_utf8[p_len];
int skip = 0;
uint8_t c_start = 0;
while (ptrtmp != ptrtmp_limit && *ptrtmp) {
#if CHAR_MIN == 0
uint8_t c = *ptrtmp;
#else
uint8_t c = *ptrtmp >= 0 ? *ptrtmp : uint8_t(256 + *ptrtmp);
#endif
if (skip == 0) {
if (p_skip_cr && c == '\r') {
ptrtmp++;
continue;
}
/* Determine the number of characters in sequence */
if ((c & 0x80) == 0) {
skip = 0;
} else if ((c & 0xe0) == 0xc0) {
skip = 1;
} else if ((c & 0xf0) == 0xe0) {
skip = 2;
} else if ((c & 0xf8) == 0xf0) {
skip = 3;
} else if ((c & 0xfc) == 0xf8) {
skip = 4;
} else if ((c & 0xfe) == 0xfc) {
skip = 5;
} else {
skip = 0;
print_unicode_error(vformat("Invalid UTF-8 leading byte (%x)", c), true);
decode_failed = true;
}
c_start = c;
if (skip == 1 && (c & 0x1e) == 0) {
print_unicode_error(vformat("Overlong encoding (%x ...)", c));
decode_error = true;
}
str_size++;
} else {
if ((c_start == 0xe0 && skip == 2 && c < 0xa0) || (c_start == 0xf0 && skip == 3 && c < 0x90) || (c_start == 0xf8 && skip == 4 && c < 0x88) || (c_start == 0xfc && skip == 5 && c < 0x84)) {
print_unicode_error(vformat("Overlong encoding (%x %x ...)", c_start, c));
decode_error = true;
}
if (c < 0x80 || c > 0xbf) {
print_unicode_error(vformat("Invalid UTF-8 continuation byte (%x ... %x ...)", c_start, c), true);
decode_failed = true;
skip = 0;
} else {
--skip;
}
}
cstr_size++;
ptrtmp++;
}
if (skip) {
print_unicode_error(vformat("Missing %d UTF-8 continuation byte(s)", skip), true);
decode_failed = true;
}
}
if (str_size == 0) {
clear();
return OK; // empty string
}
resize(str_size + 1);
char32_t *dst = ptrw();
dst[str_size] = 0;
int skip = 0;
uint32_t unichar = 0;
while (cstr_size) {
#if CHAR_MIN == 0
uint8_t c = *p_utf8;
#else
uint8_t c = *p_utf8 >= 0 ? *p_utf8 : uint8_t(256 + *p_utf8);
#endif
if (skip == 0) {
if (p_skip_cr && c == '\r') {
p_utf8++;
continue;
}
/* Determine the number of characters in sequence */
if ((c & 0x80) == 0) {
*(dst++) = c;
unichar = 0;
skip = 0;
} else if ((c & 0xe0) == 0xc0) {
unichar = (0xff >> 3) & c;
skip = 1;
} else if ((c & 0xf0) == 0xe0) {
unichar = (0xff >> 4) & c;
skip = 2;
} else if ((c & 0xf8) == 0xf0) {
unichar = (0xff >> 5) & c;
skip = 3;
} else if ((c & 0xfc) == 0xf8) {
unichar = (0xff >> 6) & c;
skip = 4;
} else if ((c & 0xfe) == 0xfc) {
unichar = (0xff >> 7) & c;
skip = 5;
} else {
*(dst++) = _replacement_char;
unichar = 0;
skip = 0;
}
} else {
if (c < 0x80 || c > 0xbf) {
*(dst++) = _replacement_char;
skip = 0;
} else {
unichar = (unichar << 6) | (c & 0x3f);
--skip;
if (skip == 0) {
if (unichar == 0) {
print_unicode_error("NUL character", true);
decode_failed = true;
unichar = _replacement_char;
} else if ((unichar & 0xfffff800) == 0xd800) {
print_unicode_error(vformat("Unpaired surrogate (%x)", unichar), true);
decode_failed = true;
unichar = _replacement_char;
} else if (unichar > 0x10ffff) {
print_unicode_error(vformat("Invalid unicode codepoint (%x)", unichar), true);
decode_failed = true;
unichar = _replacement_char;
}
*(dst++) = unichar;
}
}
}
cstr_size--;
p_utf8++;
}
if (skip) {
*(dst++) = 0x20;
}
if (decode_failed) {
return ERR_INVALID_DATA;
} else if (decode_error) {
return ERR_PARSE_ERROR;
} else {
return OK;
}
}
CharString String::utf8() const {
int l = length();
if (!l) {
return CharString();
}
const char32_t *d = &operator[](0);
int fl = 0;
for (int i = 0; i < l; i++) {
uint32_t c = d[i];
if (c <= 0x7f) { // 7 bits.
fl += 1;
} else if (c <= 0x7ff) { // 11 bits
fl += 2;
} else if (c <= 0xffff) { // 16 bits
fl += 3;
} else if (c <= 0x001fffff) { // 21 bits
fl += 4;
} else if (c <= 0x03ffffff) { // 26 bits
fl += 5;
print_unicode_error(vformat("Invalid unicode codepoint (%x)", c));
} else if (c <= 0x7fffffff) { // 31 bits
fl += 6;
print_unicode_error(vformat("Invalid unicode codepoint (%x)", c));
} else {
fl += 1;
print_unicode_error(vformat("Invalid unicode codepoint (%x), cannot represent as UTF-8", c), true);
}
}
CharString utf8s;
if (fl == 0) {
return utf8s;
}
utf8s.resize(fl + 1);
uint8_t *cdst = (uint8_t *)utf8s.get_data();
#define APPEND_CHAR(m_c) *(cdst++) = m_c
for (int i = 0; i < l; i++) {
uint32_t c = d[i];
if (c <= 0x7f) { // 7 bits.
APPEND_CHAR(c);
} else if (c <= 0x7ff) { // 11 bits
APPEND_CHAR(uint32_t(0xc0 | ((c >> 6) & 0x1f))); // Top 5 bits.
APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits.
} else if (c <= 0xffff) { // 16 bits
APPEND_CHAR(uint32_t(0xe0 | ((c >> 12) & 0x0f))); // Top 4 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits.
} else if (c <= 0x001fffff) { // 21 bits
APPEND_CHAR(uint32_t(0xf0 | ((c >> 18) & 0x07))); // Top 3 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 12) & 0x3f))); // Upper middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Lower middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits.
} else if (c <= 0x03ffffff) { // 26 bits
APPEND_CHAR(uint32_t(0xf8 | ((c >> 24) & 0x03))); // Top 2 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 18) & 0x3f))); // Upper middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 12) & 0x3f))); // middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Lower middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits.
} else if (c <= 0x7fffffff) { // 31 bits
APPEND_CHAR(uint32_t(0xfc | ((c >> 30) & 0x01))); // Top 1 bit.
APPEND_CHAR(uint32_t(0x80 | ((c >> 24) & 0x3f))); // Upper upper middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 18) & 0x3f))); // Lower upper middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 12) & 0x3f))); // Upper lower middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | ((c >> 6) & 0x3f))); // Lower lower middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | (c & 0x3f))); // Bottom 6 bits.
} else {
// the string is a valid UTF32, so it should never happen ...
print_unicode_error(vformat("Non scalar value (%x)", c), true);
APPEND_CHAR(uint32_t(0xe0 | ((_replacement_char >> 12) & 0x0f))); // Top 4 bits.
APPEND_CHAR(uint32_t(0x80 | ((_replacement_char >> 6) & 0x3f))); // Middle 6 bits.
APPEND_CHAR(uint32_t(0x80 | (_replacement_char & 0x3f))); // Bottom 6 bits.
}
}
#undef APPEND_CHAR
*cdst = 0; //trailing zero
return utf8s;
}
String String::utf16(const char16_t *p_utf16, int p_len) {
String ret;
ret.parse_utf16(p_utf16, p_len);
return ret;
}
Error String::parse_utf16(const char16_t *p_utf16, int p_len) {
if (!p_utf16) {
return ERR_INVALID_DATA;
}
String aux;
int cstr_size = 0;
int str_size = 0;
/* HANDLE BOM (Byte Order Mark) */
bool byteswap = false; // assume correct endianness if no BOM found
if (p_len < 0 || p_len >= 1) {
bool has_bom = false;
if (uint16_t(p_utf16[0]) == 0xfeff) { // correct BOM, read as is
has_bom = true;
byteswap = false;
} else if (uint16_t(p_utf16[0]) == 0xfffe) { // backwards BOM, swap bytes
has_bom = true;
byteswap = true;
}
if (has_bom) {
if (p_len >= 0) {
p_len -= 1;
}
p_utf16 += 1;
}
}
bool decode_error = false;
{
const char16_t *ptrtmp = p_utf16;
const char16_t *ptrtmp_limit = &p_utf16[p_len];
uint32_t c_prev = 0;
bool skip = false;
while (ptrtmp != ptrtmp_limit && *ptrtmp) {
uint32_t c = (byteswap) ? BSWAP16(*ptrtmp) : *ptrtmp;
if ((c & 0xfffffc00) == 0xd800) { // lead surrogate
if (skip) {
print_unicode_error(vformat("Unpaired lead surrogate (%x [trail?] %x)", c_prev, c));
decode_error = true;
}
skip = true;
} else if ((c & 0xfffffc00) == 0xdc00) { // trail surrogate
if (skip) {
str_size--;
} else {
print_unicode_error(vformat("Unpaired trail surrogate (%x [lead?] %x)", c_prev, c));
decode_error = true;
}
skip = false;
} else {
skip = false;
}
c_prev = c;
str_size++;
cstr_size++;
ptrtmp++;
}
if (skip) {
print_unicode_error(vformat("Unpaired lead surrogate (%x [eol])", c_prev));
decode_error = true;
}
}
if (str_size == 0) {
clear();
return OK; // empty string
}
resize(str_size + 1);
char32_t *dst = ptrw();
dst[str_size] = 0;
bool skip = false;
uint32_t c_prev = 0;
while (cstr_size) {
uint32_t c = (byteswap) ? BSWAP16(*p_utf16) : *p_utf16;
if ((c & 0xfffffc00) == 0xd800) { // lead surrogate
if (skip) {
*(dst++) = c_prev; // unpaired, store as is
}
skip = true;
} else if ((c & 0xfffffc00) == 0xdc00) { // trail surrogate
if (skip) {
*(dst++) = (c_prev << 10UL) + c - ((0xd800 << 10UL) + 0xdc00 - 0x10000); // decode pair
} else {
*(dst++) = c; // unpaired, store as is
}
skip = false;
} else {
*(dst++) = c;
skip = false;
}
cstr_size--;
p_utf16++;
c_prev = c;
}
if (skip) {
*(dst++) = c_prev;
}
if (decode_error) {
return ERR_PARSE_ERROR;
} else {
return OK;
}
}
Char16String String::utf16() const {
int l = length();
if (!l) {
return Char16String();
}
const char32_t *d = &operator[](0);
int fl = 0;
for (int i = 0; i < l; i++) {
uint32_t c = d[i];
if (c <= 0xffff) { // 16 bits.
fl += 1;
if ((c & 0xfffff800) == 0xd800) {
print_unicode_error(vformat("Unpaired surrogate (%x)", c));
}
} else if (c <= 0x10ffff) { // 32 bits.
fl += 2;
} else {
print_unicode_error(vformat("Invalid unicode codepoint (%x), cannot represent as UTF-16", c), true);
fl += 1;
}
}
Char16String utf16s;
if (fl == 0) {
return utf16s;
}
utf16s.resize(fl + 1);
uint16_t *cdst = (uint16_t *)utf16s.get_data();
#define APPEND_CHAR(m_c) *(cdst++) = m_c
for (int i = 0; i < l; i++) {
uint32_t c = d[i];
if (c <= 0xffff) { // 16 bits.
APPEND_CHAR(c);
} else if (c <= 0x10ffff) { // 32 bits.
APPEND_CHAR(uint32_t((c >> 10) + 0xd7c0)); // lead surrogate.
APPEND_CHAR(uint32_t((c & 0x3ff) | 0xdc00)); // trail surrogate.
} else {
// the string is a valid UTF32, so it should never happen ...
APPEND_CHAR(uint32_t((_replacement_char >> 10) + 0xd7c0));
APPEND_CHAR(uint32_t((_replacement_char & 0x3ff) | 0xdc00));
}
}
#undef APPEND_CHAR
*cdst = 0; //trailing zero
return utf16s;
}
String::String(const char *p_str) {
copy_from(p_str);
}
String::String(const wchar_t *p_str) {
copy_from(p_str);
}
String::String(const char32_t *p_str) {
copy_from(p_str);
}
String::String(const char *p_str, int p_clip_to_len) {
copy_from(p_str, p_clip_to_len);
}
String::String(const wchar_t *p_str, int p_clip_to_len) {
copy_from(p_str, p_clip_to_len);
}
String::String(const char32_t *p_str, int p_clip_to_len) {
copy_from(p_str, p_clip_to_len);
}
String::String(const StrRange &p_range) {
if (!p_range.c_str) {
return;
}
copy_from(p_range.c_str, p_range.len);
}
int64_t String::hex_to_int() const {
int len = length();
if (len == 0) {
return 0;
}
const char32_t *s = ptr();
int64_t sign = s[0] == '-' ? -1 : 1;
if (sign < 0) {
s++;
}
if (len > 2 && s[0] == '0' && lower_case(s[1]) == 'x') {
s += 2;
}
int64_t hex = 0;
while (*s) {
char32_t c = lower_case(*s);
int64_t n;
if (is_digit(c)) {
n = c - '0';
} else if (c >= 'a' && c <= 'f') {
n = (c - 'a') + 10;
} else {
ERR_FAIL_V_MSG(0, vformat(R"(Invalid hexadecimal notation character "%c" (U+%04X) in string "%s".)", *s, static_cast<int32_t>(*s), *this));
}
// Check for overflow/underflow, with special case to ensure INT64_MIN does not result in error
bool overflow = ((hex > INT64_MAX / 16) && (sign == 1 || (sign == -1 && hex != (INT64_MAX >> 4) + 1))) || (sign == -1 && hex == (INT64_MAX >> 4) + 1 && c > '0');
ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + *this + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small."));
hex *= 16;
hex += n;
s++;
}
return hex * sign;
}
int64_t String::bin_to_int() const {
int len = length();
if (len == 0) {
return 0;
}
const char32_t *s = ptr();
int64_t sign = s[0] == '-' ? -1 : 1;
if (sign < 0) {
s++;
}
if (len > 2 && s[0] == '0' && lower_case(s[1]) == 'b') {
s += 2;
}
int64_t binary = 0;
while (*s) {
char32_t c = lower_case(*s);
int64_t n;
if (c == '0' || c == '1') {
n = c - '0';
} else {
return 0;
}
// Check for overflow/underflow, with special case to ensure INT64_MIN does not result in error
bool overflow = ((binary > INT64_MAX / 2) && (sign == 1 || (sign == -1 && binary != (INT64_MAX >> 1) + 1))) || (sign == -1 && binary == (INT64_MAX >> 1) + 1 && c > '0');
ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + *this + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small."));
binary *= 2;
binary += n;
s++;
}
return binary * sign;
}
int64_t String::to_int() const {
if (length() == 0) {
return 0;
}
int to = (find(".") >= 0) ? find(".") : length();
int64_t integer = 0;
int64_t sign = 1;
for (int i = 0; i < to; i++) {
char32_t c = operator[](i);
if (is_digit(c)) {
bool overflow = (integer > INT64_MAX / 10) || (integer == INT64_MAX / 10 && ((sign == 1 && c > '7') || (sign == -1 && c > '8')));
ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + *this + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small."));
integer *= 10;
integer += c - '0';
} else if (integer == 0 && c == '-') {
sign = -sign;
}
}
return integer * sign;
}
int64_t String::to_int(const char *p_str, int p_len) {
int to = 0;
if (p_len >= 0) {
to = p_len;
} else {
while (p_str[to] != 0 && p_str[to] != '.') {
to++;
}
}
int64_t integer = 0;
int64_t sign = 1;
for (int i = 0; i < to; i++) {
char c = p_str[i];
if (is_digit(c)) {
bool overflow = (integer > INT64_MAX / 10) || (integer == INT64_MAX / 10 && ((sign == 1 && c > '7') || (sign == -1 && c > '8')));
ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + String(p_str).substr(0, to) + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small."));
integer *= 10;
integer += c - '0';
} else if (c == '-' && integer == 0) {
sign = -sign;
} else if (c != ' ') {
break;
}
}
return integer * sign;
}
int64_t String::to_int(const wchar_t *p_str, int p_len) {
int to = 0;
if (p_len >= 0) {
to = p_len;
} else {
while (p_str[to] != 0 && p_str[to] != '.') {
to++;
}
}
int64_t integer = 0;
int64_t sign = 1;
for (int i = 0; i < to; i++) {
wchar_t c = p_str[i];
if (is_digit(c)) {
bool overflow = (integer > INT64_MAX / 10) || (integer == INT64_MAX / 10 && ((sign == 1 && c > '7') || (sign == -1 && c > '8')));
ERR_FAIL_COND_V_MSG(overflow, sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + String(p_str).substr(0, to) + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small."));
integer *= 10;
integer += c - '0';
} else if (c == '-' && integer == 0) {
sign = -sign;
} else if (c != ' ') {
break;
}
}
return integer * sign;
}
bool String::is_numeric() const {
if (length() == 0) {
return false;
}
int s = 0;
if (operator[](0) == '-') {
++s;
}
bool dot = false;
for (int i = s; i < length(); i++) {
char32_t c = operator[](i);
if (c == '.') {
if (dot) {
return false;
}
dot = true;
} else if (!is_digit(c)) {
return false;
}
}
return true; // TODO: Use the parser below for this instead
}
template <class C>
static double built_in_strtod(
/* A decimal ASCII floating-point number,
* optionally preceded by white space. Must
* have form "-I.FE-X", where I is the integer
* part of the mantissa, F is the fractional
* part of the mantissa, and X is the
* exponent. Either of the signs may be "+",
* "-", or omitted. Either I or F may be
* omitted, or both. The decimal point isn't
* necessary unless F is present. The "E" may
* actually be an "e". E and X may both be
* omitted (but not just one). */
const C *string,
/* If non-nullptr, store terminating Cacter's
* address here. */
C **endPtr = nullptr) {
/* Largest possible base 10 exponent. Any
* exponent larger than this will already
* produce underflow or overflow, so there's
* no need to worry about additional digits. */
static const int maxExponent = 511;
/* Table giving binary powers of 10. Entry
* is 10^2^i. Used to convert decimal
* exponents into floating-point numbers. */
static const double powersOf10[] = {
10.,
100.,
1.0e4,
1.0e8,
1.0e16,
1.0e32,
1.0e64,
1.0e128,
1.0e256
};
bool sign, expSign = false;
double fraction, dblExp;
const double *d;
const C *p;
int c;
/* Exponent read from "EX" field. */
int exp = 0;
/* Exponent that derives from the fractional
* part. Under normal circumstances, it is
* the negative of the number of digits in F.
* However, if I is very long, the last digits
* of I get dropped (otherwise a long I with a
* large negative exponent could cause an
* unnecessary overflow on I alone). In this
* case, fracExp is incremented one for each
* dropped digit. */
int fracExp = 0;
/* Number of digits in mantissa. */
int mantSize;
/* Number of mantissa digits BEFORE decimal point. */
int decPt;
/* Temporarily holds location of exponent in string. */
const C *pExp;
/*
* Strip off leading blanks and check for a sign.
*/
p = string;
while (*p == ' ' || *p == '\t' || *p == '\n') {
p += 1;
}
if (*p == '-') {
sign = true;
p += 1;
} else {
if (*p == '+') {
p += 1;
}
sign = false;
}
/*
* Count the number of digits in the mantissa (including the decimal
* point), and also locate the decimal point.
*/
decPt = -1;
for (mantSize = 0;; mantSize += 1) {
c = *p;
if (!is_digit(c)) {
if ((c != '.') || (decPt >= 0)) {
break;
}
decPt = mantSize;
}
p += 1;
}
/*
* Now suck up the digits in the mantissa. Use two integers to collect 9
* digits each (this is faster than using floating-point). If the mantissa
* has more than 18 digits, ignore the extras, since they can't affect the
* value anyway.
*/
pExp = p;
p -= mantSize;
if (decPt < 0) {
decPt = mantSize;
} else {
mantSize -= 1; /* One of the digits was the point. */
}
if (mantSize > 18) {
fracExp = decPt - 18;
mantSize = 18;
} else {
fracExp = decPt - mantSize;
}
if (mantSize == 0) {
fraction = 0.0;
p = string;
goto done;
} else {
int frac1, frac2;
frac1 = 0;
for (; mantSize > 9; mantSize -= 1) {
c = *p;
p += 1;
if (c == '.') {
c = *p;
p += 1;
}
frac1 = 10 * frac1 + (c - '0');
}
frac2 = 0;
for (; mantSize > 0; mantSize -= 1) {
c = *p;
p += 1;
if (c == '.') {
c = *p;
p += 1;
}
frac2 = 10 * frac2 + (c - '0');
}
fraction = (1.0e9 * frac1) + frac2;
}
/*
* Skim off the exponent.
*/
p = pExp;
if ((*p == 'E') || (*p == 'e')) {
p += 1;
if (*p == '-') {
expSign = true;
p += 1;
} else {
if (*p == '+') {
p += 1;
}
expSign = false;
}
if (!is_digit(char32_t(*p))) {
p = pExp;
goto done;
}
while (is_digit(char32_t(*p))) {
exp = exp * 10 + (*p - '0');
p += 1;
}
}
if (expSign) {
exp = fracExp - exp;
} else {
exp = fracExp + exp;
}
/*
* Generate a floating-point number that represents the exponent. Do this
* by processing the exponent one bit at a time to combine many powers of
* 2 of 10. Then combine the exponent with the fraction.
*/
if (exp < 0) {
expSign = true;
exp = -exp;
} else {
expSign = false;
}
if (exp > maxExponent) {
exp = maxExponent;
WARN_PRINT("Exponent too high");
}
dblExp = 1.0;
for (d = powersOf10; exp != 0; exp >>= 1, ++d) {
if (exp & 01) {
dblExp *= *d;
}
}
if (expSign) {
fraction /= dblExp;
} else {
fraction *= dblExp;
}
done:
if (endPtr != nullptr) {
*endPtr = (C *)p;
}
if (sign) {
return -fraction;
}
return fraction;
}
#define READING_SIGN 0
#define READING_INT 1
#define READING_DEC 2
#define READING_EXP 3
#define READING_DONE 4
double String::to_float(const char *p_str) {
return built_in_strtod<char>(p_str);
}
double String::to_float(const char32_t *p_str, const char32_t **r_end) {
return built_in_strtod<char32_t>(p_str, (char32_t **)r_end);
}
double String::to_float(const wchar_t *p_str, const wchar_t **r_end) {
return built_in_strtod<wchar_t>(p_str, (wchar_t **)r_end);
}
uint32_t String::num_characters(int64_t p_int) {
int r = 1;
if (p_int < 0) {
r += 1;
if (p_int == INT64_MIN) {
p_int = INT64_MAX;
} else {
p_int = -p_int;
}
}
while (p_int >= 10) {
p_int /= 10;
r++;
}
return r;
}
int64_t String::to_int(const char32_t *p_str, int p_len, bool p_clamp) {
if (p_len == 0 || !p_str[0]) {
return 0;
}
///@todo make more exact so saving and loading does not lose precision
int64_t integer = 0;
int64_t sign = 1;
int reading = READING_SIGN;
const char32_t *str = p_str;
const char32_t *limit = &p_str[p_len];
while (*str && reading != READING_DONE && str != limit) {
char32_t c = *(str++);
switch (reading) {
case READING_SIGN: {
if (is_digit(c)) {
reading = READING_INT;
// let it fallthrough
} else if (c == '-') {
sign = -1;
reading = READING_INT;
break;
} else if (c == '+') {
sign = 1;
reading = READING_INT;
break;
} else {
break;
}
[[fallthrough]];
}
case READING_INT: {
if (is_digit(c)) {
if (integer > INT64_MAX / 10) {
String number("");
str = p_str;
while (*str && str != limit) {
number += *(str++);
}
if (p_clamp) {
if (sign == 1) {
return INT64_MAX;
} else {
return INT64_MIN;
}
} else {
ERR_FAIL_V_MSG(sign == 1 ? INT64_MAX : INT64_MIN, "Cannot represent " + number + " as a 64-bit signed integer, since the value is " + (sign == 1 ? "too large." : "too small."));
}
}
integer *= 10;
integer += c - '0';
} else {
reading = READING_DONE;
}
} break;
}
}
return sign * integer;
}
double String::to_float() const {
if (is_empty()) {
return 0;
}
return built_in_strtod<char32_t>(get_data());
}
uint32_t String::hash(const char *p_cstr) {
// static_cast: avoid negative values on platforms where char is signed.
uint32_t hashv = 5381;
uint32_t c = static_cast<uint8_t>(*p_cstr++);
while (c) {
hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */
c = static_cast<uint8_t>(*p_cstr++);
}
return hashv;
}
uint32_t String::hash(const char *p_cstr, int p_len) {
uint32_t hashv = 5381;
for (int i = 0; i < p_len; i++) {
// static_cast: avoid negative values on platforms where char is signed.
hashv = ((hashv << 5) + hashv) + static_cast<uint8_t>(p_cstr[i]); /* hash * 33 + c */
}
return hashv;
}
uint32_t String::hash(const wchar_t *p_cstr, int p_len) {
// Avoid negative values on platforms where wchar_t is signed. Account for different sizes.
using wide_unsigned = std::conditional<sizeof(wchar_t) == 2, uint16_t, uint32_t>::type;
uint32_t hashv = 5381;
for (int i = 0; i < p_len; i++) {
hashv = ((hashv << 5) + hashv) + static_cast<wide_unsigned>(p_cstr[i]); /* hash * 33 + c */
}
return hashv;
}
uint32_t String::hash(const wchar_t *p_cstr) {
// Avoid negative values on platforms where wchar_t is signed. Account for different sizes.
using wide_unsigned = std::conditional<sizeof(wchar_t) == 2, uint16_t, uint32_t>::type;
uint32_t hashv = 5381;
uint32_t c = static_cast<wide_unsigned>(*p_cstr++);
while (c) {
hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */
c = static_cast<wide_unsigned>(*p_cstr++);
}
return hashv;
}
uint32_t String::hash(const char32_t *p_cstr, int p_len) {
uint32_t hashv = 5381;
for (int i = 0; i < p_len; i++) {
hashv = ((hashv << 5) + hashv) + p_cstr[i]; /* hash * 33 + c */
}
return hashv;
}
uint32_t String::hash(const char32_t *p_cstr) {
uint32_t hashv = 5381;
uint32_t c = *p_cstr++;
while (c) {
hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */
c = *p_cstr++;
}
return hashv;
}
uint32_t String::hash() const {
/* simple djb2 hashing */
const char32_t *chr = get_data();
uint32_t hashv = 5381;
uint32_t c = *chr++;
while (c) {
hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */
c = *chr++;
}
return hashv;
}
uint64_t String::hash64() const {
/* simple djb2 hashing */
const char32_t *chr = get_data();
uint64_t hashv = 5381;
uint64_t c = *chr++;
while (c) {
hashv = ((hashv << 5) + hashv) + c; /* hash * 33 + c */
c = *chr++;
}
return hashv;
}
String String::md5_text() const {
CharString cs = utf8();
unsigned char hash[16];
CryptoCore::md5((unsigned char *)cs.ptr(), cs.length(), hash);
return String::hex_encode_buffer(hash, 16);
}
String String::sha1_text() const {
CharString cs = utf8();
unsigned char hash[20];
CryptoCore::sha1((unsigned char *)cs.ptr(), cs.length(), hash);
return String::hex_encode_buffer(hash, 20);
}
String String::sha256_text() const {
CharString cs = utf8();
unsigned char hash[32];
CryptoCore::sha256((unsigned char *)cs.ptr(), cs.length(), hash);
return String::hex_encode_buffer(hash, 32);
}
Vector<uint8_t> String::md5_buffer() const {
CharString cs = utf8();
unsigned char hash[16];
CryptoCore::md5((unsigned char *)cs.ptr(), cs.length(), hash);
Vector<uint8_t> ret;
ret.resize(16);
for (int i = 0; i < 16; i++) {
ret.write[i] = hash[i];
}
return ret;
}
Vector<uint8_t> String::sha1_buffer() const {
CharString cs = utf8();
unsigned char hash[20];
CryptoCore::sha1((unsigned char *)cs.ptr(), cs.length(), hash);
Vector<uint8_t> ret;
ret.resize(20);
for (int i = 0; i < 20; i++) {
ret.write[i] = hash[i];
}
return ret;
}
Vector<uint8_t> String::sha256_buffer() const {
CharString cs = utf8();
unsigned char hash[32];
CryptoCore::sha256((unsigned char *)cs.ptr(), cs.length(), hash);
Vector<uint8_t> ret;
ret.resize(32);
for (int i = 0; i < 32; i++) {
ret.write[i] = hash[i];
}
return ret;
}
String String::insert(int p_at_pos, const String &p_string) const {
if (p_at_pos < 0) {
return *this;
}
if (p_at_pos > length()) {
p_at_pos = length();
}
String pre;
if (p_at_pos > 0) {
pre = substr(0, p_at_pos);
}
String post;
if (p_at_pos < length()) {
post = substr(p_at_pos, length() - p_at_pos);
}
return pre + p_string + post;
}
String String::erase(int p_pos, int p_chars) const {
ERR_FAIL_COND_V_MSG(p_pos < 0, "", vformat("Invalid starting position for `String.erase()`: %d. Starting position must be positive or zero.", p_pos));
ERR_FAIL_COND_V_MSG(p_chars < 0, "", vformat("Invalid character count for `String.erase()`: %d. Character count must be positive or zero.", p_chars));
return left(p_pos) + substr(p_pos + p_chars);
}
String String::substr(int p_from, int p_chars) const {
if (p_chars == -1) {
p_chars = length() - p_from;
}
if (is_empty() || p_from < 0 || p_from >= length() || p_chars <= 0) {
return "";
}
if ((p_from + p_chars) > length()) {
p_chars = length() - p_from;
}
if (p_from == 0 && p_chars >= length()) {
return String(*this);
}
String s;
s.copy_from_unchecked(&get_data()[p_from], p_chars);
return s;
}
int String::find(const String &p_str, int p_from) const {
if (p_from < 0) {
return -1;
}
const int src_len = p_str.length();
const int len = length();
if (src_len == 0 || len == 0) {
return -1; // won't find anything!
}
const char32_t *src = get_data();
const char32_t *str = p_str.get_data();
for (int i = p_from; i <= (len - src_len); i++) {
bool found = true;
for (int j = 0; j < src_len; j++) {
int read_pos = i + j;
if (read_pos >= len) {
ERR_PRINT("read_pos>=len");
return -1;
}
if (src[read_pos] != str[j]) {
found = false;
break;
}
}
if (found) {
return i;
}
}
return -1;
}
int String::find(const char *p_str, int p_from) const {
if (p_from < 0) {
return -1;
}
const int len = length();
if (len == 0) {
return -1; // won't find anything!
}
const char32_t *src = get_data();
int src_len = 0;
while (p_str[src_len] != '\0') {
src_len++;
}
if (src_len == 1) {
const char32_t needle = p_str[0];
for (int i = p_from; i < len; i++) {
if (src[i] == needle) {
return i;
}
}
} else {
for (int i = p_from; i <= (len - src_len); i++) {
bool found = true;
for (int j = 0; j < src_len; j++) {
int read_pos = i + j;
if (read_pos >= len) {
ERR_PRINT("read_pos>=len");
return -1;
}
if (src[read_pos] != (char32_t)p_str[j]) {
found = false;
break;
}
}
if (found) {
return i;
}
}
}
return -1;
}
int String::find_char(const char32_t &p_char, int p_from) const {
return _cowdata.find(p_char, p_from);
}
int String::findmk(const Vector<String> &p_keys, int p_from, int *r_key) const {
if (p_from < 0) {
return -1;
}
if (p_keys.size() == 0) {
return -1;
}
//int src_len=p_str.length();
const String *keys = &p_keys[0];
int key_count = p_keys.size();
int len = length();
if (len == 0) {
return -1; // won't find anything!
}
const char32_t *src = get_data();
for (int i = p_from; i < len; i++) {
bool found = true;
for (int k = 0; k < key_count; k++) {
found = true;
if (r_key) {
*r_key = k;
}
const char32_t *cmp = keys[k].get_data();
int l = keys[k].length();
for (int j = 0; j < l; j++) {
int read_pos = i + j;
if (read_pos >= len) {
found = false;
break;
}
if (src[read_pos] != cmp[j]) {
found = false;
break;
}
}
if (found) {
break;
}
}
if (found) {
return i;
}
}
return -1;
}
int String::findn(const String &p_str, int p_from) const {
if (p_from < 0) {
return -1;
}
int src_len = p_str.length();
if (src_len == 0 || length() == 0) {
return -1; // won't find anything!
}
const char32_t *srcd = get_data();
for (int i = p_from; i <= (length() - src_len); i++) {
bool found = true;
for (int j = 0; j < src_len; j++) {
int read_pos = i + j;
if (read_pos >= length()) {
ERR_PRINT("read_pos>=length()");
return -1;
}
char32_t src = _find_lower(srcd[read_pos]);
char32_t dst = _find_lower(p_str[j]);
if (src != dst) {
found = false;
break;
}
}
if (found) {
return i;
}
}
return -1;
}
int String::rfind(const String &p_str, int p_from) const {
// establish a limit
int limit = length() - p_str.length();
if (limit < 0) {
return -1;
}
// establish a starting point
if (p_from < 0) {
p_from = limit;
} else if (p_from > limit) {
p_from = limit;
}
int src_len = p_str.length();
int len = length();
if (src_len == 0 || len == 0) {
return -1; // won't find anything!
}
const char32_t *src = get_data();
for (int i = p_from; i >= 0; i--) {
bool found = true;
for (int j = 0; j < src_len; j++) {
int read_pos = i + j;
if (read_pos >= len) {
ERR_PRINT("read_pos>=len");
return -1;
}
if (src[read_pos] != p_str[j]) {
found = false;
break;
}
}
if (found) {
return i;
}
}
return -1;
}
int String::rfindn(const String &p_str, int p_from) const {
// establish a limit
int limit = length() - p_str.length();
if (limit < 0) {
return -1;
}
// establish a starting point
if (p_from < 0) {
p_from = limit;
} else if (p_from > limit) {
p_from = limit;
}
int src_len = p_str.length();
int len = length();
if (src_len == 0 || len == 0) {
return -1; // won't find anything!
}
const char32_t *src = get_data();
for (int i = p_from; i >= 0; i--) {
bool found = true;
for (int j = 0; j < src_len; j++) {
int read_pos = i + j;
if (read_pos >= len) {
ERR_PRINT("read_pos>=len");
return -1;
}
char32_t srcc = _find_lower(src[read_pos]);
char32_t dstc = _find_lower(p_str[j]);
if (srcc != dstc) {
found = false;
break;
}
}
if (found) {
return i;
}
}
return -1;
}
bool String::ends_with(const String &p_string) const {
int l = p_string.length();
if (l > length()) {
return false;
}
if (l == 0) {
return true;
}
const char32_t *p = &p_string[0];
const char32_t *s = &operator[](length() - l);
for (int i = 0; i < l; i++) {
if (p[i] != s[i]) {
return false;
}
}
return true;
}
bool String::begins_with(const String &p_string) const {
int l = p_string.length();
if (l > length()) {
return false;
}
if (l == 0) {
return true;
}
const char32_t *p = &p_string[0];
const char32_t *s = &operator[](0);
for (int i = 0; i < l; i++) {
if (p[i] != s[i]) {
return false;
}
}
return true;
}
bool String::begins_with(const char *p_string) const {
int l = length();
if (l == 0 || !p_string) {
return false;
}
const char32_t *str = &operator[](0);
int i = 0;
while (*p_string && i < l) {
if ((char32_t)*p_string != str[i]) {
return false;
}
i++;
p_string++;
}
return *p_string == 0;
}
bool String::is_enclosed_in(const String &p_string) const {
return begins_with(p_string) && ends_with(p_string);
}
bool String::is_subsequence_of(const String &p_string) const {
return _base_is_subsequence_of(p_string, false);
}
bool String::is_subsequence_ofn(const String &p_string) const {
return _base_is_subsequence_of(p_string, true);
}
bool String::is_quoted() const {
return is_enclosed_in("\"") || is_enclosed_in("'");
}
int String::_count(const String &p_string, int p_from, int p_to, bool p_case_insensitive) const {
if (p_string.is_empty()) {
return 0;
}
int len = length();
int slen = p_string.length();
if (len < slen) {
return 0;
}
String str;
if (p_from >= 0 && p_to >= 0) {
if (p_to == 0) {
p_to = len;
} else if (p_from >= p_to) {
return 0;
}
if (p_from == 0 && p_to == len) {
str = String();
str.copy_from_unchecked(&get_data()[0], len);
} else {
str = substr(p_from, p_to - p_from);
}
} else {
return 0;
}
int c = 0;
int idx = -1;
do {
idx = p_case_insensitive ? str.findn(p_string) : str.find(p_string);
if (idx != -1) {
str = str.substr(idx + slen, str.length() - slen);
++c;
}
} while (idx != -1);
return c;
}
int String::count(const String &p_string, int p_from, int p_to) const {
return _count(p_string, p_from, p_to, false);
}
int String::countn(const String &p_string, int p_from, int p_to) const {
return _count(p_string, p_from, p_to, true);
}
bool String::_base_is_subsequence_of(const String &p_string, bool case_insensitive) const {
int len = length();
if (len == 0) {
// Technically an empty string is subsequence of any string
return true;
}
if (len > p_string.length()) {
return false;
}
const char32_t *src = &operator[](0);
const char32_t *tgt = &p_string[0];
for (; *src && *tgt; tgt++) {
bool match = false;
if (case_insensitive) {
char32_t srcc = _find_lower(*src);
char32_t tgtc = _find_lower(*tgt);
match = srcc == tgtc;
} else {
match = *src == *tgt;
}
if (match) {
src++;
if (!*src) {
return true;
}
}
}
return false;
}
Vector<String> String::bigrams() const {
int n_pairs = length() - 1;
Vector<String> b;
if (n_pairs <= 0) {
return b;
}
b.resize(n_pairs);
for (int i = 0; i < n_pairs; i++) {
b.write[i] = substr(i, 2);
}
return b;
}
// Similarity according to Sorensen-Dice coefficient
float String::similarity(const String &p_string) const {
if (operator==(p_string)) {
// Equal strings are totally similar
return 1.0f;
}
if (length() < 2 || p_string.length() < 2) {
// No way to calculate similarity without a single bigram
return 0.0f;
}
Vector<String> src_bigrams = bigrams();
Vector<String> tgt_bigrams = p_string.bigrams();
int src_size = src_bigrams.size();
int tgt_size = tgt_bigrams.size();
int sum = src_size + tgt_size;
int inter = 0;
for (int i = 0; i < src_size; i++) {
for (int j = 0; j < tgt_size; j++) {
if (src_bigrams[i] == tgt_bigrams[j]) {
inter++;
break;
}
}
}
return (2.0f * inter) / sum;
}
static bool _wildcard_match(const char32_t *p_pattern, const char32_t *p_string, bool p_case_sensitive) {
switch (*p_pattern) {
case '\0':
return !*p_string;
case '*':
return _wildcard_match(p_pattern + 1, p_string, p_case_sensitive) || (*p_string && _wildcard_match(p_pattern, p_string + 1, p_case_sensitive));
case '?':
return *p_string && (*p_string != '.') && _wildcard_match(p_pattern + 1, p_string + 1, p_case_sensitive);
default:
return (p_case_sensitive ? (*p_string == *p_pattern) : (_find_upper(*p_string) == _find_upper(*p_pattern))) && _wildcard_match(p_pattern + 1, p_string + 1, p_case_sensitive);
}
}
bool String::match(const String &p_wildcard) const {
if (!p_wildcard.length() || !length()) {
return false;
}
return _wildcard_match(p_wildcard.get_data(), get_data(), true);
}
bool String::matchn(const String &p_wildcard) const {
if (!p_wildcard.length() || !length()) {
return false;
}
return _wildcard_match(p_wildcard.get_data(), get_data(), false);
}
String String::format(const Variant &values, const String &placeholder) const {
String new_string = String(ptr());
if (values.get_type() == Variant::ARRAY) {
Array values_arr = values;
for (int i = 0; i < values_arr.size(); i++) {
String i_as_str = String::num_int64(i);
if (values_arr[i].get_type() == Variant::ARRAY) { //Array in Array structure [["name","RobotGuy"],[0,"godot"],["strength",9000.91]]
Array value_arr = values_arr[i];
if (value_arr.size() == 2) {
Variant v_key = value_arr[0];
String key = v_key;
Variant v_val = value_arr[1];
String val = v_val;
new_string = new_string.replace(placeholder.replace("_", key), val);
} else {
ERR_PRINT(String("STRING.format Inner Array size != 2 ").ascii().get_data());
}
} else { //Array structure ["RobotGuy","Logis","rookie"]
Variant v_val = values_arr[i];
String val = v_val;
if (placeholder.find("_") > -1) {
new_string = new_string.replace(placeholder.replace("_", i_as_str), val);
} else {
new_string = new_string.replace_first(placeholder, val);
}
}
}
} else if (values.get_type() == Variant::DICTIONARY) {
Dictionary d = values;
List<Variant> keys;
d.get_key_list(&keys);
for (const Variant &key : keys) {
new_string = new_string.replace(placeholder.replace("_", key), d[key]);
}
} else {
ERR_PRINT(String("Invalid type: use Array or Dictionary.").ascii().get_data());
}
return new_string;
}
String String::replace(const String &p_key, const String &p_with) const {
String new_string;
int search_from = 0;
int result = 0;
while ((result = find(p_key, search_from)) >= 0) {
new_string += substr(search_from, result - search_from);
new_string += p_with;
search_from = result + p_key.length();
}
if (search_from == 0) {
return *this;
}
new_string += substr(search_from, length() - search_from);
return new_string;
}
String String::replace(const char *p_key, const char *p_with) const {
String new_string;
int search_from = 0;
int result = 0;
while ((result = find(p_key, search_from)) >= 0) {
new_string += substr(search_from, result - search_from);
new_string += p_with;
int k = 0;
while (p_key[k] != '\0') {
k++;
}
search_from = result + k;
}
if (search_from == 0) {
return *this;
}
new_string += substr(search_from, length() - search_from);
return new_string;
}
String String::replace_first(const String &p_key, const String &p_with) const {
int pos = find(p_key);
if (pos >= 0) {
return substr(0, pos) + p_with + substr(pos + p_key.length(), length());
}
return *this;
}
String String::replacen(const String &p_key, const String &p_with) const {
String new_string;
int search_from = 0;
int result = 0;
while ((result = findn(p_key, search_from)) >= 0) {
new_string += substr(search_from, result - search_from);
new_string += p_with;
search_from = result + p_key.length();
}
if (search_from == 0) {
return *this;
}
new_string += substr(search_from, length() - search_from);
return new_string;
}
String String::repeat(int p_count) const {
ERR_FAIL_COND_V_MSG(p_count < 0, "", "Parameter count should be a positive number.");
if (p_count == 0) {
return "";
}
if (p_count == 1) {
return *this;
}
int len = length();
String new_string = *this;
new_string.resize(p_count * len + 1);
char32_t *dst = new_string.ptrw();
int offset = 1;
int stride = 1;
while (offset < p_count) {
memcpy(dst + offset * len, dst, stride * len * sizeof(char32_t));
offset += stride;
stride = MIN(stride * 2, p_count - offset);
}
dst[p_count * len] = _null;
return new_string;
}
String String::reverse() const {
int len = length();
if (len <= 1) {
return *this;
}
String new_string;
new_string.resize(len + 1);
const char32_t *src = ptr();
char32_t *dst = new_string.ptrw();
for (int i = 0; i < len; i++) {
dst[i] = src[len - i - 1];
}
dst[len] = _null;
return new_string;
}
String String::left(int p_len) const {
if (p_len < 0) {
p_len = length() + p_len;
}
if (p_len <= 0) {
return "";
}
if (p_len >= length()) {
return *this;
}
String s;
s.copy_from_unchecked(&get_data()[0], p_len);
return s;
}
String String::right(int p_len) const {
if (p_len < 0) {
p_len = length() + p_len;
}
if (p_len <= 0) {
return "";
}
if (p_len >= length()) {
return *this;
}
String s;
s.copy_from_unchecked(&get_data()[length() - p_len], p_len);
return s;
}
char32_t String::unicode_at(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, length(), 0);
return operator[](p_idx);
}
String String::indent(const String &p_prefix) const {
String new_string;
int line_start = 0;
for (int i = 0; i < length(); i++) {
const char32_t c = operator[](i);
if (c == '\n') {
if (i == line_start) {
new_string += c; // Leave empty lines empty.
} else {
new_string += p_prefix + substr(line_start, i - line_start + 1);
}
line_start = i + 1;
}
}
if (line_start != length()) {
new_string += p_prefix + substr(line_start);
}
return new_string;
}
String String::dedent() const {
String new_string;
String indent;
bool has_indent = false;
bool has_text = false;
int line_start = 0;
int indent_stop = -1;
for (int i = 0; i < length(); i++) {
char32_t c = operator[](i);
if (c == '\n') {
if (has_text) {
new_string += substr(indent_stop, i - indent_stop);
}
new_string += "\n";
has_text = false;
line_start = i + 1;
indent_stop = -1;
} else if (!has_text) {
if (c > 32) {
has_text = true;
if (!has_indent) {
has_indent = true;
indent = substr(line_start, i - line_start);
indent_stop = i;
}
}
if (has_indent && indent_stop < 0) {
int j = i - line_start;
if (j >= indent.length() || c != indent[j]) {
indent_stop = i;
}
}
}
}
if (has_text) {
new_string += substr(indent_stop, length() - indent_stop);
}
return new_string;
}
String String::strip_edges(bool left, bool right) const {
int len = length();
int beg = 0, end = len;
if (left) {
for (int i = 0; i < len; i++) {
if (operator[](i) <= 32) {
beg++;
} else {
break;
}
}
}
if (right) {
for (int i = len - 1; i >= 0; i--) {
if (operator[](i) <= 32) {
end--;
} else {
break;
}
}
}
if (beg == 0 && end == len) {
return *this;
}
return substr(beg, end - beg);
}
String String::strip_escapes() const {
String new_string;
for (int i = 0; i < length(); i++) {
// Escape characters on first page of the ASCII table, before 32 (Space).
if (operator[](i) < 32) {
continue;
}
new_string += operator[](i);
}
return new_string;
}
String String::lstrip(const String &p_chars) const {
int len = length();
int beg;
for (beg = 0; beg < len; beg++) {
if (p_chars.find_char(get(beg)) == -1) {
break;
}
}
if (beg == 0) {
return *this;
}
return substr(beg, len - beg);
}
String String::rstrip(const String &p_chars) const {
int len = length();
int end;
for (end = len - 1; end >= 0; end--) {
if (p_chars.find_char(get(end)) == -1) {
break;
}
}
if (end == len - 1) {
return *this;
}
return substr(0, end + 1);
}
bool String::is_network_share_path() const {
return begins_with("//") || begins_with("\\\\");
}
String String::simplify_path() const {
String s = *this;
String drive;
// Check if we have a special path (like res://) or a protocol identifier.
int p = s.find("://");
bool found = false;
if (p > 0) {
bool only_chars = true;
for (int i = 0; i < p; i++) {
if (!is_ascii_alphanumeric_char(s[i])) {
only_chars = false;
break;
}
}
if (only_chars) {
found = true;
drive = s.substr(0, p + 3);
s = s.substr(p + 3);
}
}
if (!found) {
if (is_network_share_path()) {
// Network path, beginning with // or \\.
drive = s.substr(0, 2);
s = s.substr(2);
} else if (s.begins_with("/") || s.begins_with("\\")) {
// Absolute path.
drive = s.substr(0, 1);
s = s.substr(1);
} else {
// Windows-style drive path, like C:/ or C:\.
p = s.find(":/");
if (p == -1) {
p = s.find(":\\");
}
if (p != -1 && p < s.find("/")) {
drive = s.substr(0, p + 2);
s = s.substr(p + 2);
}
}
}
s = s.replace("\\", "/");
while (true) { // in case of using 2 or more slash
String compare = s.replace("//", "/");
if (s == compare) {
break;
} else {
s = compare;
}
}
Vector<String> dirs = s.split("/", false);
for (int i = 0; i < dirs.size(); i++) {
String d = dirs[i];
if (d == ".") {
dirs.remove_at(i);
i--;
} else if (d == "..") {
if (i == 0) {
dirs.remove_at(i);
i--;
} else {
dirs.remove_at(i);
dirs.remove_at(i - 1);
i -= 2;
}
}
}
s = "";
for (int i = 0; i < dirs.size(); i++) {
if (i > 0) {
s += "/";
}
s += dirs[i];
}
return drive + s;
}
static int _humanize_digits(int p_num) {
if (p_num < 100) {
return 2;
} else if (p_num < 1024) {
return 1;
} else {
return 0;
}
}
String String::humanize_size(uint64_t p_size) {
int magnitude = 0;
uint64_t _div = 1;
while (p_size > _div * 1024 && magnitude < 6) {
_div *= 1024;
magnitude++;
}
if (magnitude == 0) {
return String::num(p_size) + " " + RTR("B");
} else {
String suffix;
switch (magnitude) {
case 1:
suffix = RTR("KiB");
break;
case 2:
suffix = RTR("MiB");
break;
case 3:
suffix = RTR("GiB");
break;
case 4:
suffix = RTR("TiB");
break;
case 5:
suffix = RTR("PiB");
break;
case 6:
suffix = RTR("EiB");
break;
}
const double divisor = _div;
const int digits = _humanize_digits(p_size / _div);
return String::num(p_size / divisor).pad_decimals(digits) + " " + suffix;
}
}
bool String::is_absolute_path() const {
if (length() > 1) {
return (operator[](0) == '/' || operator[](0) == '\\' || find(":/") != -1 || find(":\\") != -1);
} else if ((length()) == 1) {
return (operator[](0) == '/' || operator[](0) == '\\');
} else {
return false;
}
}
String String::validate_identifier() const {
if (is_empty()) {
return "_"; // Empty string is not a valid identifier;
}
String result;
if (is_digit(operator[](0))) {
result = "_" + *this;
} else {
result = *this;
}
int len = result.length();
char32_t *buffer = result.ptrw();
for (int i = 0; i < len; i++) {
if (!is_ascii_identifier_char(buffer[i])) {
buffer[i] = '_';
}
}
return result;
}
bool String::is_valid_identifier() const {
int len = length();
if (len == 0) {
return false;
}
if (is_digit(operator[](0))) {
return false;
}
const char32_t *str = &operator[](0);
for (int i = 0; i < len; i++) {
if (!is_ascii_identifier_char(str[i])) {
return false;
}
}
return true;
}
bool String::is_valid_string() const {
int l = length();
const char32_t *src = get_data();
bool valid = true;
for (int i = 0; i < l; i++) {
valid = valid && (src[i] < 0xd800 || (src[i] > 0xdfff && src[i] <= 0x10ffff));
}
return valid;
}
String String::uri_encode() const {
const CharString temp = utf8();
String res;
for (int i = 0; i < temp.length(); ++i) {
uint8_t ord = temp[i];
if (ord == '.' || ord == '-' || ord == '~' || is_ascii_identifier_char(ord)) {
res += ord;
} else {
char p[4] = { '%', 0, 0, 0 };
static const char hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
p[1] = hex[ord >> 4];
p[2] = hex[ord & 0xF];
res += p;
}
}
return res;
}
String String::uri_decode() const {
CharString src = utf8();
CharString res;
for (int i = 0; i < src.length(); ++i) {
if (src[i] == '%' && i + 2 < src.length()) {
char ord1 = src[i + 1];
if (is_digit(ord1) || is_ascii_upper_case(ord1)) {
char ord2 = src[i + 2];
if (is_digit(ord2) || is_ascii_upper_case(ord2)) {
char bytes[3] = { (char)ord1, (char)ord2, 0 };
res += (char)strtol(bytes, nullptr, 16);
i += 2;
}
} else {
res += src[i];
}
} else if (src[i] == '+') {
res += ' ';
} else {
res += src[i];
}
}
return String::utf8(res);
}
String String::c_unescape() const {
String escaped = *this;
escaped = escaped.replace("\\a", "\a");
escaped = escaped.replace("\\b", "\b");
escaped = escaped.replace("\\f", "\f");
escaped = escaped.replace("\\n", "\n");
escaped = escaped.replace("\\r", "\r");
escaped = escaped.replace("\\t", "\t");
escaped = escaped.replace("\\v", "\v");
escaped = escaped.replace("\\'", "\'");
escaped = escaped.replace("\\\"", "\"");
escaped = escaped.replace("\\\\", "\\");
return escaped;
}
String String::c_escape() const {
String escaped = *this;
escaped = escaped.replace("\\", "\\\\");
escaped = escaped.replace("\a", "\\a");
escaped = escaped.replace("\b", "\\b");
escaped = escaped.replace("\f", "\\f");
escaped = escaped.replace("\n", "\\n");
escaped = escaped.replace("\r", "\\r");
escaped = escaped.replace("\t", "\\t");
escaped = escaped.replace("\v", "\\v");
escaped = escaped.replace("\'", "\\'");
escaped = escaped.replace("\"", "\\\"");
return escaped;
}
String String::c_escape_multiline() const {
String escaped = *this;
escaped = escaped.replace("\\", "\\\\");
escaped = escaped.replace("\"", "\\\"");
return escaped;
}
String String::json_escape() const {
String escaped = *this;
escaped = escaped.replace("\\", "\\\\");
escaped = escaped.replace("\b", "\\b");
escaped = escaped.replace("\f", "\\f");
escaped = escaped.replace("\n", "\\n");
escaped = escaped.replace("\r", "\\r");
escaped = escaped.replace("\t", "\\t");
escaped = escaped.replace("\v", "\\v");
escaped = escaped.replace("\"", "\\\"");
return escaped;
}
String String::xml_escape(bool p_escape_quotes) const {
String str = *this;
str = str.replace("&", "&amp;");
str = str.replace("<", "&lt;");
str = str.replace(">", "&gt;");
if (p_escape_quotes) {
str = str.replace("'", "&apos;");
str = str.replace("\"", "&quot;");
}
/*
for (int i=1;i<32;i++) {
char chr[2]={i,0};
str=str.replace(chr,"&#"+String::num(i)+";");
}*/
return str;
}
static _FORCE_INLINE_ int _xml_unescape(const char32_t *p_src, int p_src_len, char32_t *p_dst) {
int len = 0;
while (p_src_len) {
if (*p_src == '&') {
int eat = 0;
if (p_src_len >= 4 && p_src[1] == '#') {
char32_t c = 0;
bool overflow = false;
if (p_src[2] == 'x') {
// Hex entity &#x<num>;
for (int i = 3; i < p_src_len; i++) {
eat = i + 1;
char32_t ct = p_src[i];
if (ct == ';') {
break;
} else if (is_digit(ct)) {
ct = ct - '0';
} else if (ct >= 'a' && ct <= 'f') {
ct = (ct - 'a') + 10;
} else if (ct >= 'A' && ct <= 'F') {
ct = (ct - 'A') + 10;
} else {
break;
}
if (c > (UINT32_MAX >> 4)) {
overflow = true;
break;
}
c <<= 4;
c |= ct;
}
} else {
// Decimal entity &#<num>;
for (int i = 2; i < p_src_len; i++) {
eat = i + 1;
char32_t ct = p_src[i];
if (ct == ';' || !is_digit(ct)) {
break;
}
}
if (p_src[eat - 1] == ';') {
int64_t val = String::to_int(p_src + 2, eat - 3);
if (val > 0 && val <= UINT32_MAX) {
c = (char32_t)val;
} else {
overflow = true;
}
}
}
// Value must be non-zero, in the range of char32_t,
// actually end with ';'. If invalid, leave the entity as-is
if (c == '\0' || overflow || p_src[eat - 1] != ';') {
eat = 1;
c = *p_src;
}
if (p_dst) {
*p_dst = c;
}
} else if (p_src_len >= 4 && p_src[1] == 'g' && p_src[2] == 't' && p_src[3] == ';') {
if (p_dst) {
*p_dst = '>';
}
eat = 4;
} else if (p_src_len >= 4 && p_src[1] == 'l' && p_src[2] == 't' && p_src[3] == ';') {
if (p_dst) {
*p_dst = '<';
}
eat = 4;
} else if (p_src_len >= 5 && p_src[1] == 'a' && p_src[2] == 'm' && p_src[3] == 'p' && p_src[4] == ';') {
if (p_dst) {
*p_dst = '&';
}
eat = 5;
} else if (p_src_len >= 6 && p_src[1] == 'q' && p_src[2] == 'u' && p_src[3] == 'o' && p_src[4] == 't' && p_src[5] == ';') {
if (p_dst) {
*p_dst = '"';
}
eat = 6;
} else if (p_src_len >= 6 && p_src[1] == 'a' && p_src[2] == 'p' && p_src[3] == 'o' && p_src[4] == 's' && p_src[5] == ';') {
if (p_dst) {
*p_dst = '\'';
}
eat = 6;
} else {
if (p_dst) {
*p_dst = *p_src;
}
eat = 1;
}
if (p_dst) {
p_dst++;
}
len++;
p_src += eat;
p_src_len -= eat;
} else {
if (p_dst) {
*p_dst = *p_src;
p_dst++;
}
len++;
p_src++;
p_src_len--;
}
}
return len;
}
String String::xml_unescape() const {
String str;
int l = length();
int len = _xml_unescape(get_data(), l, nullptr);
if (len == 0) {
return String();
}
str.resize(len + 1);
_xml_unescape(get_data(), l, str.ptrw());
str[len] = 0;
return str;
}
String String::pad_decimals(int p_digits) const {
String s = *this;
int c = s.find(".");
if (c == -1) {
if (p_digits <= 0) {
return s;
}
s += ".";
c = s.length() - 1;
} else {
if (p_digits <= 0) {
return s.substr(0, c);
}
}
if (s.length() - (c + 1) > p_digits) {
return s.substr(0, c + p_digits + 1);
} else {
int zeros_to_add = p_digits - s.length() + (c + 1);
return s + String("0").repeat(zeros_to_add);
}
}
String String::pad_zeros(int p_digits) const {
String s = *this;
int end = s.find(".");
if (end == -1) {
end = s.length();
}
if (end == 0) {
return s;
}
int begin = 0;
while (begin < end && !is_digit(s[begin])) {
begin++;
}
int zeros_to_add = p_digits - (end - begin);
if (zeros_to_add <= 0) {
return s;
} else {
return s.insert(begin, String("0").repeat(zeros_to_add));
}
}
String String::trim_prefix(const String &p_prefix) const {
String s = *this;
if (s.begins_with(p_prefix)) {
return s.substr(p_prefix.length(), s.length() - p_prefix.length());
}
return s;
}
String String::trim_suffix(const String &p_suffix) const {
String s = *this;
if (s.ends_with(p_suffix)) {
return s.substr(0, s.length() - p_suffix.length());
}
return s;
}
bool String::is_valid_int() const {
int len = length();
if (len == 0) {
return false;
}
int from = 0;
if (len != 1 && (operator[](0) == '+' || operator[](0) == '-')) {
from++;
}
for (int i = from; i < len; i++) {
if (!is_digit(operator[](i))) {
return false; // no start with number plz
}
}
return true;
}
bool String::is_valid_hex_number(bool p_with_prefix) const {
int len = length();
if (len == 0) {
return false;
}
int from = 0;
if (len != 1 && (operator[](0) == '+' || operator[](0) == '-')) {
from++;
}
if (p_with_prefix) {
if (len < 3) {
return false;
}
if (operator[](from) != '0' || operator[](from + 1) != 'x') {
return false;
}
from += 2;
}
for (int i = from; i < len; i++) {
char32_t c = operator[](i);
if (is_hex_digit(c)) {
continue;
}
return false;
}
return true;
}
bool String::is_valid_float() const {
int len = length();
if (len == 0) {
return false;
}
int from = 0;
if (operator[](0) == '+' || operator[](0) == '-') {
from++;
}
bool exponent_found = false;
bool period_found = false;
bool sign_found = false;
bool exponent_values_found = false;
bool numbers_found = false;
for (int i = from; i < len; i++) {
if (is_digit(operator[](i))) {
if (exponent_found) {
exponent_values_found = true;
} else {
numbers_found = true;
}
} else if (numbers_found && !exponent_found && operator[](i) == 'e') {
exponent_found = true;
} else if (!period_found && !exponent_found && operator[](i) == '.') {
period_found = true;
} else if ((operator[](i) == '-' || operator[](i) == '+') && exponent_found && !exponent_values_found && !sign_found) {
sign_found = true;
} else {
return false; // no start with number plz
}
}
return numbers_found;
}
String String::path_to_file(const String &p_path) const {
// Don't get base dir for src, this is expected to be a dir already.
String src = replace("\\", "/");
String dst = p_path.replace("\\", "/").get_base_dir();
String rel = src.path_to(dst);
if (rel == dst) { // failed
return p_path;
} else {
return rel + p_path.get_file();
}
}
String String::path_to(const String &p_path) const {
String src = replace("\\", "/");
String dst = p_path.replace("\\", "/");
if (!src.ends_with("/")) {
src += "/";
}
if (!dst.ends_with("/")) {
dst += "/";
}
if (src.begins_with("res://") && dst.begins_with("res://")) {
src = src.replace("res://", "/");
dst = dst.replace("res://", "/");
} else if (src.begins_with("user://") && dst.begins_with("user://")) {
src = src.replace("user://", "/");
dst = dst.replace("user://", "/");
} else if (src.begins_with("/") && dst.begins_with("/")) {
//nothing
} else {
//dos style
String src_begin = src.get_slicec('/', 0);
String dst_begin = dst.get_slicec('/', 0);
if (src_begin != dst_begin) {
return p_path; //impossible to do this
}
src = src.substr(src_begin.length(), src.length());
dst = dst.substr(dst_begin.length(), dst.length());
}
//remove leading and trailing slash and split
Vector<String> src_dirs = src.substr(1, src.length() - 2).split("/");
Vector<String> dst_dirs = dst.substr(1, dst.length() - 2).split("/");
//find common parent
int common_parent = 0;
while (true) {
if (src_dirs.size() == common_parent) {
break;
}
if (dst_dirs.size() == common_parent) {
break;
}
if (src_dirs[common_parent] != dst_dirs[common_parent]) {
break;
}
common_parent++;
}
common_parent--;
int dirs_to_backtrack = (src_dirs.size() - 1) - common_parent;
String dir = String("../").repeat(dirs_to_backtrack);
for (int i = common_parent + 1; i < dst_dirs.size(); i++) {
dir += dst_dirs[i] + "/";
}
if (dir.length() == 0) {
dir = "./";
}
return dir;
}
bool String::is_valid_html_color() const {
return Color::html_is_valid(*this);
}
// Changes made to the set of invalid filename characters must also be reflected in the String documentation for is_valid_filename.
static const char *invalid_filename_characters = ": / \\ ? * \" | % < >";
bool String::is_valid_filename() const {
String stripped = strip_edges();
if (*this != stripped) {
return false;
}
if (stripped.is_empty()) {
return false;
}
Vector<String> chars = String(invalid_filename_characters).split(" ");
for (const String &ch : chars) {
if (contains(ch)) {
return false;
}
}
return true;
}
String String::validate_filename() const {
Vector<String> chars = String(invalid_filename_characters).split(" ");
String name = strip_edges();
for (int i = 0; i < chars.size(); i++) {
name = name.replace(chars[i], "_");
}
return name;
}
bool String::is_valid_ip_address() const {
if (find(":") >= 0) {
Vector<String> ip = split(":");
for (int i = 0; i < ip.size(); i++) {
const String &n = ip[i];
if (n.is_empty()) {
continue;
}
if (n.is_valid_hex_number(false)) {
int64_t nint = n.hex_to_int();
if (nint < 0 || nint > 0xffff) {
return false;
}
continue;
}
if (!n.is_valid_ip_address()) {
return false;
}
}
} else {
Vector<String> ip = split(".");
if (ip.size() != 4) {
return false;
}
for (int i = 0; i < ip.size(); i++) {
const String &n = ip[i];
if (!n.is_valid_int()) {
return false;
}
int val = n.to_int();
if (val < 0 || val > 255) {
return false;
}
}
}
return true;
}
bool String::is_resource_file() const {
return begins_with("res://") && find("::") == -1;
}
bool String::is_relative_path() const {
return !is_absolute_path();
}
String String::get_base_dir() const {
int end = 0;
// URL scheme style base.
int basepos = find("://");
if (basepos != -1) {
end = basepos + 3;
}
// Windows top level directory base.
if (end == 0) {
basepos = find(":/");
if (basepos == -1) {
basepos = find(":\\");
}
if (basepos != -1) {
end = basepos + 2;
}
}
// Windows UNC network share path.
if (end == 0) {
if (is_network_share_path()) {
basepos = find("/", 2);
if (basepos == -1) {
basepos = find("\\", 2);
}
int servpos = find("/", basepos + 1);
if (servpos == -1) {
servpos = find("\\", basepos + 1);
}
if (servpos != -1) {
end = servpos + 1;
}
}
}
// Unix root directory base.
if (end == 0) {
if (begins_with("/")) {
end = 1;
}
}
String rs;
String base;
if (end != 0) {
rs = substr(end, length());
base = substr(0, end);
} else {
rs = *this;
}
int sep = MAX(rs.rfind("/"), rs.rfind("\\"));
if (sep == -1) {
return base;
}
return base + rs.substr(0, sep);
}
String String::get_file() const {
int sep = MAX(rfind("/"), rfind("\\"));
if (sep == -1) {
return *this;
}
return substr(sep + 1, length());
}
String String::get_extension() const {
int pos = rfind(".");
if (pos < 0 || pos < MAX(rfind("/"), rfind("\\"))) {
return "";
}
return substr(pos + 1, length());
}
String String::path_join(const String &p_file) const {
if (is_empty()) {
return p_file;
}
if (operator[](length() - 1) == '/' || (p_file.size() > 0 && p_file.operator[](0) == '/')) {
return *this + p_file;
}
return *this + "/" + p_file;
}
String String::property_name_encode() const {
// Escape and quote strings with extended ASCII or further Unicode characters
// as well as '"', '=' or ' ' (32)
const char32_t *cstr = get_data();
for (int i = 0; cstr[i]; i++) {
if (cstr[i] == '=' || cstr[i] == '"' || cstr[i] == ';' || cstr[i] == '[' || cstr[i] == ']' || cstr[i] < 33 || cstr[i] > 126) {
return "\"" + c_escape_multiline() + "\"";
}
}
// Keep as is
return *this;
}
// Changes made to the set of invalid characters must also be reflected in the String documentation.
static const char32_t invalid_node_name_characters[] = { '.', ':', '@', '/', '\"', UNIQUE_NODE_PREFIX[0], 0 };
String String::get_invalid_node_name_characters(bool p_allow_internal) {
// Do not use this function for critical validation.
String r;
const char32_t *c = invalid_node_name_characters;
while (*c) {
if (p_allow_internal && *c == '@') {
c++;
continue;
}
if (c != invalid_node_name_characters) {
r += " ";
}
r += String::chr(*c);
c++;
}
return r;
}
String String::validate_node_name() const {
// This is a critical validation in node addition, so it must be optimized.
const char32_t *cn = ptr();
if (cn == nullptr) {
return String();
}
bool valid = true;
uint32_t idx = 0;
while (cn[idx]) {
const char32_t *c = invalid_node_name_characters;
while (*c) {
if (cn[idx] == *c) {
valid = false;
break;
}
c++;
}
if (!valid) {
break;
}
idx++;
}
if (valid) {
return *this;
}
String validated = *this;
char32_t *nn = validated.ptrw();
while (nn[idx]) {
const char32_t *c = invalid_node_name_characters;
while (*c) {
if (nn[idx] == *c) {
nn[idx] = '_';
break;
}
c++;
}
idx++;
}
return validated;
}
String String::get_basename() const {
int pos = rfind(".");
if (pos < 0 || pos < MAX(rfind("/"), rfind("\\"))) {
return *this;
}
return substr(0, pos);
}
String itos(int64_t p_val) {
return String::num_int64(p_val);
}
String uitos(uint64_t p_val) {
return String::num_uint64(p_val);
}
String rtos(double p_val) {
return String::num(p_val);
}
String rtoss(double p_val) {
return String::num_scientific(p_val);
}
// Right-pad with a character.
String String::rpad(int min_length, const String &character) const {
String s = *this;
int padding = min_length - s.length();
if (padding > 0) {
s += character.repeat(padding);
}
return s;
}
// Left-pad with a character.
String String::lpad(int min_length, const String &character) const {
String s = *this;
int padding = min_length - s.length();
if (padding > 0) {
s = character.repeat(padding) + s;
}
return s;
}
// sprintf is implemented in GDScript via:
// "fish %s pie" % "frog"
// "fish %s %d pie" % ["frog", 12]
// In case of an error, the string returned is the error description and "error" is true.
String String::sprintf(const Array &values, bool *error) const {
String formatted;
char32_t *self = (char32_t *)get_data();
bool in_format = false;
int value_index = 0;
int min_chars = 0;
int min_decimals = 0;
bool in_decimals = false;
bool pad_with_zeros = false;
bool left_justified = false;
bool show_sign = false;
bool as_unsigned = false;
if (error) {
*error = true;
}
for (; *self; self++) {
const char32_t c = *self;
if (in_format) { // We have % - let's see what else we get.
switch (c) {
case '%': { // Replace %% with %
formatted += chr(c);
in_format = false;
break;
}
case 'd': // Integer (signed)
case 'o': // Octal
case 'x': // Hexadecimal (lowercase)
case 'X': { // Hexadecimal (uppercase)
if (value_index >= values.size()) {
return "not enough arguments for format string";
}
if (!values[value_index].is_num()) {
return "a number is required";
}
int64_t value = values[value_index];
int base = 16;
bool capitalize = false;
switch (c) {
case 'd':
base = 10;
break;
case 'o':
base = 8;
break;
case 'x':
break;
case 'X':
capitalize = true;
break;
}
// Get basic number.
String str;
if (!as_unsigned) {
str = String::num_int64(ABS(value), base, capitalize);
} else {
uint64_t uvalue = *((uint64_t *)&value);
// In unsigned hex, if the value fits in 32 bits, trim it down to that.
if (base == 16 && value < 0 && value >= INT32_MIN) {
uvalue &= 0xffffffff;
}
str = String::num_uint64(uvalue, base, capitalize);
}
int number_len = str.length();
bool negative = value < 0 && !as_unsigned;
// Padding.
int pad_chars_count = (negative || show_sign) ? min_chars - 1 : min_chars;
String pad_char = pad_with_zeros ? String("0") : String(" ");
if (left_justified) {
str = str.rpad(pad_chars_count, pad_char);
} else {
str = str.lpad(pad_chars_count, pad_char);
}
// Sign.
if (show_sign || negative) {
String sign_char = negative ? "-" : "+";
if (left_justified) {
str = str.insert(0, sign_char);
} else {
str = str.insert(pad_with_zeros ? 0 : str.length() - number_len, sign_char);
}
}
formatted += str;
++value_index;
in_format = false;
break;
}
case 'f': { // Float
if (value_index >= values.size()) {
return "not enough arguments for format string";
}
if (!values[value_index].is_num()) {
return "a number is required";
}
double value = values[value_index];
bool is_negative = signbit(value);
String str = String::num(Math::abs(value), min_decimals);
const bool is_finite = Math::is_finite(value);
// Pad decimals out.
if (is_finite) {
str = str.pad_decimals(min_decimals);
}
int initial_len = str.length();
// Padding. Leave room for sign later if required.
int pad_chars_count = (is_negative || show_sign) ? min_chars - 1 : min_chars;
String pad_char = (pad_with_zeros && is_finite) ? String("0") : String(" "); // Never pad NaN or inf with zeros
if (left_justified) {
str = str.rpad(pad_chars_count, pad_char);
} else {
str = str.lpad(pad_chars_count, pad_char);
}
// Add sign if needed.
if (show_sign || is_negative) {
String sign_char = is_negative ? "-" : "+";
if (left_justified) {
str = str.insert(0, sign_char);
} else {
str = str.insert(pad_with_zeros ? 0 : str.length() - initial_len, sign_char);
}
}
formatted += str;
++value_index;
in_format = false;
break;
}
case 'v': { // Vector2/3/4/2i/3i/4i
if (value_index >= values.size()) {
return "not enough arguments for format string";
}
int count;
switch (values[value_index].get_type()) {
case Variant::VECTOR2:
case Variant::VECTOR2I: {
count = 2;
} break;
case Variant::VECTOR3:
case Variant::VECTOR3I: {
count = 3;
} break;
case Variant::VECTOR4:
case Variant::VECTOR4I: {
count = 4;
} break;
default: {
return "%v requires a vector type (Vector2/3/4/2i/3i/4i)";
}
}
Vector4 vec = values[value_index];
String str = "(";
for (int i = 0; i < count; i++) {
double val = vec[i];
String number_str = String::num(Math::abs(val), min_decimals);
const bool is_finite = Math::is_finite(val);
// Pad decimals out.
if (is_finite) {
number_str = number_str.pad_decimals(min_decimals);
}
int initial_len = number_str.length();
// Padding. Leave room for sign later if required.
int pad_chars_count = val < 0 ? min_chars - 1 : min_chars;
String pad_char = (pad_with_zeros && is_finite) ? String("0") : String(" "); // Never pad NaN or inf with zeros
if (left_justified) {
number_str = number_str.rpad(pad_chars_count, pad_char);
} else {
number_str = number_str.lpad(pad_chars_count, pad_char);
}
// Add sign if needed.
if (val < 0) {
if (left_justified) {
number_str = number_str.insert(0, "-");
} else {
number_str = number_str.insert(pad_with_zeros ? 0 : number_str.length() - initial_len, "-");
}
}
// Add number to combined string
str += number_str;
if (i < count - 1) {
str += ", ";
}
}
str += ")";
formatted += str;
++value_index;
in_format = false;
break;
}
case 's': { // String
if (value_index >= values.size()) {
return "not enough arguments for format string";
}
String str = values[value_index];
// Padding.
if (left_justified) {
str = str.rpad(min_chars);
} else {
str = str.lpad(min_chars);
}
formatted += str;
++value_index;
in_format = false;
break;
}
case 'c': {
if (value_index >= values.size()) {
return "not enough arguments for format string";
}
// Convert to character.
String str;
if (values[value_index].is_num()) {
int value = values[value_index];
if (value < 0) {
return "unsigned integer is lower than minimum";
} else if (value >= 0xd800 && value <= 0xdfff) {
return "unsigned integer is invalid Unicode character";
} else if (value > 0x10ffff) {
return "unsigned integer is greater than maximum";
}
str = chr(values[value_index]);
} else if (values[value_index].get_type() == Variant::STRING) {
str = values[value_index];
if (str.length() != 1) {
return "%c requires number or single-character string";
}
} else {
return "%c requires number or single-character string";
}
// Padding.
if (left_justified) {
str = str.rpad(min_chars);
} else {
str = str.lpad(min_chars);
}
formatted += str;
++value_index;
in_format = false;
break;
}
case '-': { // Left justify
left_justified = true;
break;
}
case '+': { // Show + if positive.
show_sign = true;
break;
}
case 'u': { // Treat as unsigned (for int/hex).
as_unsigned = true;
break;
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
int n = c - '0';
if (in_decimals) {
min_decimals *= 10;
min_decimals += n;
} else {
if (c == '0' && min_chars == 0) {
if (left_justified) {
WARN_PRINT("'0' flag ignored with '-' flag in string format");
} else {
pad_with_zeros = true;
}
} else {
min_chars *= 10;
min_chars += n;
}
}
break;
}
case '.': { // Float/Vector separator.
if (in_decimals) {
return "too many decimal points in format";
}
in_decimals = true;
min_decimals = 0; // We want to add the value manually.
break;
}
case '*': { // Dynamic width, based on value.
if (value_index >= values.size()) {
return "not enough arguments for format string";
}
Variant::Type value_type = values[value_index].get_type();
if (!values[value_index].is_num() &&
value_type != Variant::VECTOR2 && value_type != Variant::VECTOR2I &&
value_type != Variant::VECTOR3 && value_type != Variant::VECTOR3I &&
value_type != Variant::VECTOR4 && value_type != Variant::VECTOR4I) {
return "* wants number or vector";
}
int size = values[value_index];
if (in_decimals) {
min_decimals = size;
} else {
min_chars = size;
}
++value_index;
break;
}
default: {
return "unsupported format character";
}
}
} else { // Not in format string.
switch (c) {
case '%':
in_format = true;
// Back to defaults:
min_chars = 0;
min_decimals = 6;
pad_with_zeros = false;
left_justified = false;
show_sign = false;
in_decimals = false;
break;
default:
formatted += chr(c);
}
}
}
if (in_format) {
return "incomplete format";
}
if (value_index != values.size()) {
return "not all arguments converted during string formatting";
}
if (error) {
*error = false;
}
return formatted;
}
String String::quote(const String &quotechar) const {
return quotechar + *this + quotechar;
}
String String::unquote() const {
if (!is_quoted()) {
return *this;
}
return substr(1, length() - 2);
}
Vector<uint8_t> String::to_ascii_buffer() const {
const String *s = this;
if (s->is_empty()) {
return Vector<uint8_t>();
}
CharString charstr = s->ascii();
Vector<uint8_t> retval;
size_t len = charstr.length();
retval.resize(len);
uint8_t *w = retval.ptrw();
memcpy(w, charstr.ptr(), len);
return retval;
}
Vector<uint8_t> String::to_utf8_buffer() const {
const String *s = this;
if (s->is_empty()) {
return Vector<uint8_t>();
}
CharString charstr = s->utf8();
Vector<uint8_t> retval;
size_t len = charstr.length();
retval.resize(len);
uint8_t *w = retval.ptrw();
memcpy(w, charstr.ptr(), len);
return retval;
}
Vector<uint8_t> String::to_utf16_buffer() const {
const String *s = this;
if (s->is_empty()) {
return Vector<uint8_t>();
}
Char16String charstr = s->utf16();
Vector<uint8_t> retval;
size_t len = charstr.length() * sizeof(char16_t);
retval.resize(len);
uint8_t *w = retval.ptrw();
memcpy(w, (const void *)charstr.ptr(), len);
return retval;
}
Vector<uint8_t> String::to_utf32_buffer() const {
const String *s = this;
if (s->is_empty()) {
return Vector<uint8_t>();
}
Vector<uint8_t> retval;
size_t len = s->length() * sizeof(char32_t);
retval.resize(len);
uint8_t *w = retval.ptrw();
memcpy(w, (const void *)s->ptr(), len);
return retval;
}
Vector<uint8_t> String::to_wchar_buffer() const {
#ifdef WINDOWS_ENABLED
return to_utf16_buffer();
#else
return to_utf32_buffer();
#endif
}
#ifdef TOOLS_ENABLED
/**
* "Tools TRanslate". Performs string replacement for internationalization
* within the editor. A translation context can optionally be specified to
* disambiguate between identical source strings in translations. When
* placeholders are desired, use `vformat(TTR("Example: %s"), some_string)`.
* If a string mentions a quantity (and may therefore need a dynamic plural form),
* use `TTRN()` instead of `TTR()`.
*
* NOTE: Only use `TTR()` in editor-only code (typically within the `editor/` folder).
* For translations that can be supplied by exported projects, use `RTR()` instead.
*/
String TTR(const String &p_text, const String &p_context) {
if (TranslationServer::get_singleton()) {
return TranslationServer::get_singleton()->tool_translate(p_text, p_context);
}
return p_text;
}
/**
* "Tools TRanslate for N items". Performs string replacement for
* internationalization within the editor. A translation context can optionally
* be specified to disambiguate between identical source strings in
* translations. Use `TTR()` if the string doesn't need dynamic plural form.
* When placeholders are desired, use
* `vformat(TTRN("%d item", "%d items", some_integer), some_integer)`.
* The placeholder must be present in both strings to avoid run-time warnings in `vformat()`.
*
* NOTE: Only use `TTRN()` in editor-only code (typically within the `editor/` folder).
* For translations that can be supplied by exported projects, use `RTRN()` instead.
*/
String TTRN(const String &p_text, const String &p_text_plural, int p_n, const String &p_context) {
if (TranslationServer::get_singleton()) {
return TranslationServer::get_singleton()->tool_translate_plural(p_text, p_text_plural, p_n, p_context);
}
// Return message based on English plural rule if translation is not possible.
if (p_n == 1) {
return p_text;
}
return p_text_plural;
}
/**
* "Docs TRanslate". Used for the editor class reference documentation,
* handling descriptions extracted from the XML.
* It also replaces `$DOCS_URL` with the actual URL to the documentation's branch,
* to allow dehardcoding it in the XML and doing proper substitutions everywhere.
*/
String DTR(const String &p_text, const String &p_context) {
// Comes straight from the XML, so remove indentation and any trailing whitespace.
const String text = p_text.dedent().strip_edges();
if (TranslationServer::get_singleton()) {
return String(TranslationServer::get_singleton()->doc_translate(text, p_context)).replace("$DOCS_URL", VERSION_DOCS_URL);
}
return text.replace("$DOCS_URL", VERSION_DOCS_URL);
}
/**
* "Docs TRanslate for N items". Used for the editor class reference documentation
* (with support for plurals), handling descriptions extracted from the XML.
* It also replaces `$DOCS_URL` with the actual URL to the documentation's branch,
* to allow dehardcoding it in the XML and doing proper substitutions everywhere.
*/
String DTRN(const String &p_text, const String &p_text_plural, int p_n, const String &p_context) {
const String text = p_text.dedent().strip_edges();
const String text_plural = p_text_plural.dedent().strip_edges();
if (TranslationServer::get_singleton()) {
return String(TranslationServer::get_singleton()->doc_translate_plural(text, text_plural, p_n, p_context)).replace("$DOCS_URL", VERSION_DOCS_URL);
}
// Return message based on English plural rule if translation is not possible.
if (p_n == 1) {
return text.replace("$DOCS_URL", VERSION_DOCS_URL);
}
return text_plural.replace("$DOCS_URL", VERSION_DOCS_URL);
}
#endif
/**
* "Run-time TRanslate". Performs string replacement for internationalization
* without the editor. A translation context can optionally be specified to
* disambiguate between identical source strings in translations. When
* placeholders are desired, use `vformat(RTR("Example: %s"), some_string)`.
* If a string mentions a quantity (and may therefore need a dynamic plural form),
* use `RTRN()` instead of `RTR()`.
*
* NOTE: Do not use `RTR()` in editor-only code (typically within the `editor/`
* folder). For editor translations, use `TTR()` instead.
*/
String RTR(const String &p_text, const String &p_context) {
if (TranslationServer::get_singleton()) {
String rtr = TranslationServer::get_singleton()->tool_translate(p_text, p_context);
if (rtr.is_empty() || rtr == p_text) {
return TranslationServer::get_singleton()->translate(p_text, p_context);
}
return rtr;
}
return p_text;
}
/**
* "Run-time TRanslate for N items". Performs string replacement for
* internationalization without the editor. A translation context can optionally
* be specified to disambiguate between identical source strings in translations.
* Use `RTR()` if the string doesn't need dynamic plural form. When placeholders
* are desired, use `vformat(RTRN("%d item", "%d items", some_integer), some_integer)`.
* The placeholder must be present in both strings to avoid run-time warnings in `vformat()`.
*
* NOTE: Do not use `RTRN()` in editor-only code (typically within the `editor/`
* folder). For editor translations, use `TTRN()` instead.
*/
String RTRN(const String &p_text, const String &p_text_plural, int p_n, const String &p_context) {
if (TranslationServer::get_singleton()) {
String rtr = TranslationServer::get_singleton()->tool_translate_plural(p_text, p_text_plural, p_n, p_context);
if (rtr.is_empty() || rtr == p_text || rtr == p_text_plural) {
return TranslationServer::get_singleton()->translate_plural(p_text, p_text_plural, p_n, p_context);
}
return rtr;
}
// Return message based on English plural rule if translation is not possible.
if (p_n == 1) {
return p_text;
}
return p_text_plural;
}