godot/servers/physics/space_sw.cpp

1309 lines
41 KiB
C++

/*************************************************************************/
/* space_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "space_sw.h"
#include "collision_solver_sw.h"
#include "core/project_settings.h"
#include "physics_server_sw.h"
_FORCE_INLINE_ static bool _can_collide_with(CollisionObjectSW *p_object, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (!(p_object->get_collision_layer() & p_collision_mask)) {
return false;
}
if (p_object->get_type() == CollisionObjectSW::TYPE_AREA && !p_collide_with_areas) {
return false;
}
if (p_object->get_type() == CollisionObjectSW::TYPE_BODY && !p_collide_with_bodies) {
return false;
}
return true;
}
int PhysicsDirectSpaceStateSW::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ERR_FAIL_COND_V(space->locked, false);
int amount = space->broadphase->cull_point(p_point, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
//Transform ai = p_xform.affine_inverse();
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
break;
}
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
//area can't be picked by ray (default)
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform inv_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
inv_xform.affine_invert();
if (!col_obj->get_shape(shape_idx)->intersect_point(inv_xform.xform(p_point))) {
continue;
}
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id != 0) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
} else {
r_results[cc].collider = nullptr;
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
cc++;
}
return cc;
}
bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) {
ERR_FAIL_COND_V(space->locked, false);
Vector3 begin, end;
Vector3 normal;
begin = p_from;
end = p_to;
normal = (end - begin).normalized();
int amount = space->broadphase->cull_segment(begin, end, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
//todo, create another array that references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided = false;
Vector3 res_point, res_normal;
int res_shape;
const CollisionObjectSW *res_obj;
real_t min_d = 1e10;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_pick_ray && !(space->intersection_query_results[i]->is_ray_pickable())) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector3 local_from = inv_xform.xform(begin);
Vector3 local_to = inv_xform.xform(end);
const ShapeSW *shape = col_obj->get_shape(shape_idx);
Vector3 shape_point, shape_normal;
if (shape->intersect_segment(local_from, local_to, shape_point, shape_normal)) {
Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point = xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld < min_d) {
min_d = ld;
res_point = shape_point;
res_normal = inv_xform.basis.xform_inv(shape_normal).normalized();
res_shape = shape_idx;
res_obj = col_obj;
collided = true;
}
}
}
if (!collided) {
return false;
}
r_result.collider_id = res_obj->get_instance_id();
if (r_result.collider_id != 0) {
r_result.collider = ObjectDB::get_instance(r_result.collider_id);
} else {
r_result.collider = nullptr;
}
r_result.normal = res_normal;
r_result.position = res_point;
r_result.rid = res_obj->get_self();
r_result.shape = res_shape;
return true;
}
int PhysicsDirectSpaceStateSW::intersect_shape(const RID &p_shape, const Transform &p_xform, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
AABB aabb = p_xform.xform(shape->get_aabb());
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
int cc = 0;
//Transform ai = p_xform.affine_inverse();
for (int i = 0; i < amount; i++) {
if (cc >= p_result_max) {
break;
}
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
//area can't be picked by ray (default)
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue;
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (!CollisionSolverSW::solve_static(shape, p_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), nullptr, nullptr, nullptr, p_margin, 0)) {
continue;
}
if (r_results) {
r_results[cc].collider_id = col_obj->get_instance_id();
if (r_results[cc].collider_id != 0) {
r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id);
} else {
r_results[cc].collider = nullptr;
}
r_results[cc].rid = col_obj->get_self();
r_results[cc].shape = shape_idx;
}
cc++;
}
return cc;
}
bool PhysicsDirectSpaceStateSW::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, real_t p_margin, real_t &p_closest_safe, real_t &p_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) {
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, false);
AABB aabb = p_xform.xform(shape->get_aabb());
aabb = aabb.merge(AABB(aabb.position + p_motion, aabb.size)); //motion
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
real_t best_safe = 1;
real_t best_unsafe = 1;
Transform xform_inv = p_xform.affine_inverse();
MotionShapeSW mshape;
mshape.shape = shape;
mshape.motion = xform_inv.basis.xform(p_motion);
bool best_first = true;
Vector3 motion_normal = p_motion.normalized();
Vector3 closest_A, closest_B;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
if (p_exclude.has(space->intersection_query_results[i]->get_self())) {
continue; //ignore excluded
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
Vector3 point_A, point_B;
Vector3 sep_axis = motion_normal;
Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolverSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
}
//test initial overlap, ignore objects it's inside of.
sep_axis = motion_normal;
if (!CollisionSolverSW::solve_distance(shape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
mshape.motion = xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolverSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, aabb, &sep);
if (collided) {
hi = fraction;
if ((j == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
point_A = lA;
point_B = lB;
low = fraction;
if ((j == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (low < best_safe) {
best_first = true; //force reset
best_safe = low;
best_unsafe = hi;
}
if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low <= best_safe))) {
closest_A = point_A;
closest_B = point_B;
r_info->collider_id = col_obj->get_instance_id();
r_info->rid = col_obj->get_self();
r_info->shape = shape_idx;
r_info->point = closest_B;
r_info->normal = (closest_A - closest_B).normalized();
best_first = false;
if (col_obj->get_type() == CollisionObjectSW::TYPE_BODY) {
const BodySW *body = static_cast<const BodySW *>(col_obj);
Vector3 rel_vec = closest_B - (body->get_transform().origin + body->get_center_of_mass());
r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
}
}
}
p_closest_safe = best_safe;
p_closest_unsafe = best_unsafe;
return true;
}
bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform &p_shape_xform, real_t p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return false;
}
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
bool collided = false;
r_result_count = 0;
PhysicsServerSW::CollCbkData cbk;
cbk.max = p_result_max;
cbk.amount = 0;
cbk.ptr = r_results;
CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk;
PhysicsServerSW::CollCbkData *cbkptr = &cbk;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
if (CollisionSolverSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
collided = true;
}
}
r_result_count = cbk.amount;
return collided;
}
struct _RestCallbackData {
const CollisionObjectSW *object;
const CollisionObjectSW *best_object;
int local_shape;
int best_local_shape;
int shape;
int best_shape;
Vector3 best_contact;
Vector3 best_normal;
real_t best_len;
real_t min_allowed_depth;
};
static void _rest_cbk_result(const Vector3 &p_point_A, const Vector3 &p_point_B, void *p_userdata) {
_RestCallbackData *rd = (_RestCallbackData *)p_userdata;
Vector3 contact_rel = p_point_B - p_point_A;
real_t len = contact_rel.length();
if (len < rd->min_allowed_depth) {
return;
}
if (len <= rd->best_len) {
return;
}
rd->best_len = len;
rd->best_contact = p_point_B;
rd->best_normal = contact_rel / len;
rd->best_object = rd->object;
rd->best_shape = rd->shape;
rd->best_local_shape = rd->local_shape;
}
bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform &p_shape_xform, real_t p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ShapeSW *shape = static_cast<PhysicsServerSW *>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape, 0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb = aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results);
_RestCallbackData rcd;
rcd.best_len = 0;
rcd.best_object = nullptr;
rcd.best_shape = 0;
rcd.min_allowed_depth = space->test_motion_min_contact_depth;
for (int i = 0; i < amount; i++) {
if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) {
continue;
}
const CollisionObjectSW *col_obj = space->intersection_query_results[i];
int shape_idx = space->intersection_query_subindex_results[i];
if (p_exclude.has(col_obj->get_self())) {
continue;
}
rcd.object = col_obj;
rcd.shape = shape_idx;
bool sc = CollisionSolverSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, p_margin);
if (!sc) {
continue;
}
}
if (rcd.best_len == 0 || !rcd.best_object) {
return false;
}
r_info->collider_id = rcd.best_object->get_instance_id();
r_info->shape = rcd.best_shape;
r_info->normal = rcd.best_normal;
r_info->point = rcd.best_contact;
r_info->rid = rcd.best_object->get_self();
if (rcd.best_object->get_type() == CollisionObjectSW::TYPE_BODY) {
const BodySW *body = static_cast<const BodySW *>(rcd.best_object);
Vector3 rel_vec = rcd.best_contact - (body->get_transform().origin + body->get_center_of_mass());
r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
} else {
r_info->linear_velocity = Vector3();
}
return true;
}
Vector3 PhysicsDirectSpaceStateSW::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
CollisionObjectSW *obj = PhysicsServerSW::singleton->area_owner.getornull(p_object);
if (!obj) {
obj = PhysicsServerSW::singleton->body_owner.getornull(p_object);
}
ERR_FAIL_COND_V(!obj, Vector3());
ERR_FAIL_COND_V(obj->get_space() != space, Vector3());
float min_distance = 1e20;
Vector3 min_point;
bool shapes_found = false;
for (int i = 0; i < obj->get_shape_count(); i++) {
if (obj->is_shape_disabled(i)) {
continue;
}
Transform shape_xform = obj->get_transform() * obj->get_shape_transform(i);
ShapeSW *shape = obj->get_shape(i);
Vector3 point = shape->get_closest_point_to(shape_xform.affine_inverse().xform(p_point));
point = shape_xform.xform(point);
float dist = point.distance_to(p_point);
if (dist < min_distance) {
min_distance = dist;
min_point = point;
}
shapes_found = true;
}
if (!shapes_found) {
return obj->get_transform().origin; //no shapes found, use distance to origin.
} else {
return min_point;
}
}
PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() {
space = nullptr;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
int SpaceSW::_cull_aabb_for_body(BodySW *p_body, const AABB &p_aabb) {
int amount = broadphase->cull_aabb(p_aabb, intersection_query_results, INTERSECTION_QUERY_MAX, intersection_query_subindex_results);
for (int i = 0; i < amount; i++) {
bool keep = true;
if (intersection_query_results[i] == p_body) {
keep = false;
} else if (intersection_query_results[i]->get_type() == CollisionObjectSW::TYPE_AREA) {
keep = false;
} else if ((static_cast<BodySW *>(intersection_query_results[i])->test_collision_mask(p_body)) == 0) {
keep = false;
} else if (static_cast<BodySW *>(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self())) {
keep = false;
}
if (!keep) {
if (i < amount - 1) {
SWAP(intersection_query_results[i], intersection_query_results[amount - 1]);
SWAP(intersection_query_subindex_results[i], intersection_query_subindex_results[amount - 1]);
}
amount--;
i--;
}
}
return amount;
}
int SpaceSW::test_body_ray_separation(BodySW *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer::SeparationResult *r_results, int p_result_max, real_t p_margin) {
AABB body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
return 0;
}
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_transform.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(p_margin);
Transform body_transform = p_transform;
for (int i = 0; i < p_result_max; i++) {
//reset results
r_results[i].collision_depth = 0;
}
int rays_found = 0;
{
// raycast AND separate
const int max_results = 32;
int recover_attempts = 4;
Vector3 sr[max_results * 2];
PhysicsServerSW::CollCbkData cbk;
cbk.max = max_results;
PhysicsServerSW::CollCbkData *cbkptr = &cbk;
CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk;
do {
Vector3 recover_motion;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
ShapeSW *body_shape = p_body->get_shape(j);
if (body_shape->get_type() != PhysicsServer::SHAPE_RAY) {
continue;
}
Transform body_shape_xform = body_transform * p_body->get_shape_transform(j);
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
int shape_idx = intersection_query_subindex_results[i];
cbk.amount = 0;
cbk.ptr = sr;
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
ShapeSW *against_shape = col_obj->get_shape(shape_idx);
if (CollisionSolverSW::solve_static(body_shape, body_shape_xform, against_shape, col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
if (cbk.amount > 0) {
collided = true;
}
int ray_index = -1; //reuse shape
for (int k = 0; k < rays_found; k++) {
if (r_results[k].collision_local_shape == j) {
ray_index = k;
}
}
if (ray_index == -1 && rays_found < p_result_max) {
ray_index = rays_found;
rays_found++;
}
if (ray_index != -1) {
PhysicsServer::SeparationResult &result = r_results[ray_index];
for (int k = 0; k < cbk.amount; k++) {
Vector3 a = sr[k * 2 + 0];
Vector3 b = sr[k * 2 + 1];
recover_motion += (b - a) / cbk.amount;
float depth = a.distance_to(b);
if (depth > result.collision_depth) {
result.collision_depth = depth;
result.collision_point = b;
result.collision_normal = (b - a).normalized();
result.collision_local_shape = j;
result.collider = col_obj->get_self();
result.collider_id = col_obj->get_instance_id();
result.collider_shape = shape_idx;
//result.collider_metadata = col_obj->get_shape_metadata(shape_idx);
if (col_obj->get_type() == CollisionObjectSW::TYPE_BODY) {
BodySW *body = (BodySW *)col_obj;
Vector3 rel_vec = b - (body->get_transform().origin + body->get_center_of_mass());
result.collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
}
}
}
}
}
}
}
if (!collided || recover_motion == Vector3()) {
break;
}
body_transform.origin += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
//optimize results (remove non colliding)
for (int i = 0; i < rays_found; i++) {
if (r_results[i].collision_depth == 0) {
rays_found--;
SWAP(r_results[i], r_results[rays_found]);
}
}
r_recover_motion = body_transform.origin - p_transform.origin;
return rays_found;
}
bool SpaceSW::test_body_motion(BodySW *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, real_t p_margin, PhysicsServer::MotionResult *r_result, bool p_exclude_raycast_shapes) {
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
if (r_result) {
r_result->collider_id = 0;
r_result->collider_shape = 0;
}
AABB body_aabb;
bool shapes_found = false;
for (int i = 0; i < p_body->get_shape_count(); i++) {
if (p_body->is_shape_disabled(i)) {
continue;
}
if (!shapes_found) {
body_aabb = p_body->get_shape_aabb(i);
shapes_found = true;
} else {
body_aabb = body_aabb.merge(p_body->get_shape_aabb(i));
}
}
if (!shapes_found) {
if (r_result) {
*r_result = PhysicsServer::MotionResult();
r_result->motion = p_motion;
}
return false;
}
// Undo the currently transform the physics server is aware of and apply the provided one
body_aabb = p_from.xform(p_body->get_inv_transform().xform(body_aabb));
body_aabb = body_aabb.grow(p_margin);
float motion_length = p_motion.length();
Vector3 motion_normal = p_motion / motion_length;
Transform body_transform = p_from;
bool recovered = false;
{
//STEP 1, FREE BODY IF STUCK
const int max_results = 32;
int recover_attempts = 4;
Vector3 sr[max_results * 2];
do {
PhysicsServerSW::CollCbkData cbk;
cbk.max = max_results;
cbk.amount = 0;
cbk.ptr = sr;
PhysicsServerSW::CollCbkData *cbkptr = &cbk;
CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk;
bool collided = false;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform body_shape_xform = body_transform * p_body->get_shape_transform(j);
ShapeSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) {
continue;
}
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
if (CollisionSolverSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) {
collided = cbk.amount > 0;
}
}
}
if (!collided) {
break;
}
Vector3 recover_motion;
for (int i = 0; i < cbk.amount; i++) {
Vector3 a = sr[i * 2 + 0];
Vector3 b = sr[i * 2 + 1];
// Compute plane on b towards a.
Vector3 n = (a - b).normalized();
float d = n.dot(b);
// Compute depth on recovered motion.
float depth = n.dot(a + recover_motion) - d;
if (depth > 0.0) {
// Only recover if there is penetration.
recover_motion -= n * depth * 0.4;
}
}
if (recover_motion == Vector3()) {
collided = false;
break;
}
recovered = true;
body_transform.origin += recover_motion;
body_aabb.position += recover_motion;
recover_attempts--;
} while (recover_attempts);
}
real_t safe = 1.0;
real_t unsafe = 1.0;
int best_shape = -1;
{
// STEP 2 ATTEMPT MOTION
AABB motion_aabb = body_aabb;
motion_aabb.position += p_motion;
motion_aabb = motion_aabb.merge(body_aabb);
int amount = _cull_aabb_for_body(p_body, motion_aabb);
for (int j = 0; j < p_body->get_shape_count(); j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform body_shape_xform = body_transform * p_body->get_shape_transform(j);
ShapeSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) {
continue;
}
Transform body_shape_xform_inv = body_shape_xform.affine_inverse();
MotionShapeSW mshape;
mshape.shape = body_shape;
mshape.motion = body_shape_xform_inv.basis.xform(p_motion);
bool stuck = false;
real_t best_safe = 1;
real_t best_unsafe = 1;
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
//test initial overlap, does it collide if going all the way?
Vector3 point_A, point_B;
Vector3 sep_axis = motion_normal;
Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolverSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) {
continue;
}
sep_axis = motion_normal;
if (!CollisionSolverSW::solve_distance(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) {
stuck = true;
break;
}
//just do kinematic solving
real_t low = 0.0;
real_t hi = 1.0;
real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
real_t fraction = low + (hi - low) * fraction_coeff;
mshape.motion = body_shape_xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolverSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, motion_aabb, &sep);
if (collided) {
hi = fraction;
if ((k == 0) || (low > 0.0)) { // Did it not collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When colliding again, converge faster towards low fraction
// for more accurate results with long motions that collide near the start.
fraction_coeff = 0.25;
}
} else {
point_A = lA;
point_B = lB;
low = fraction;
if ((k == 0) || (hi < 1.0)) { // Did it collide before?
// When alternating or first iteration, use dichotomy.
fraction_coeff = 0.5;
} else {
// When not colliding again, converge faster towards high fraction
// for more accurate results with long motions that collide near the end.
fraction_coeff = 0.75;
}
}
}
if (low < best_safe) {
best_safe = low;
best_unsafe = hi;
}
}
if (stuck) {
safe = 0;
unsafe = 0;
best_shape = j; //sadly it's the best
break;
}
if (best_safe == 1.0) {
continue;
}
if (best_safe < safe) {
safe = best_safe;
unsafe = best_unsafe;
best_shape = j;
}
}
}
bool collided = false;
if (recovered || (safe < 1)) {
if (safe >= 1) {
best_shape = -1; //no best shape with cast, reset to -1
}
//it collided, let's get the rest info in unsafe advance
Transform ugt = body_transform;
ugt.origin += p_motion * unsafe;
_RestCallbackData rcd;
rcd.best_len = 0;
rcd.best_object = nullptr;
rcd.best_shape = 0;
// Allowed depth can't be lower than motion length, in order to handle contacts at low speed.
rcd.min_allowed_depth = MIN(motion_length, test_motion_min_contact_depth);
int from_shape = best_shape != -1 ? best_shape : 0;
int to_shape = best_shape != -1 ? best_shape + 1 : p_body->get_shape_count();
for (int j = from_shape; j < to_shape; j++) {
if (p_body->is_shape_disabled(j)) {
continue;
}
Transform body_shape_xform = ugt * p_body->get_shape_transform(j);
ShapeSW *body_shape = p_body->get_shape(j);
if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) {
continue;
}
body_aabb.position += p_motion * unsafe;
int amount = _cull_aabb_for_body(p_body, body_aabb);
for (int i = 0; i < amount; i++) {
const CollisionObjectSW *col_obj = intersection_query_results[i];
int shape_idx = intersection_query_subindex_results[i];
if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) {
const BodySW *b = static_cast<const BodySW *>(col_obj);
if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) {
continue;
}
}
rcd.object = col_obj;
rcd.shape = shape_idx;
rcd.local_shape = j;
bool sc = CollisionSolverSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, p_margin);
if (!sc) {
continue;
}
}
}
if (rcd.best_len != 0) {
if (r_result) {
r_result->collider = rcd.best_object->get_self();
r_result->collider_id = rcd.best_object->get_instance_id();
r_result->collider_shape = rcd.best_shape;
r_result->collision_local_shape = rcd.best_local_shape;
r_result->collision_normal = rcd.best_normal;
r_result->collision_point = rcd.best_contact;
r_result->collision_depth = rcd.best_len;
r_result->collision_safe_fraction = safe;
r_result->collision_unsafe_fraction = unsafe;
//r_result->collider_metadata = rcd.best_object->get_shape_metadata(rcd.best_shape);
const BodySW *body = static_cast<const BodySW *>(rcd.best_object);
Vector3 rel_vec = rcd.best_contact - (body->get_transform().origin + body->get_center_of_mass());
r_result->collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec);
r_result->motion = safe * p_motion;
r_result->remainder = p_motion - safe * p_motion;
r_result->motion += (body_transform.get_origin() - p_from.get_origin());
}
collided = true;
}
}
if (!collided && r_result) {
r_result->motion = p_motion;
r_result->remainder = Vector3();
r_result->motion += (body_transform.get_origin() - p_from.get_origin());
}
return collided;
}
void *SpaceSW::_broadphase_pair(CollisionObjectSW *A, int p_subindex_A, CollisionObjectSW *B, int p_subindex_B, void *p_self) {
if (!A->test_collision_mask(B)) {
return nullptr;
}
CollisionObjectSW::Type type_A = A->get_type();
CollisionObjectSW::Type type_B = B->get_type();
if (type_A > type_B) {
SWAP(A, B);
SWAP(p_subindex_A, p_subindex_B);
SWAP(type_A, type_B);
}
SpaceSW *self = (SpaceSW *)p_self;
self->collision_pairs++;
if (type_A == CollisionObjectSW::TYPE_AREA) {
AreaSW *area = static_cast<AreaSW *>(A);
if (type_B == CollisionObjectSW::TYPE_AREA) {
AreaSW *area_b = static_cast<AreaSW *>(B);
Area2PairSW *area2_pair = memnew(Area2PairSW(area_b, p_subindex_B, area, p_subindex_A));
return area2_pair;
} else {
BodySW *body = static_cast<BodySW *>(B);
AreaPairSW *area_pair = memnew(AreaPairSW(body, p_subindex_B, area, p_subindex_A));
return area_pair;
}
} else {
BodyPairSW *b = memnew(BodyPairSW((BodySW *)A, p_subindex_A, (BodySW *)B, p_subindex_B));
return b;
}
return nullptr;
}
void SpaceSW::_broadphase_unpair(CollisionObjectSW *A, int p_subindex_A, CollisionObjectSW *B, int p_subindex_B, void *p_data, void *p_self) {
if (!p_data) {
return;
}
SpaceSW *self = (SpaceSW *)p_self;
self->collision_pairs--;
ConstraintSW *c = (ConstraintSW *)p_data;
memdelete(c);
}
const SelfList<BodySW>::List &SpaceSW::get_active_body_list() const {
return active_list;
}
void SpaceSW::body_add_to_active_list(SelfList<BodySW> *p_body) {
active_list.add(p_body);
}
void SpaceSW::body_remove_from_active_list(SelfList<BodySW> *p_body) {
active_list.remove(p_body);
}
void SpaceSW::body_add_to_inertia_update_list(SelfList<BodySW> *p_body) {
inertia_update_list.add(p_body);
}
void SpaceSW::body_remove_from_inertia_update_list(SelfList<BodySW> *p_body) {
inertia_update_list.remove(p_body);
}
BroadPhaseSW *SpaceSW::get_broadphase() {
return broadphase;
}
void SpaceSW::add_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND(objects.has(p_object));
objects.insert(p_object);
}
void SpaceSW::remove_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND(!objects.has(p_object));
objects.erase(p_object);
}
const Set<CollisionObjectSW *> &SpaceSW::get_objects() const {
return objects;
}
void SpaceSW::body_add_to_state_query_list(SelfList<BodySW> *p_body) {
state_query_list.add(p_body);
}
void SpaceSW::body_remove_from_state_query_list(SelfList<BodySW> *p_body) {
state_query_list.remove(p_body);
}
void SpaceSW::area_add_to_monitor_query_list(SelfList<AreaSW> *p_area) {
monitor_query_list.add(p_area);
}
void SpaceSW::area_remove_from_monitor_query_list(SelfList<AreaSW> *p_area) {
monitor_query_list.remove(p_area);
}
void SpaceSW::area_add_to_moved_list(SelfList<AreaSW> *p_area) {
area_moved_list.add(p_area);
}
void SpaceSW::area_remove_from_moved_list(SelfList<AreaSW> *p_area) {
area_moved_list.remove(p_area);
}
const SelfList<AreaSW>::List &SpaceSW::get_moved_area_list() const {
return area_moved_list;
}
void SpaceSW::call_queries() {
while (state_query_list.first()) {
BodySW *b = state_query_list.first()->self();
state_query_list.remove(state_query_list.first());
b->call_queries();
}
while (monitor_query_list.first()) {
AreaSW *a = monitor_query_list.first()->self();
monitor_query_list.remove(monitor_query_list.first());
a->call_queries();
}
}
void SpaceSW::setup() {
contact_debug_count = 0;
while (inertia_update_list.first()) {
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void SpaceSW::update() {
broadphase->update();
}
void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
contact_recycle_radius = p_value;
break;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
contact_max_separation = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
contact_max_allowed_penetration = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
body_linear_velocity_sleep_threshold = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
body_angular_velocity_sleep_threshold = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
body_time_to_sleep = p_value;
break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
body_angular_velocity_damp_ratio = p_value;
break;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
constraint_bias = p_value;
break;
case PhysicsServer::SPACE_PARAM_TEST_MOTION_MIN_CONTACT_DEPTH:
test_motion_min_contact_depth = p_value;
break;
}
}
real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
return contact_recycle_radius;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
return contact_max_separation;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
return contact_max_allowed_penetration;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
return body_linear_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
return body_angular_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
return body_time_to_sleep;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
return body_angular_velocity_damp_ratio;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
return constraint_bias;
case PhysicsServer::SPACE_PARAM_TEST_MOTION_MIN_CONTACT_DEPTH:
return test_motion_min_contact_depth;
}
return 0;
}
void SpaceSW::lock() {
locked = true;
}
void SpaceSW::unlock() {
locked = false;
}
bool SpaceSW::is_locked() const {
return locked;
}
PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() {
return direct_access;
}
SpaceSW::SpaceSW() {
collision_pairs = 0;
active_objects = 0;
island_count = 0;
contact_debug_count = 0;
locked = false;
contact_recycle_radius = 0.01;
contact_max_separation = 0.05;
contact_max_allowed_penetration = 0.01;
test_motion_min_contact_depth = 0.00001;
constraint_bias = 0.01;
body_linear_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_linear", 0.1);
body_angular_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_angular", (8.0 / 180.0 * Math_PI));
body_time_to_sleep = GLOBAL_DEF("physics/3d/time_before_sleep", 0.5);
ProjectSettings::get_singleton()->set_custom_property_info("physics/3d/time_before_sleep", PropertyInfo(Variant::REAL, "physics/3d/time_before_sleep", PROPERTY_HINT_RANGE, "0,5,0.01,or_greater"));
body_angular_velocity_damp_ratio = 10;
broadphase = BroadPhaseSW::create_func();
broadphase->set_pair_callback(_broadphase_pair, this);
broadphase->set_unpair_callback(_broadphase_unpair, this);
area = nullptr;
direct_access = memnew(PhysicsDirectSpaceStateSW);
direct_access->space = this;
for (int i = 0; i < ELAPSED_TIME_MAX; i++) {
elapsed_time[i] = 0;
}
}
SpaceSW::~SpaceSW() {
memdelete(broadphase);
memdelete(direct_access);
}