4c9004671a
PCG is better than many alternatives by many metrics (see www.pcg-random.org) including statistical quality with good speed.
392 lines
9.3 KiB
C++
392 lines
9.3 KiB
C++
/*************************************************************************/
|
|
/* math_funcs.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* http://www.godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
#ifndef MATH_FUNCS_H
|
|
#define MATH_FUNCS_H
|
|
|
|
#include "typedefs.h"
|
|
#include "math_defs.h"
|
|
#include "pcg.h"
|
|
|
|
#ifndef NO_MATH_H
|
|
#include <math.h>
|
|
#endif
|
|
|
|
#define Math_PI 3.14159265358979323846
|
|
#define Math_SQRT12 0.7071067811865475244008443621048490
|
|
|
|
class Math {
|
|
|
|
static pcg32_random_t default_pcg;
|
|
|
|
public:
|
|
Math() {} // useless to instance
|
|
|
|
enum {
|
|
RANDOM_MAX=2147483647L
|
|
};
|
|
|
|
|
|
static _ALWAYS_INLINE_ double sin(double p_x) {
|
|
|
|
return ::sin(p_x);
|
|
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double cos(double p_x) {
|
|
|
|
return ::cos(p_x);
|
|
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double tan(double p_x) {
|
|
|
|
return ::tan(p_x);
|
|
|
|
}
|
|
static _ALWAYS_INLINE_ double sinh(double p_x) {
|
|
|
|
return ::sinh(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double cosh(double p_x) {
|
|
|
|
return ::cosh(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double tanh(double p_x) {
|
|
|
|
return ::tanh(p_x);
|
|
}
|
|
|
|
|
|
static _ALWAYS_INLINE_ double asin(double p_x) {
|
|
|
|
return ::asin(p_x);
|
|
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double acos(double p_x) {
|
|
|
|
return ::acos(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double atan(double p_x) {
|
|
|
|
return ::atan(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) {
|
|
|
|
return ::atan2(p_y,p_x);
|
|
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double deg2rad(double p_y) {
|
|
|
|
return p_y*Math_PI/180.0;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double rad2deg(double p_y) {
|
|
|
|
return p_y*180.0/Math_PI;
|
|
}
|
|
|
|
|
|
static _ALWAYS_INLINE_ double sqrt(double p_x) {
|
|
|
|
return ::sqrt(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double fmod(double p_x,double p_y) {
|
|
|
|
return ::fmod(p_x,p_y);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double fposmod(double p_x,double p_y) {
|
|
|
|
if (p_x>=0) {
|
|
|
|
return fmod(p_x,p_y);
|
|
|
|
} else {
|
|
|
|
return p_y-fmod(-p_x,p_y);
|
|
}
|
|
|
|
}
|
|
static _ALWAYS_INLINE_ double floor(double p_x) {
|
|
|
|
return ::floor(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double ceil(double p_x) {
|
|
|
|
return ::ceil(p_x);
|
|
}
|
|
|
|
|
|
static uint32_t rand_from_seed(uint64_t *seed);
|
|
|
|
static double ease(double p_x, double p_c);
|
|
static int step_decimals(double p_step);
|
|
static double stepify(double p_value,double p_step);
|
|
static void seed(uint64_t x=0);
|
|
static void randomize();
|
|
static uint32_t larger_prime(uint32_t p_val);
|
|
static double dectime(double p_value,double p_amount, double p_step);
|
|
|
|
|
|
static inline double linear2db(double p_linear) {
|
|
|
|
return Math::log( p_linear ) * 8.6858896380650365530225783783321;
|
|
}
|
|
|
|
static inline double db2linear(double p_db) {
|
|
|
|
return Math::exp( p_db * 0.11512925464970228420089957273422 );
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_nan(double p_val) {
|
|
|
|
return (p_val!=p_val);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_inf(double p_val) {
|
|
|
|
#ifdef _MSC_VER
|
|
return !_finite(p_val);
|
|
#else
|
|
return isinf(p_val);
|
|
#endif
|
|
|
|
}
|
|
|
|
static uint32_t rand();
|
|
static double randf();
|
|
|
|
static double round(double p_val);
|
|
|
|
static double random(double from, double to);
|
|
|
|
static _FORCE_INLINE_ bool isequal_approx(real_t a, real_t b) {
|
|
// TODO: Comparing floats for approximate-equality is non-trivial.
|
|
// Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators.
|
|
// A proper implementation in terms of ULPs should eventually replace the contents of this function.
|
|
// See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details.
|
|
|
|
return abs(a-b) < CMP_EPSILON;
|
|
}
|
|
|
|
|
|
static _FORCE_INLINE_ real_t abs(real_t g) {
|
|
|
|
#ifdef REAL_T_IS_DOUBLE
|
|
|
|
return absd(g);
|
|
#else
|
|
|
|
return absf(g);
|
|
#endif
|
|
}
|
|
|
|
static _FORCE_INLINE_ float absf(float g) {
|
|
|
|
union {
|
|
float f;
|
|
uint32_t i;
|
|
} u;
|
|
|
|
u.f=g;
|
|
u.i&=2147483647u;
|
|
return u.f;
|
|
}
|
|
|
|
static _FORCE_INLINE_ double absd(double g) {
|
|
|
|
union {
|
|
double d;
|
|
uint64_t i;
|
|
} u;
|
|
u.d=g;
|
|
u.i&=(uint64_t)9223372036854775807ll;
|
|
return u.d;
|
|
}
|
|
|
|
//this function should be as fast as possible and rounding mode should not matter
|
|
static _FORCE_INLINE_ int fast_ftoi(float a) {
|
|
|
|
static int b;
|
|
|
|
#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
|
|
b = (int)((a>0.0f) ? (a + 0.5f):(a -0.5f));
|
|
|
|
#elif defined(_MSC_VER) && _MSC_VER < 1800
|
|
__asm fld a
|
|
__asm fistp b
|
|
/*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
|
|
// use AT&T inline assembly style, document that
|
|
// we use memory as output (=m) and input (m)
|
|
__asm__ __volatile__ (
|
|
"flds %1 \n\t"
|
|
"fistpl %0 \n\t"
|
|
: "=m" (b)
|
|
: "m" (a));*/
|
|
|
|
#else
|
|
b=lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
|
|
#endif
|
|
return b;
|
|
}
|
|
|
|
|
|
#if defined(__GNUC__)
|
|
|
|
static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
|
|
#else
|
|
|
|
static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
|
|
#endif
|
|
|
|
static _FORCE_INLINE_ float lerp(float a, float b, float c) {
|
|
|
|
return a+(b-a)*c;
|
|
}
|
|
|
|
static double pow(double x, double y);
|
|
static double log(double x);
|
|
static double exp(double x);
|
|
|
|
|
|
static _FORCE_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h)
|
|
{
|
|
uint16_t h_exp, h_sig;
|
|
uint32_t f_sgn, f_exp, f_sig;
|
|
|
|
h_exp = (h&0x7c00u);
|
|
f_sgn = ((uint32_t)h&0x8000u) << 16;
|
|
switch (h_exp) {
|
|
case 0x0000u: /* 0 or subnormal */
|
|
h_sig = (h&0x03ffu);
|
|
/* Signed zero */
|
|
if (h_sig == 0) {
|
|
return f_sgn;
|
|
}
|
|
/* Subnormal */
|
|
h_sig <<= 1;
|
|
while ((h_sig&0x0400u) == 0) {
|
|
h_sig <<= 1;
|
|
h_exp++;
|
|
}
|
|
f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
|
|
f_sig = ((uint32_t)(h_sig&0x03ffu)) << 13;
|
|
return f_sgn + f_exp + f_sig;
|
|
case 0x7c00u: /* inf or NaN */
|
|
/* All-ones exponent and a copy of the significand */
|
|
return f_sgn + 0x7f800000u + (((uint32_t)(h&0x03ffu)) << 13);
|
|
default: /* normalized */
|
|
/* Just need to adjust the exponent and shift */
|
|
return f_sgn + (((uint32_t)(h&0x7fffu) + 0x1c000u) << 13);
|
|
}
|
|
}
|
|
|
|
static _FORCE_INLINE_ float halfptr_to_float(const uint16_t *h) {
|
|
|
|
union {
|
|
uint32_t u32;
|
|
float f32;
|
|
} u;
|
|
|
|
u.u32=halfbits_to_floatbits(*h);
|
|
return u.f32;
|
|
}
|
|
|
|
static _FORCE_INLINE_ uint16_t make_half_float(float f) {
|
|
|
|
union {
|
|
float fv;
|
|
uint32_t ui;
|
|
} ci;
|
|
ci.fv=f;
|
|
|
|
uint32_t x = ci.ui;
|
|
uint32_t sign = (unsigned short)(x >> 31);
|
|
uint32_t mantissa;
|
|
uint32_t exp;
|
|
uint16_t hf;
|
|
|
|
// get mantissa
|
|
mantissa = x & ((1 << 23) - 1);
|
|
// get exponent bits
|
|
exp = x & (0xFF << 23);
|
|
if (exp >= 0x47800000)
|
|
{
|
|
// check if the original single precision float number is a NaN
|
|
if (mantissa && (exp == (0xFF << 23)))
|
|
{
|
|
// we have a single precision NaN
|
|
mantissa = (1 << 23) - 1;
|
|
}
|
|
else
|
|
{
|
|
// 16-bit half-float representation stores number as Inf
|
|
mantissa = 0;
|
|
}
|
|
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
|
|
(uint16_t)(mantissa >> 13);
|
|
}
|
|
// check if exponent is <= -15
|
|
else if (exp <= 0x38000000)
|
|
{
|
|
|
|
/*// store a denorm half-float value or zero
|
|
exp = (0x38000000 - exp) >> 23;
|
|
mantissa >>= (14 + exp);
|
|
|
|
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
|
|
*/
|
|
hf=0; //denormals do not work for 3D, convert to zero
|
|
}
|
|
else
|
|
{
|
|
hf = (((uint16_t)sign) << 15) |
|
|
(uint16_t)((exp - 0x38000000) >> 13) |
|
|
(uint16_t)(mantissa >> 13);
|
|
}
|
|
|
|
return hf;
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // MATH_FUNCS_H
|