godot/drivers/webpold/dsp/dec_sse2.c
Juan Linietsky da113fe40d -Upgraded webp to a MUCH newer version. Hoping it fixes some bugs in the process. Keeping old version just in case for now.
-Added ability to convert xml and tscn scenes to binary on export, makes loading of larger scenes faster
2015-12-04 10:18:28 -03:00

904 lines
35 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// SSE2 version of some decoding functions (idct, loop filtering).
//
// Author: somnath@google.com (Somnath Banerjee)
// cduvivier@google.com (Christian Duvivier)
#include "./dsp.h"
#if defined(WEBP_USE_SSE2)
#include <emmintrin.h>
#include "../dec/vp8i.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
// This implementation makes use of 16-bit fixed point versions of two
// multiply constants:
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
//
// To be able to use signed 16-bit integers, we use the following trick to
// have constants within range:
// - Associated constants are obtained by subtracting the 16-bit fixed point
// version of one:
// k = K - (1 << 16) => K = k + (1 << 16)
// K1 = 85267 => k1 = 20091
// K2 = 35468 => k2 = -30068
// - The multiplication of a variable by a constant become the sum of the
// variable and the multiplication of that variable by the associated
// constant:
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
const __m128i k1 = _mm_set1_epi16(20091);
const __m128i k2 = _mm_set1_epi16(-30068);
__m128i T0, T1, T2, T3;
// Load and concatenate the transform coefficients (we'll do two transforms
// in parallel). In the case of only one transform, the second half of the
// vectors will just contain random value we'll never use nor store.
__m128i in0, in1, in2, in3;
{
in0 = _mm_loadl_epi64((__m128i*)&in[0]);
in1 = _mm_loadl_epi64((__m128i*)&in[4]);
in2 = _mm_loadl_epi64((__m128i*)&in[8]);
in3 = _mm_loadl_epi64((__m128i*)&in[12]);
// a00 a10 a20 a30 x x x x
// a01 a11 a21 a31 x x x x
// a02 a12 a22 a32 x x x x
// a03 a13 a23 a33 x x x x
if (do_two) {
const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
in0 = _mm_unpacklo_epi64(in0, inB0);
in1 = _mm_unpacklo_epi64(in1, inB1);
in2 = _mm_unpacklo_epi64(in2, inB2);
in3 = _mm_unpacklo_epi64(in3, inB3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
}
// Vertical pass and subsequent transpose.
{
// First pass, c and d calculations are longer because of the "trick"
// multiplications.
const __m128i a = _mm_add_epi16(in0, in2);
const __m128i b = _mm_sub_epi16(in0, in2);
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
const __m128i c3 = _mm_sub_epi16(in1, in3);
const __m128i c4 = _mm_sub_epi16(c1, c2);
const __m128i c = _mm_add_epi16(c3, c4);
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
const __m128i d3 = _mm_add_epi16(in1, in3);
const __m128i d4 = _mm_add_epi16(d1, d2);
const __m128i d = _mm_add_epi16(d3, d4);
// Second pass.
const __m128i tmp0 = _mm_add_epi16(a, d);
const __m128i tmp1 = _mm_add_epi16(b, c);
const __m128i tmp2 = _mm_sub_epi16(b, c);
const __m128i tmp3 = _mm_sub_epi16(a, d);
// Transpose the two 4x4.
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Horizontal pass and subsequent transpose.
{
// First pass, c and d calculations are longer because of the "trick"
// multiplications.
const __m128i four = _mm_set1_epi16(4);
const __m128i dc = _mm_add_epi16(T0, four);
const __m128i a = _mm_add_epi16(dc, T2);
const __m128i b = _mm_sub_epi16(dc, T2);
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
const __m128i c3 = _mm_sub_epi16(T1, T3);
const __m128i c4 = _mm_sub_epi16(c1, c2);
const __m128i c = _mm_add_epi16(c3, c4);
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
const __m128i d3 = _mm_add_epi16(T1, T3);
const __m128i d4 = _mm_add_epi16(d1, d2);
const __m128i d = _mm_add_epi16(d3, d4);
// Second pass.
const __m128i tmp0 = _mm_add_epi16(a, d);
const __m128i tmp1 = _mm_add_epi16(b, c);
const __m128i tmp2 = _mm_sub_epi16(b, c);
const __m128i tmp3 = _mm_sub_epi16(a, d);
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
// Transpose the two 4x4.
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Add inverse transform to 'dst' and store.
{
const __m128i zero = _mm_set1_epi16(0);
// Load the reference(s).
__m128i dst0, dst1, dst2, dst3;
if (do_two) {
// Load eight bytes/pixels per line.
dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
} else {
// Load four bytes/pixels per line.
dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
}
// Convert to 16b.
dst0 = _mm_unpacklo_epi8(dst0, zero);
dst1 = _mm_unpacklo_epi8(dst1, zero);
dst2 = _mm_unpacklo_epi8(dst2, zero);
dst3 = _mm_unpacklo_epi8(dst3, zero);
// Add the inverse transform(s).
dst0 = _mm_add_epi16(dst0, T0);
dst1 = _mm_add_epi16(dst1, T1);
dst2 = _mm_add_epi16(dst2, T2);
dst3 = _mm_add_epi16(dst3, T3);
// Unsigned saturate to 8b.
dst0 = _mm_packus_epi16(dst0, dst0);
dst1 = _mm_packus_epi16(dst1, dst1);
dst2 = _mm_packus_epi16(dst2, dst2);
dst3 = _mm_packus_epi16(dst3, dst3);
// Store the results.
if (do_two) {
// Store eight bytes/pixels per line.
_mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
_mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
_mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
_mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
} else {
// Store four bytes/pixels per line.
*((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
*((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
*((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
*((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
}
}
}
//------------------------------------------------------------------------------
// Loop Filter (Paragraph 15)
// Compute abs(p - q) = subs(p - q) OR subs(q - p)
#define MM_ABS(p, q) _mm_or_si128( \
_mm_subs_epu8((q), (p)), \
_mm_subs_epu8((p), (q)))
// Shift each byte of "a" by N bits while preserving by the sign bit.
//
// It first shifts the lower bytes of the words and then the upper bytes and
// then merges the results together.
#define SIGNED_SHIFT_N(a, N) { \
__m128i t = a; \
t = _mm_slli_epi16(t, 8); \
t = _mm_srai_epi16(t, N); \
t = _mm_srli_epi16(t, 8); \
\
a = _mm_srai_epi16(a, N + 8); \
a = _mm_slli_epi16(a, 8); \
\
a = _mm_or_si128(t, a); \
}
#define FLIP_SIGN_BIT2(a, b) { \
a = _mm_xor_si128(a, sign_bit); \
b = _mm_xor_si128(b, sign_bit); \
}
#define FLIP_SIGN_BIT4(a, b, c, d) { \
FLIP_SIGN_BIT2(a, b); \
FLIP_SIGN_BIT2(c, d); \
}
#define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \
const __m128i zero = _mm_setzero_si128(); \
const __m128i t1 = MM_ABS(p1, p0); \
const __m128i t2 = MM_ABS(q1, q0); \
\
const __m128i h = _mm_set1_epi8(hev_thresh); \
const __m128i t3 = _mm_subs_epu8(t1, h); /* abs(p1 - p0) - hev_tresh */ \
const __m128i t4 = _mm_subs_epu8(t2, h); /* abs(q1 - q0) - hev_tresh */ \
\
not_hev = _mm_or_si128(t3, t4); \
not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
}
#define GET_BASE_DELTA(p1, p0, q0, q1, o) { \
const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \
o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \
o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \
o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \
o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \
}
#define DO_SIMPLE_FILTER(p0, q0, fl) { \
const __m128i three = _mm_set1_epi8(3); \
const __m128i four = _mm_set1_epi8(4); \
__m128i v3 = _mm_adds_epi8(fl, three); \
__m128i v4 = _mm_adds_epi8(fl, four); \
\
/* Do +4 side */ \
SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \
q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \
\
/* Now do +3 side */ \
SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \
p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \
}
// Updates values of 2 pixels at MB edge during complex filtering.
// Update operations:
// q = q - a and p = p + a; where a = [(a_hi >> 7), (a_lo >> 7)]
#define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \
const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \
const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \
const __m128i a = _mm_packs_epi16(a_lo7, a_hi7); \
pi = _mm_adds_epi8(pi, a); \
qi = _mm_subs_epi8(qi, a); \
}
static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
const __m128i* q1, int thresh, __m128i *mask) {
__m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
*mask = _mm_set1_epi8(0xFE);
t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero
t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2
*mask = MM_ABS(*p0, *q0); // abs(p0 - q0)
*mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2
*mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
t1 = _mm_set1_epi8(thresh);
*mask = _mm_subs_epu8(*mask, t1); // mask <= thresh
*mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
}
//------------------------------------------------------------------------------
// Edge filtering functions
// Applies filter on 2 pixels (p0 and q0)
static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
const __m128i* q1, int thresh) {
__m128i a, mask;
const __m128i sign_bit = _mm_set1_epi8(0x80);
const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
NeedsFilter(p1, p0, q0, q1, thresh, &mask);
// convert to signed values
FLIP_SIGN_BIT2(*p0, *q0);
GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
a = _mm_and_si128(a, mask); // mask filter values we don't care about
DO_SIMPLE_FILTER(*p0, *q0, a);
// unoffset
FLIP_SIGN_BIT2(*p0, *q0);
}
// Applies filter on 4 pixels (p1, p0, q0 and q1)
static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
__m128i* q0, __m128i* q1,
const __m128i* mask, int hev_thresh) {
__m128i not_hev;
__m128i t1, t2, t3;
const __m128i sign_bit = _mm_set1_epi8(0x80);
// compute hev mask
GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
// convert to signed values
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
// Do +4 side
t2 = _mm_set1_epi8(4);
t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4
SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
t3 = t2; // save t2
*q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2
// Now do +3 side
t2 = _mm_set1_epi8(3);
t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4
SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
*p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
t2 = _mm_set1_epi8(1);
t3 = _mm_adds_epi8(t3, t2);
SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
t3 = _mm_and_si128(not_hev, t3); // if !hev
*q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
*p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
// unoffset
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
}
// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
__m128i* q0, __m128i* q1, __m128i *q2,
const __m128i* mask, int hev_thresh) {
__m128i a, not_hev;
const __m128i sign_bit = _mm_set1_epi8(0x80);
// compute hev mask
GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
// convert to signed values
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
FLIP_SIGN_BIT2(*p2, *q2);
GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
{ // do simple filter on pixels with hev
const __m128i m = _mm_andnot_si128(not_hev, *mask);
const __m128i f = _mm_and_si128(a, m);
DO_SIMPLE_FILTER(*p0, *q0, f);
}
{ // do strong filter on pixels with not hev
const __m128i zero = _mm_setzero_si128();
const __m128i nine = _mm_set1_epi16(0x0900);
const __m128i sixty_three = _mm_set1_epi16(63);
const __m128i m = _mm_and_si128(not_hev, *mask);
const __m128i f = _mm_and_si128(a, m);
const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9
const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9
const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18
const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18
const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63
const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63
const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63
const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63
const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63
const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63
UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
}
// unoffset
FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
FLIP_SIGN_BIT2(*p2, *q2);
}
// reads 8 rows across a vertical edge.
//
// TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
// two Load4x4() to avoid code duplication.
static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
__m128i* p, __m128i* q) {
__m128i t1, t2;
// Load 0th, 1st, 4th and 5th rows
__m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00
__m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10
__m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40
__m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50
r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00
r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10
// t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
t1 = _mm_unpacklo_epi8(r0, r1);
// Load 2nd, 3rd, 6th and 7th rows
r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22
r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30
r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60
r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70
r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20
r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30
// t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
t2 = _mm_unpacklo_epi8(r0, r1);
// t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
// t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
r0 = t1;
t1 = _mm_unpacklo_epi16(t1, t2);
t2 = _mm_unpackhi_epi16(r0, t2);
// *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
// *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
*p = _mm_unpacklo_epi32(t1, t2);
*q = _mm_unpackhi_epi32(t1, t2);
}
static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
int stride,
__m128i* p1, __m128i* p0,
__m128i* q0, __m128i* q1) {
__m128i t1, t2;
// Assume the pixels around the edge (|) are numbered as follows
// 00 01 | 02 03
// 10 11 | 12 13
// ... | ...
// e0 e1 | e2 e3
// f0 f1 | f2 f3
//
// r0 is pointing to the 0th row (00)
// r8 is pointing to the 8th row (80)
// Load
// p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
// q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
// p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
// q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
Load8x4(r0, stride, p1, q0);
Load8x4(r8, stride, p0, q1);
t1 = *p1;
t2 = *q0;
// p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
// p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
// q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
// q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
*p1 = _mm_unpacklo_epi64(t1, *p0);
*p0 = _mm_unpackhi_epi64(t1, *p0);
*q0 = _mm_unpacklo_epi64(t2, *q1);
*q1 = _mm_unpackhi_epi64(t2, *q1);
}
static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
int i;
for (i = 0; i < 4; ++i, dst += stride) {
*((int32_t*)dst) = _mm_cvtsi128_si32(*x);
*x = _mm_srli_si128(*x, 4);
}
}
// Transpose back and store
static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
__m128i* p1, __m128i* p0,
__m128i* q0, __m128i* q1) {
__m128i t1;
// p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
// p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
t1 = *p0;
*p0 = _mm_unpacklo_epi8(*p1, t1);
*p1 = _mm_unpackhi_epi8(*p1, t1);
// q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
// q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
t1 = *q0;
*q0 = _mm_unpacklo_epi8(t1, *q1);
*q1 = _mm_unpackhi_epi8(t1, *q1);
// p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
// q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
t1 = *p0;
*p0 = _mm_unpacklo_epi16(t1, *q0);
*q0 = _mm_unpackhi_epi16(t1, *q0);
// p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
// q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
t1 = *p1;
*p1 = _mm_unpacklo_epi16(t1, *q1);
*q1 = _mm_unpackhi_epi16(t1, *q1);
Store4x4(p0, r0, stride);
r0 += 4 * stride;
Store4x4(q0, r0, stride);
Store4x4(p1, r8, stride);
r8 += 4 * stride;
Store4x4(q1, r8, stride);
}
//------------------------------------------------------------------------------
// Simple In-loop filtering (Paragraph 15.2)
static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
// Load
__m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
__m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
__m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
__m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
DoFilter2(&p1, &p0, &q0, &q1, thresh);
// Store
_mm_storeu_si128((__m128i*)&p[-stride], p0);
_mm_storeu_si128((__m128i*)p, q0);
}
static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
__m128i p1, p0, q0, q1;
p -= 2; // beginning of p1
Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
DoFilter2(&p1, &p0, &q0, &q1, thresh);
Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
}
static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
int k;
for (k = 3; k > 0; --k) {
p += 4 * stride;
SimpleVFilter16SSE2(p, stride, thresh);
}
}
static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
int k;
for (k = 3; k > 0; --k) {
p += 4;
SimpleHFilter16SSE2(p, stride, thresh);
}
}
//------------------------------------------------------------------------------
// Complex In-loop filtering (Paragraph 15.3)
#define MAX_DIFF1(p3, p2, p1, p0, m) { \
m = MM_ABS(p3, p2); \
m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
}
#define MAX_DIFF2(p3, p2, p1, p0, m) { \
m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
}
#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \
e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \
e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \
e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \
}
#define LOADUV_H_EDGE(p, u, v, stride) { \
p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \
}
#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
LOADUV_H_EDGE(e1, u, v, 0 * stride); \
LOADUV_H_EDGE(e2, u, v, 1 * stride); \
LOADUV_H_EDGE(e3, u, v, 2 * stride); \
LOADUV_H_EDGE(e4, u, v, 3 * stride); \
}
#define STOREUV(p, u, v, stride) { \
_mm_storel_epi64((__m128i*)&u[(stride)], p); \
p = _mm_srli_si128(p, 8); \
_mm_storel_epi64((__m128i*)&v[(stride)], p); \
}
#define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \
__m128i fl_yes; \
const __m128i it = _mm_set1_epi8(ithresh); \
mask = _mm_subs_epu8(mask, it); \
mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \
NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \
mask = _mm_and_si128(mask, fl_yes); \
}
// on macroblock edges
static void VFilter16SSE2(uint8_t* p, int stride,
int thresh, int ithresh, int hev_thresh) {
__m128i t1;
__m128i mask;
__m128i p2, p1, p0, q0, q1, q2;
// Load p3, p2, p1, p0
LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
MAX_DIFF1(t1, p2, p1, p0, mask);
// Load q0, q1, q2, q3
LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
MAX_DIFF2(t1, q2, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
// Store
_mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
_mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
_mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
_mm_storeu_si128((__m128i*)&p[0 * stride], q0);
_mm_storeu_si128((__m128i*)&p[1 * stride], q1);
_mm_storeu_si128((__m128i*)&p[2 * stride], q2);
}
static void HFilter16SSE2(uint8_t* p, int stride,
int thresh, int ithresh, int hev_thresh) {
__m128i mask;
__m128i p3, p2, p1, p0, q0, q1, q2, q3;
uint8_t* const b = p - 4;
Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
MAX_DIFF1(p3, p2, p1, p0, mask);
Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
MAX_DIFF2(q3, q2, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
}
// on three inner edges
static void VFilter16iSSE2(uint8_t* p, int stride,
int thresh, int ithresh, int hev_thresh) {
int k;
__m128i mask;
__m128i t1, t2, p1, p0, q0, q1;
for (k = 3; k > 0; --k) {
// Load p3, p2, p1, p0
LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
MAX_DIFF1(t2, t1, p1, p0, mask);
p += 4 * stride;
// Load q0, q1, q2, q3
LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
MAX_DIFF2(t2, t1, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
// Store
_mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
_mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
_mm_storeu_si128((__m128i*)&p[0 * stride], q0);
_mm_storeu_si128((__m128i*)&p[1 * stride], q1);
}
}
static void HFilter16iSSE2(uint8_t* p, int stride,
int thresh, int ithresh, int hev_thresh) {
int k;
uint8_t* b;
__m128i mask;
__m128i t1, t2, p1, p0, q0, q1;
for (k = 3; k > 0; --k) {
b = p;
Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
MAX_DIFF1(t2, t1, p1, p0, mask);
b += 4; // beginning of q0
Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
MAX_DIFF2(t2, t1, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
b -= 2; // beginning of p1
Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
p += 4;
}
}
// 8-pixels wide variant, for chroma filtering
static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
int thresh, int ithresh, int hev_thresh) {
__m128i mask;
__m128i t1, p2, p1, p0, q0, q1, q2;
// Load p3, p2, p1, p0
LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
MAX_DIFF1(t1, p2, p1, p0, mask);
// Load q0, q1, q2, q3
LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
MAX_DIFF2(t1, q2, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
// Store
STOREUV(p2, u, v, -3 * stride);
STOREUV(p1, u, v, -2 * stride);
STOREUV(p0, u, v, -1 * stride);
STOREUV(q0, u, v, 0 * stride);
STOREUV(q1, u, v, 1 * stride);
STOREUV(q2, u, v, 2 * stride);
}
static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
int thresh, int ithresh, int hev_thresh) {
__m128i mask;
__m128i p3, p2, p1, p0, q0, q1, q2, q3;
uint8_t* const tu = u - 4;
uint8_t* const tv = v - 4;
Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
MAX_DIFF1(p3, p2, p1, p0, mask);
Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
MAX_DIFF2(q3, q2, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
}
static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
int thresh, int ithresh, int hev_thresh) {
__m128i mask;
__m128i t1, t2, p1, p0, q0, q1;
// Load p3, p2, p1, p0
LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
MAX_DIFF1(t2, t1, p1, p0, mask);
u += 4 * stride;
v += 4 * stride;
// Load q0, q1, q2, q3
LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
MAX_DIFF2(t2, t1, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
// Store
STOREUV(p1, u, v, -2 * stride);
STOREUV(p0, u, v, -1 * stride);
STOREUV(q0, u, v, 0 * stride);
STOREUV(q1, u, v, 1 * stride);
}
static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
int thresh, int ithresh, int hev_thresh) {
__m128i mask;
__m128i t1, t2, p1, p0, q0, q1;
Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
MAX_DIFF1(t2, t1, p1, p0, mask);
u += 4; // beginning of q0
v += 4;
Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
MAX_DIFF2(t2, t1, q1, q0, mask);
COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
u -= 2; // beginning of p1
v -= 2;
Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
}
extern void VP8DspInitSSE2(void);
void VP8DspInitSSE2(void) {
VP8Transform = TransformSSE2;
VP8VFilter16 = VFilter16SSE2;
VP8HFilter16 = HFilter16SSE2;
VP8VFilter8 = VFilter8SSE2;
VP8HFilter8 = HFilter8SSE2;
VP8VFilter16i = VFilter16iSSE2;
VP8HFilter16i = HFilter16iSSE2;
VP8VFilter8i = VFilter8iSSE2;
VP8HFilter8i = HFilter8iSSE2;
VP8SimpleVFilter16 = SimpleVFilter16SSE2;
VP8SimpleHFilter16 = SimpleHFilter16SSE2;
VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif // WEBP_USE_SSE2