554c776e08
The order of numbers is not changed except for Transform2D. All logic is done inside of their structures (and not in Variant). For the number of decimals printed, they now use String::num_real which works best with real_t, except for Color which is fixed at 4 decimals (this is a reliable number of float digits when converting from 16-bpc so it seems like a good choice)
233 lines
8.5 KiB
C++
233 lines
8.5 KiB
C++
/*************************************************************************/
|
|
/* quaternion.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "quaternion.h"
|
|
|
|
#include "core/math/basis.h"
|
|
#include "core/string/print_string.h"
|
|
|
|
// get_euler_xyz returns a vector containing the Euler angles in the format
|
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses XYZ convention (Z is the first rotation).
|
|
Vector3 Quaternion::get_euler_xyz() const {
|
|
Basis m(*this);
|
|
return m.get_euler_xyz();
|
|
}
|
|
|
|
// get_euler_yxz returns a vector containing the Euler angles in the format
|
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses YXZ convention (Z is the first rotation).
|
|
Vector3 Quaternion::get_euler_yxz() const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
|
|
#endif
|
|
Basis m(*this);
|
|
return m.get_euler_yxz();
|
|
}
|
|
|
|
void Quaternion::operator*=(const Quaternion &p_q) {
|
|
real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
|
|
real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
|
|
real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
|
|
w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
|
|
x = xx;
|
|
y = yy;
|
|
z = zz;
|
|
}
|
|
|
|
Quaternion Quaternion::operator*(const Quaternion &p_q) const {
|
|
Quaternion r = *this;
|
|
r *= p_q;
|
|
return r;
|
|
}
|
|
|
|
bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {
|
|
return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);
|
|
}
|
|
|
|
real_t Quaternion::length() const {
|
|
return Math::sqrt(length_squared());
|
|
}
|
|
|
|
void Quaternion::normalize() {
|
|
*this /= length();
|
|
}
|
|
|
|
Quaternion Quaternion::normalized() const {
|
|
return *this / length();
|
|
}
|
|
|
|
bool Quaternion::is_normalized() const {
|
|
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
|
|
}
|
|
|
|
Quaternion Quaternion::inverse() const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");
|
|
#endif
|
|
return Quaternion(-x, -y, -z, w);
|
|
}
|
|
|
|
Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
|
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
|
#endif
|
|
Quaternion to1;
|
|
real_t omega, cosom, sinom, scale0, scale1;
|
|
|
|
// calc cosine
|
|
cosom = dot(p_to);
|
|
|
|
// adjust signs (if necessary)
|
|
if (cosom < 0.0) {
|
|
cosom = -cosom;
|
|
to1.x = -p_to.x;
|
|
to1.y = -p_to.y;
|
|
to1.z = -p_to.z;
|
|
to1.w = -p_to.w;
|
|
} else {
|
|
to1.x = p_to.x;
|
|
to1.y = p_to.y;
|
|
to1.z = p_to.z;
|
|
to1.w = p_to.w;
|
|
}
|
|
|
|
// calculate coefficients
|
|
|
|
if ((1.0 - cosom) > CMP_EPSILON) {
|
|
// standard case (slerp)
|
|
omega = Math::acos(cosom);
|
|
sinom = Math::sin(omega);
|
|
scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
|
|
scale1 = Math::sin(p_weight * omega) / sinom;
|
|
} else {
|
|
// "from" and "to" quaternions are very close
|
|
// ... so we can do a linear interpolation
|
|
scale0 = 1.0 - p_weight;
|
|
scale1 = p_weight;
|
|
}
|
|
// calculate final values
|
|
return Quaternion(
|
|
scale0 * x + scale1 * to1.x,
|
|
scale0 * y + scale1 * to1.y,
|
|
scale0 * z + scale1 * to1.z,
|
|
scale0 * w + scale1 * to1.w);
|
|
}
|
|
|
|
Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
|
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
|
#endif
|
|
const Quaternion &from = *this;
|
|
|
|
real_t dot = from.dot(p_to);
|
|
|
|
if (Math::absf(dot) > 0.9999) {
|
|
return from;
|
|
}
|
|
|
|
real_t theta = Math::acos(dot),
|
|
sinT = 1.0 / Math::sin(theta),
|
|
newFactor = Math::sin(p_weight * theta) * sinT,
|
|
invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
|
|
|
|
return Quaternion(invFactor * from.x + newFactor * p_to.x,
|
|
invFactor * from.y + newFactor * p_to.y,
|
|
invFactor * from.z + newFactor * p_to.z,
|
|
invFactor * from.w + newFactor * p_to.w);
|
|
}
|
|
|
|
Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
|
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
|
#endif
|
|
//the only way to do slerp :|
|
|
real_t t2 = (1.0 - p_weight) * p_weight * 2;
|
|
Quaternion sp = this->slerp(p_b, p_weight);
|
|
Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight);
|
|
return sp.slerpni(sq, t2);
|
|
}
|
|
|
|
Quaternion::operator String() const {
|
|
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";
|
|
}
|
|
|
|
Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
|
|
#endif
|
|
real_t d = p_axis.length();
|
|
if (d == 0) {
|
|
x = 0;
|
|
y = 0;
|
|
z = 0;
|
|
w = 0;
|
|
} else {
|
|
real_t sin_angle = Math::sin(p_angle * 0.5);
|
|
real_t cos_angle = Math::cos(p_angle * 0.5);
|
|
real_t s = sin_angle / d;
|
|
x = p_axis.x * s;
|
|
y = p_axis.y * s;
|
|
z = p_axis.z * s;
|
|
w = cos_angle;
|
|
}
|
|
}
|
|
|
|
// Euler constructor expects a vector containing the Euler angles in the format
|
|
// (ax, ay, az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses YXZ convention (Z is the first rotation).
|
|
Quaternion::Quaternion(const Vector3 &p_euler) {
|
|
real_t half_a1 = p_euler.y * 0.5;
|
|
real_t half_a2 = p_euler.x * 0.5;
|
|
real_t half_a3 = p_euler.z * 0.5;
|
|
|
|
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
|
|
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
|
|
// a3 is the angle of the first rotation, following the notation in this reference.
|
|
|
|
real_t cos_a1 = Math::cos(half_a1);
|
|
real_t sin_a1 = Math::sin(half_a1);
|
|
real_t cos_a2 = Math::cos(half_a2);
|
|
real_t sin_a2 = Math::sin(half_a2);
|
|
real_t cos_a3 = Math::cos(half_a3);
|
|
real_t sin_a3 = Math::sin(half_a3);
|
|
|
|
x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
|
|
y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
|
|
z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
|
|
w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
|
|
}
|