godot/thirdparty/embree/kernels/common/scene_instance.h

273 lines
9.8 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "geometry.h"
#include "accel.h"
namespace embree
{
struct MotionDerivativeCoefficients;
/*! Instanced acceleration structure */
struct Instance : public Geometry
{
ALIGNED_STRUCT_(16);
static const Geometry::GTypeMask geom_type = Geometry::MTY_INSTANCE;
public:
Instance (Device* device, Accel* object = nullptr, unsigned int numTimeSteps = 1);
~Instance();
private:
Instance (const Instance& other) DELETED; // do not implement
Instance& operator= (const Instance& other) DELETED; // do not implement
private:
LBBox3fa nonlinearBounds(const BBox1f& time_range_in,
const BBox1f& geom_time_range,
float geom_time_segments) const;
BBox3fa boundSegment(size_t itime,
BBox3fa const& obbox0, BBox3fa const& obbox1,
BBox3fa const& bbox0, BBox3fa const& bbox1,
float t_min, float t_max) const;
/* calculates the (correct) interpolated bounds */
__forceinline BBox3fa bounds(size_t itime0, size_t itime1, float f) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(slerp(local2world[itime0], local2world[itime1], f),
lerp(getObjectBounds(itime0), getObjectBounds(itime1), f));
return xfmBounds(lerp(local2world[itime0], local2world[itime1], f),
lerp(getObjectBounds(itime0), getObjectBounds(itime1), f));
}
public:
virtual void setNumTimeSteps (unsigned int numTimeSteps) override;
virtual void setInstancedScene(const Ref<Scene>& scene) override;
virtual void setTransform(const AffineSpace3fa& local2world, unsigned int timeStep) override;
virtual void setQuaternionDecomposition(const AffineSpace3ff& qd, unsigned int timeStep) override;
virtual AffineSpace3fa getTransform(float time) override;
virtual void setMask (unsigned mask) override;
virtual void build() {}
virtual void addElementsToCount (GeometryCounts & counts) const override;
virtual void commit() override;
public:
/*! calculates the bounds of instance */
__forceinline BBox3fa bounds(size_t i) const {
assert(i == 0);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(quaternionDecompositionToAffineSpace(local2world[0]),object->bounds.bounds());
return xfmBounds(local2world[0],object->bounds.bounds());
}
/*! gets the bounds of the instanced scene */
__forceinline BBox3fa getObjectBounds(size_t itime) const {
return object->getBounds(timeStep(itime));
}
/*! calculates the bounds of instance */
__forceinline BBox3fa bounds(size_t i, size_t itime) const {
assert(i == 0);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return xfmBounds(quaternionDecompositionToAffineSpace(local2world[itime]),getObjectBounds(itime));
return xfmBounds(local2world[itime],getObjectBounds(itime));
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(size_t i, const BBox1f& dt) const {
assert(i == 0);
LBBox3fa lbbox = nonlinearBounds(dt, time_range, fnumTimeSegments);
return lbbox;
}
/*! calculates the build bounds of the i'th item, if it's valid */
__forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
{
assert(i==0);
const BBox3fa b = bounds(i);
if (bbox) *bbox = b;
return isvalid(b);
}
/*! calculates the build bounds of the i'th item at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
{
assert(i==0);
const LBBox3fa bounds = linearBounds(i,itime);
bbox = bounds.bounds ();
return isvalid(bounds);
}
/* gets version info of topology */
unsigned int getTopologyVersion() const {
return numPrimitives;
}
/* returns true if topology changed */
bool topologyChanged(unsigned int otherVersion) const {
return numPrimitives != otherVersion;
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
{
assert(i == 0);
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
if (!isvalid(bounds(i,itime))) return false;
return true;
}
__forceinline AffineSpace3fa getLocal2World() const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return quaternionDecompositionToAffineSpace(local2world[0]);
return local2world[0];
}
__forceinline AffineSpace3fa getLocal2World(float t) const
{
float ftime; const unsigned int itime = timeSegment(t, ftime);
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return slerp(local2world[itime+0],local2world[itime+1],ftime);
return lerp(local2world[itime+0],local2world[itime+1],ftime);
}
__forceinline AffineSpace3fa getWorld2Local() const {
return world2local0;
}
__forceinline AffineSpace3fa getWorld2Local(float t) const {
return rcp(getLocal2World(t));
}
template<int K>
__forceinline AffineSpace3vf<K> getWorld2Local(const vbool<K>& valid, const vfloat<K>& t) const
{
if (unlikely(gsubtype == GTY_SUBTYPE_INSTANCE_QUATERNION))
return getWorld2LocalSlerp<K>(valid, t);
return getWorld2LocalLerp<K>(valid, t);
}
private:
template<int K>
__forceinline AffineSpace3vf<K> getWorld2LocalSlerp(const vbool<K>& valid, const vfloat<K>& t) const
{
vfloat<K> ftime;
const vint<K> itime_k = timeSegment<K>(t, ftime);
assert(any(valid));
const size_t index = bsf(movemask(valid));
const int itime = itime_k[index];
if (likely(all(valid, itime_k == vint<K>(itime)))) {
return rcp(slerp(AffineSpace3vff<K>(local2world[itime+0]),
AffineSpace3vff<K>(local2world[itime+1]),
ftime));
}
else {
AffineSpace3vff<K> space0,space1;
vbool<K> valid1 = valid;
while (any(valid1)) {
vbool<K> valid2;
const int itime = next_unique(valid1, itime_k, valid2);
space0 = select(valid2, AffineSpace3vff<K>(local2world[itime+0]), space0);
space1 = select(valid2, AffineSpace3vff<K>(local2world[itime+1]), space1);
}
return rcp(slerp(space0, space1, ftime));
}
}
template<int K>
__forceinline AffineSpace3vf<K> getWorld2LocalLerp(const vbool<K>& valid, const vfloat<K>& t) const
{
vfloat<K> ftime;
const vint<K> itime_k = timeSegment<K>(t, ftime);
assert(any(valid));
const size_t index = bsf(movemask(valid));
const int itime = itime_k[index];
if (likely(all(valid, itime_k == vint<K>(itime)))) {
return rcp(lerp(AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+0]),
AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+1]),
ftime));
} else {
AffineSpace3vf<K> space0,space1;
vbool<K> valid1 = valid;
while (any(valid1)) {
vbool<K> valid2;
const int itime = next_unique(valid1, itime_k, valid2);
space0 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+0]), space0);
space1 = select(valid2, AffineSpace3vf<K>((AffineSpace3fa)local2world[itime+1]), space1);
}
return rcp(lerp(space0, space1, ftime));
}
}
public:
Accel* object; //!< pointer to instanced acceleration structure
AffineSpace3ff* local2world; //!< transformation from local space to world space for each timestep (either normal matrix or quaternion decomposition)
AffineSpace3fa world2local0; //!< transformation from world space to local space for timestep 0
};
namespace isa
{
struct InstanceISA : public Instance
{
InstanceISA (Device* device)
: Instance(device) {}
PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
{
assert(r.begin() == 0);
assert(r.end() == 1);
PrimInfo pinfo(empty);
BBox3fa b = empty;
if (!buildBounds(0,&b)) return pinfo;
// const BBox3fa b = bounds(0);
// if (!isvalid(b)) return pinfo;
const PrimRef prim(b,geomID,unsigned(0));
pinfo.add_center2(prim);
prims[k++] = prim;
return pinfo;
}
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
{
assert(r.begin() == 0);
assert(r.end() == 1);
PrimInfo pinfo(empty);
BBox3fa b = empty;
if (!buildBounds(0,&b)) return pinfo;
// if (!valid(0,range<size_t>(itime))) return pinfo;
// const PrimRef prim(linearBounds(0,itime).bounds(),geomID,unsigned(0));
const PrimRef prim(b,geomID,unsigned(0));
pinfo.add_center2(prim);
prims[k++] = prim;
return pinfo;
}
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
{
assert(r.begin() == 0);
assert(r.end() == 1);
PrimInfoMB pinfo(empty);
if (!valid(0, timeSegmentRange(t0t1))) return pinfo;
const PrimRefMB prim(linearBounds(0,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(0));
pinfo.add_primref(prim);
prims[k++] = prim;
return pinfo;
}
};
}
DECLARE_ISA_FUNCTION(Instance*, createInstance, Device*);
}