godot/thirdparty/embree/kernels/bvh/bvh_intersector1.cpp
Jakub Mateusz Marcowski c43eab55a4
embree: Update to 4.3.1
2024-03-27 22:10:35 +01:00

323 lines
12 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "bvh_intersector1.h"
#include "node_intersector1.h"
#include "bvh_traverser1.h"
#include "../geometry/intersector_iterators.h"
#include "../geometry/triangle_intersector.h"
#include "../geometry/trianglev_intersector.h"
#include "../geometry/trianglev_mb_intersector.h"
#include "../geometry/trianglei_intersector.h"
#include "../geometry/quadv_intersector.h"
#include "../geometry/quadi_intersector.h"
#include "../geometry/curveNv_intersector.h"
#include "../geometry/curveNi_intersector.h"
#include "../geometry/curveNi_mb_intersector.h"
#include "../geometry/linei_intersector.h"
#include "../geometry/subdivpatch1_intersector.h"
#include "../geometry/object_intersector.h"
#include "../geometry/instance_intersector.h"
#include "../geometry/instance_array_intersector.h"
#include "../geometry/subgrid_intersector.h"
#include "../geometry/subgrid_mb_intersector.h"
#include "../geometry/curve_intersector_virtual.h"
namespace embree
{
namespace isa
{
template<int N, int types, bool robust, typename PrimitiveIntersector1>
void BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::intersect(const Accel::Intersectors* __restrict__ This,
RayHit& __restrict__ ray,
RayQueryContext* __restrict__ context)
{
const BVH* __restrict__ bvh = (const BVH*)This->ptr;
/* we may traverse an empty BVH in case all geometry was invalid */
if (bvh->root == BVH::emptyNode)
return;
/* perform per ray precalculations required by the primitive intersector */
Precalculations pre(ray, bvh);
/* stack state */
StackItemT<NodeRef> stack[stackSize]; // stack of nodes
StackItemT<NodeRef>* stackPtr = stack+1; // current stack pointer
StackItemT<NodeRef>* stackEnd = stack+stackSize;
stack[0].ptr = bvh->root;
stack[0].dist = neg_inf;
if (bvh->root == BVH::emptyNode)
return;
/* filter out invalid rays */
#if defined(EMBREE_IGNORE_INVALID_RAYS)
if (!ray.valid()) return;
#endif
/* verify correct input */
assert(ray.valid());
assert(ray.tnear() >= 0.0f);
assert(!(types & BVH_MB) || (ray.time() >= 0.0f && ray.time() <= 1.0f));
/* load the ray into SIMD registers */
TravRay<N,robust> tray(ray.org, ray.dir, max(ray.tnear(), 0.0f), max(ray.tfar, 0.0f));
/* initialize the node traverser */
BVHNNodeTraverser1Hit<N, types> nodeTraverser;
/* pop loop */
while (true) pop:
{
/* pop next node */
if (unlikely(stackPtr == stack)) break;
stackPtr--;
NodeRef cur = NodeRef(stackPtr->ptr);
/* if popped node is too far, pop next one */
if (unlikely(*(float*)&stackPtr->dist > ray.tfar))
continue;
/* downtraversal loop */
while (true)
{
/* intersect node */
size_t mask; vfloat<N> tNear;
STAT3(normal.trav_nodes,1,1,1);
bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray, ray.time(), tNear, mask);
if (unlikely(!nodeIntersected)) { STAT3(normal.trav_nodes,-1,-1,-1); break; }
/* if no child is hit, pop next node */
if (unlikely(mask == 0))
goto pop;
/* select next child and push other children */
nodeTraverser.traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd);
}
/* this is a leaf node */
assert(cur != BVH::emptyNode);
STAT3(normal.trav_leaves,1,1,1);
size_t num; Primitive* prim = (Primitive*)cur.leaf(num);
size_t lazy_node = 0;
PrimitiveIntersector1::intersect(This, pre, ray, context, prim, num, tray, lazy_node);
tray.tfar = ray.tfar;
/* push lazy node onto stack */
if (unlikely(lazy_node)) {
stackPtr->ptr = lazy_node;
stackPtr->dist = neg_inf;
stackPtr++;
}
}
}
template<int N, int types, bool robust, typename PrimitiveIntersector1>
void BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::occluded(const Accel::Intersectors* __restrict__ This,
Ray& __restrict__ ray,
RayQueryContext* __restrict__ context)
{
const BVH* __restrict__ bvh = (const BVH*)This->ptr;
/* we may traverse an empty BVH in case all geometry was invalid */
if (bvh->root == BVH::emptyNode)
return;
/* early out for already occluded rays */
if (unlikely(ray.tfar < 0.0f))
return;
/* perform per ray precalculations required by the primitive intersector */
Precalculations pre(ray, bvh);
/* stack state */
NodeRef stack[stackSize]; // stack of nodes that still need to get traversed
NodeRef* stackPtr = stack+1; // current stack pointer
NodeRef* stackEnd = stack+stackSize;
stack[0] = bvh->root;
/* filter out invalid rays */
#if defined(EMBREE_IGNORE_INVALID_RAYS)
if (!ray.valid()) return;
#endif
/* verify correct input */
assert(ray.valid());
assert(ray.tnear() >= 0.0f);
assert(!(types & BVH_MB) || (ray.time() >= 0.0f && ray.time() <= 1.0f));
/* load the ray into SIMD registers */
TravRay<N,robust> tray(ray.org, ray.dir, max(ray.tnear(), 0.0f), max(ray.tfar, 0.0f));
/* initialize the node traverser */
BVHNNodeTraverser1Hit<N, types> nodeTraverser;
/* pop loop */
while (true) pop:
{
/* pop next node */
if (unlikely(stackPtr == stack)) break;
stackPtr--;
NodeRef cur = (NodeRef)*stackPtr;
/* downtraversal loop */
while (true)
{
/* intersect node */
size_t mask; vfloat<N> tNear;
STAT3(shadow.trav_nodes,1,1,1);
bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray, ray.time(), tNear, mask);
if (unlikely(!nodeIntersected)) { STAT3(shadow.trav_nodes,-1,-1,-1); break; }
/* if no child is hit, pop next node */
if (unlikely(mask == 0))
goto pop;
/* select next child and push other children */
nodeTraverser.traverseAnyHit(cur, mask, tNear, stackPtr, stackEnd);
}
/* this is a leaf node */
assert(cur != BVH::emptyNode);
STAT3(shadow.trav_leaves,1,1,1);
size_t num; Primitive* prim = (Primitive*)cur.leaf(num);
size_t lazy_node = 0;
if (PrimitiveIntersector1::occluded(This, pre, ray, context, prim, num, tray, lazy_node)) {
ray.tfar = neg_inf;
break;
}
/* push lazy node onto stack */
if (unlikely(lazy_node)) {
*stackPtr = (NodeRef)lazy_node;
stackPtr++;
}
}
}
template<int N, int types, bool robust, typename PrimitiveIntersector1>
struct PointQueryDispatch
{
typedef typename PrimitiveIntersector1::Precalculations Precalculations;
typedef typename PrimitiveIntersector1::Primitive Primitive;
typedef BVHN<N> BVH;
typedef typename BVH::NodeRef NodeRef;
typedef typename BVH::AABBNode AABBNode;
typedef typename BVH::AABBNodeMB4D AABBNodeMB4D;
static const size_t stackSize = 1+(N-1)*BVH::maxDepth+3; // +3 due to 16-wide store
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context)
{
const BVH* __restrict__ bvh = (const BVH*)This->ptr;
/* we may traverse an empty BVH in case all geometry was invalid */
if (bvh->root == BVH::emptyNode)
return false;
/* stack state */
StackItemT<NodeRef> stack[stackSize]; // stack of nodes
StackItemT<NodeRef>* stackPtr = stack+1; // current stack pointer
StackItemT<NodeRef>* stackEnd = stack+stackSize;
stack[0].ptr = bvh->root;
stack[0].dist = neg_inf;
/* verify correct input */
assert(!(types & BVH_MB) || (query->time >= 0.0f && query->time <= 1.0f));
/* load the point query into SIMD registers */
TravPointQuery<N> tquery(query->p, context->query_radius);
/* initialize the node traverser */
BVHNNodeTraverser1Hit<N,types> nodeTraverser;
bool changed = false;
float cull_radius = context->query_type == POINT_QUERY_TYPE_SPHERE
? query->radius * query->radius
: dot(context->query_radius, context->query_radius);
/* pop loop */
while (true) pop:
{
/* pop next node */
if (unlikely(stackPtr == stack)) break;
stackPtr--;
NodeRef cur = NodeRef(stackPtr->ptr);
/* if popped node is too far, pop next one */
if (unlikely(*(float*)&stackPtr->dist > cull_radius))
continue;
/* downtraversal loop */
while (true)
{
/* intersect node */
size_t mask; vfloat<N> tNear;
STAT3(point_query.trav_nodes,1,1,1);
bool nodeIntersected;
if (likely(context->query_type == POINT_QUERY_TYPE_SPHERE)) {
nodeIntersected = BVHNNodePointQuerySphere1<N, types>::pointQuery(cur, tquery, query->time, tNear, mask);
} else {
nodeIntersected = BVHNNodePointQueryAABB1 <N, types>::pointQuery(cur, tquery, query->time, tNear, mask);
}
if (unlikely(!nodeIntersected)) { STAT3(point_query.trav_nodes,-1,-1,-1); break; }
/* if no child is hit, pop next node */
if (unlikely(mask == 0))
goto pop;
/* select next child and push other children */
nodeTraverser.traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd);
}
/* this is a leaf node */
assert(cur != BVH::emptyNode);
STAT3(point_query.trav_leaves,1,1,1);
size_t num; Primitive* prim = (Primitive*)cur.leaf(num);
size_t lazy_node = 0;
if (PrimitiveIntersector1::pointQuery(This, query, context, prim, num, tquery, lazy_node))
{
changed = true;
tquery.rad = context->query_radius;
cull_radius = context->query_type == POINT_QUERY_TYPE_SPHERE
? query->radius * query->radius
: dot(context->query_radius, context->query_radius);
}
/* push lazy node onto stack */
if (unlikely(lazy_node)) {
stackPtr->ptr = lazy_node;
stackPtr->dist = neg_inf;
stackPtr++;
}
}
return changed;
}
};
/* disable point queries for not yet supported geometry types */
template<int N, int types, bool robust>
struct PointQueryDispatch<N, types, robust, VirtualCurveIntersector1> {
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; }
};
template<int N, int types, bool robust>
struct PointQueryDispatch<N, types, robust, SubdivPatch1Intersector1> {
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; }
};
template<int N, int types, bool robust>
struct PointQueryDispatch<N, types, robust, SubdivPatch1MBIntersector1> {
static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; }
};
template<int N, int types, bool robust, typename PrimitiveIntersector1>
bool BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::pointQuery(
const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context)
{
return PointQueryDispatch<N, types, robust, PrimitiveIntersector1>::pointQuery(This, query, context);
}
}
}