godot/core/math/basis.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

1056 lines
33 KiB
C++

/**************************************************************************/
/* basis.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "basis.h"
#include "core/math/math_funcs.h"
#include "core/string/ustring.h"
#define cofac(row1, col1, row2, col2) \
(rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])
void Basis::from_z(const Vector3 &p_z) {
if (Math::abs(p_z.z) > (real_t)Math_SQRT12) {
// choose p in y-z plane
real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
real_t k = 1.0f / Math::sqrt(a);
rows[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
rows[1] = Vector3(a * k, -p_z[0] * rows[0][2], p_z[0] * rows[0][1]);
} else {
// choose p in x-y plane
real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
real_t k = 1.0f / Math::sqrt(a);
rows[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
rows[1] = Vector3(-p_z.z * rows[0].y, p_z.z * rows[0].x, a * k);
}
rows[2] = p_z;
}
void Basis::invert() {
real_t co[3] = {
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = rows[0][0] * co[0] +
rows[0][1] * co[1] +
rows[0][2] * co[2];
#ifdef MATH_CHECKS
ERR_FAIL_COND(det == 0);
#endif
real_t s = 1.0f / det;
set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}
void Basis::orthonormalize() {
// Gram-Schmidt Process
Vector3 x = get_column(0);
Vector3 y = get_column(1);
Vector3 z = get_column(2);
x.normalize();
y = (y - x * (x.dot(y)));
y.normalize();
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
z.normalize();
set_column(0, x);
set_column(1, y);
set_column(2, z);
}
Basis Basis::orthonormalized() const {
Basis c = *this;
c.orthonormalize();
return c;
}
void Basis::orthogonalize() {
Vector3 scl = get_scale();
orthonormalize();
scale_local(scl);
}
Basis Basis::orthogonalized() const {
Basis c = *this;
c.orthogonalize();
return c;
}
bool Basis::is_orthogonal() const {
Basis identity;
Basis m = (*this) * transposed();
return m.is_equal_approx(identity);
}
bool Basis::is_diagonal() const {
return (
Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) &&
Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
}
bool Basis::is_rotation() const {
return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
}
#ifdef MATH_CHECKS
// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
bool Basis::is_symmetric() const {
if (!Math::is_equal_approx(rows[0][1], rows[1][0])) {
return false;
}
if (!Math::is_equal_approx(rows[0][2], rows[2][0])) {
return false;
}
if (!Math::is_equal_approx(rows[1][2], rows[2][1])) {
return false;
}
return true;
}
#endif
Basis Basis::diagonalize() {
// NOTE: only implemented for symmetric matrices
// with the Jacobi iterative method
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
const int ite_max = 1024;
real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2];
int ite = 0;
Basis acc_rot;
while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
real_t el01_2 = rows[0][1] * rows[0][1];
real_t el02_2 = rows[0][2] * rows[0][2];
real_t el12_2 = rows[1][2] * rows[1][2];
// Find the pivot element
int i, j;
if (el01_2 > el02_2) {
if (el12_2 > el01_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 1;
}
} else {
if (el12_2 > el02_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 2;
}
}
// Compute the rotation angle
real_t angle;
if (Math::is_equal_approx(rows[j][j], rows[i][i])) {
angle = Math_PI / 4;
} else {
angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i]));
}
// Compute the rotation matrix
Basis rot;
rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle);
rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle));
// Update the off matrix norm
off_matrix_norm_2 -= rows[i][j] * rows[i][j];
// Apply the rotation
*this = rot * *this * rot.transposed();
acc_rot = rot * acc_rot;
}
return acc_rot;
}
Basis Basis::inverse() const {
Basis inv = *this;
inv.invert();
return inv;
}
void Basis::transpose() {
SWAP(rows[0][1], rows[1][0]);
SWAP(rows[0][2], rows[2][0]);
SWAP(rows[1][2], rows[2][1]);
}
Basis Basis::transposed() const {
Basis tr = *this;
tr.transpose();
return tr;
}
Basis Basis::from_scale(const Vector3 &p_scale) {
return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z);
}
// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {
rows[0][0] *= p_scale.x;
rows[0][1] *= p_scale.x;
rows[0][2] *= p_scale.x;
rows[1][0] *= p_scale.y;
rows[1][1] *= p_scale.y;
rows[1][2] *= p_scale.y;
rows[2][0] *= p_scale.z;
rows[2][1] *= p_scale.z;
rows[2][2] *= p_scale.z;
}
Basis Basis::scaled(const Vector3 &p_scale) const {
Basis m = *this;
m.scale(p_scale);
return m;
}
void Basis::scale_local(const Vector3 &p_scale) {
// performs a scaling in object-local coordinate system:
// M -> (M.S.Minv).M = M.S.
*this = scaled_local(p_scale);
}
void Basis::scale_orthogonal(const Vector3 &p_scale) {
*this = scaled_orthogonal(p_scale);
}
Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
Basis m = *this;
Vector3 s = Vector3(-1, -1, -1) + p_scale;
Vector3 dots;
Basis b;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j)));
}
}
m.scale_local(Vector3(1, 1, 1) + dots);
return m;
}
float Basis::get_uniform_scale() const {
return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
}
void Basis::make_scale_uniform() {
float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
for (int i = 0; i < 3; i++) {
rows[i].normalize();
rows[i] *= l;
}
}
Basis Basis::scaled_local(const Vector3 &p_scale) const {
return (*this) * Basis::from_scale(p_scale);
}
Vector3 Basis::get_scale_abs() const {
return Vector3(
Vector3(rows[0][0], rows[1][0], rows[2][0]).length(),
Vector3(rows[0][1], rows[1][1], rows[2][1]).length(),
Vector3(rows[0][2], rows[1][2], rows[2][2]).length());
}
Vector3 Basis::get_scale_local() const {
real_t det_sign = SIGN(determinant());
return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length());
}
// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
Vector3 Basis::get_scale() const {
// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
//
// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
// Therefore, we are going to do this decomposition by sticking to a particular convention.
// This may lead to confusion for some users though.
//
// The convention we use here is to absorb the sign flip into the scaling matrix.
// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
//
// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
// matrix elements.
//
// The rotation part of this decomposition is returned by get_rotation* functions.
real_t det_sign = SIGN(determinant());
return det_sign * get_scale_abs();
}
// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(determinant() == 0, Vector3());
Basis m = transposed() * (*this);
ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
#endif
Vector3 scale = get_scale();
Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
rotref = (*this) * inv_scale;
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
#endif
return scale.abs();
}
// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
// The main use of Basis is as Transform.basis, which is used by the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const {
return Basis(p_axis, p_angle) * (*this);
}
void Basis::rotate(const Vector3 &p_axis, real_t p_angle) {
*this = rotated(p_axis, p_angle);
}
void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) {
// performs a rotation in object-local coordinate system:
// M -> (M.R.Minv).M = M.R.
*this = rotated_local(p_axis, p_angle);
}
Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
return (*this) * Basis(p_axis, p_angle);
}
Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const {
return Basis::from_euler(p_euler, p_order) * (*this);
}
void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) {
*this = rotated(p_euler, p_order);
}
Basis Basis::rotated(const Quaternion &p_quaternion) const {
return Basis(p_quaternion) * (*this);
}
void Basis::rotate(const Quaternion &p_quaternion) {
*this = rotated(p_quaternion);
}
Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
return m.get_euler(p_order);
}
Quaternion Basis::get_rotation_quaternion() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
return m.get_quaternion();
}
void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) {
// Takes two vectors and rotates the basis from the first vector to the second vector.
// Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
const Vector3 axis = p_start_direction.cross(p_end_direction).normalized();
if (axis.length_squared() != 0) {
real_t dot = p_start_direction.dot(p_end_direction);
dot = CLAMP(dot, -1.0f, 1.0f);
const real_t angle_rads = Math::acos(dot);
set_axis_angle(axis, angle_rads);
}
}
void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
m.get_axis_angle(p_axis, p_angle);
}
void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = transposed();
m.orthonormalize();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
m.get_axis_angle(p_axis, p_angle);
p_angle = -p_angle;
}
Vector3 Basis::get_euler(EulerOrder p_order) const {
switch (p_order) {
case EulerOrder::XYZ: {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
real_t sy = rows[0][2];
if (sy < (1.0f - (real_t)CMP_EPSILON)) {
if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
// is this a pure Y rotation?
if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = 0;
euler.y = atan2(rows[0][2], rows[0][0]);
euler.z = 0;
} else {
euler.x = Math::atan2(-rows[1][2], rows[2][2]);
euler.y = Math::asin(sy);
euler.z = Math::atan2(-rows[0][1], rows[0][0]);
}
} else {
euler.x = Math::atan2(rows[2][1], rows[1][1]);
euler.y = -Math_PI / 2.0f;
euler.z = 0.0f;
}
} else {
euler.x = Math::atan2(rows[2][1], rows[1][1]);
euler.y = Math_PI / 2.0f;
euler.z = 0.0f;
}
return euler;
}
case EulerOrder::XZY: {
// Euler angles in XZY convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy -sz cz*sy
// sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
// cy*sx*sz cz*sx cx*cy+sx*sz*sy
Vector3 euler;
real_t sz = rows[0][1];
if (sz < (1.0f - (real_t)CMP_EPSILON)) {
if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
euler.x = Math::atan2(rows[2][1], rows[1][1]);
euler.y = Math::atan2(rows[0][2], rows[0][0]);
euler.z = Math::asin(-sz);
} else {
// It's -1
euler.x = -Math::atan2(rows[1][2], rows[2][2]);
euler.y = 0.0f;
euler.z = Math_PI / 2.0f;
}
} else {
// It's 1
euler.x = -Math::atan2(rows[1][2], rows[2][2]);
euler.y = 0.0f;
euler.z = -Math_PI / 2.0f;
}
return euler;
}
case EulerOrder::YXZ: {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
Vector3 euler;
real_t m12 = rows[1][2];
if (m12 < (1 - (real_t)CMP_EPSILON)) {
if (m12 > -(1 - (real_t)CMP_EPSILON)) {
// is this a pure X rotation?
if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = atan2(-m12, rows[1][1]);
euler.y = 0;
euler.z = 0;
} else {
euler.x = asin(-m12);
euler.y = atan2(rows[0][2], rows[2][2]);
euler.z = atan2(rows[1][0], rows[1][1]);
}
} else { // m12 == -1
euler.x = Math_PI * 0.5f;
euler.y = atan2(rows[0][1], rows[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5f;
euler.y = -atan2(rows[0][1], rows[0][0]);
euler.z = 0;
}
return euler;
}
case EulerOrder::YZX: {
// Euler angles in YZX convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
// sz cz*cx -cz*sx
// -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
Vector3 euler;
real_t sz = rows[1][0];
if (sz < (1.0f - (real_t)CMP_EPSILON)) {
if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
euler.x = Math::atan2(-rows[1][2], rows[1][1]);
euler.y = Math::atan2(-rows[2][0], rows[0][0]);
euler.z = Math::asin(sz);
} else {
// It's -1
euler.x = Math::atan2(rows[2][1], rows[2][2]);
euler.y = 0.0f;
euler.z = -Math_PI / 2.0f;
}
} else {
// It's 1
euler.x = Math::atan2(rows[2][1], rows[2][2]);
euler.y = 0.0f;
euler.z = Math_PI / 2.0f;
}
return euler;
} break;
case EulerOrder::ZXY: {
// Euler angles in ZXY convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
// cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
// -cx*sy sx cx*cy
Vector3 euler;
real_t sx = rows[2][1];
if (sx < (1.0f - (real_t)CMP_EPSILON)) {
if (sx > -(1.0f - (real_t)CMP_EPSILON)) {
euler.x = Math::asin(sx);
euler.y = Math::atan2(-rows[2][0], rows[2][2]);
euler.z = Math::atan2(-rows[0][1], rows[1][1]);
} else {
// It's -1
euler.x = -Math_PI / 2.0f;
euler.y = Math::atan2(rows[0][2], rows[0][0]);
euler.z = 0;
}
} else {
// It's 1
euler.x = Math_PI / 2.0f;
euler.y = Math::atan2(rows[0][2], rows[0][0]);
euler.z = 0;
}
return euler;
} break;
case EulerOrder::ZYX: {
// Euler angles in ZYX convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
// cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
// -sy cy*sx cy*cx
Vector3 euler;
real_t sy = rows[2][0];
if (sy < (1.0f - (real_t)CMP_EPSILON)) {
if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
euler.x = Math::atan2(rows[2][1], rows[2][2]);
euler.y = Math::asin(-sy);
euler.z = Math::atan2(rows[1][0], rows[0][0]);
} else {
// It's -1
euler.x = 0;
euler.y = Math_PI / 2.0f;
euler.z = -Math::atan2(rows[0][1], rows[1][1]);
}
} else {
// It's 1
euler.x = 0;
euler.y = -Math_PI / 2.0f;
euler.z = -Math::atan2(rows[0][1], rows[1][1]);
}
return euler;
}
default: {
ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
}
}
return Vector3();
}
void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1, 0, 0, 0, c, -s, 0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1);
switch (p_order) {
case EulerOrder::XYZ: {
*this = xmat * (ymat * zmat);
} break;
case EulerOrder::XZY: {
*this = xmat * zmat * ymat;
} break;
case EulerOrder::YXZ: {
*this = ymat * xmat * zmat;
} break;
case EulerOrder::YZX: {
*this = ymat * zmat * xmat;
} break;
case EulerOrder::ZXY: {
*this = zmat * xmat * ymat;
} break;
case EulerOrder::ZYX: {
*this = zmat * ymat * xmat;
} break;
default: {
ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)");
}
}
}
bool Basis::is_equal_approx(const Basis &p_basis) const {
return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
}
bool Basis::is_finite() const {
return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite();
}
bool Basis::operator==(const Basis &p_matrix) const {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (rows[i][j] != p_matrix.rows[i][j]) {
return false;
}
}
}
return true;
}
bool Basis::operator!=(const Basis &p_matrix) const {
return (!(*this == p_matrix));
}
Basis::operator String() const {
return "[X: " + get_column(0).operator String() +
", Y: " + get_column(1).operator String() +
", Z: " + get_column(2).operator String() + "]";
}
Quaternion Basis::get_quaternion() const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors.");
#endif
/* Allow getting a quaternion from an unnormalized transform */
Basis m = *this;
real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
real_t temp[4];
if (trace > 0.0f) {
real_t s = Math::sqrt(trace + 1.0f);
temp[3] = (s * 0.5f);
s = 0.5f / s;
temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
} else {
int i = m.rows[0][0] < m.rows[1][1]
? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
: (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
temp[i] = s * 0.5f;
s = 0.5f / s;
temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
}
return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}
void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
#ifdef MATH_CHECKS
ERR_FAIL_COND(!is_rotation());
#endif
*/
// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
real_t x, y, z; // Variables for result.
if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
// Singularity found.
// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
// This singularity is identity matrix so angle = 0.
r_axis = Vector3(0, 1, 0);
r_angle = 0;
return;
}
// Otherwise this singularity is angle = 180.
real_t xx = (rows[0][0] + 1) / 2;
real_t yy = (rows[1][1] + 1) / 2;
real_t zz = (rows[2][2] + 1) / 2;
real_t xy = (rows[0][1] + rows[1][0]) / 4;
real_t xz = (rows[0][2] + rows[2][0]) / 4;
real_t yz = (rows[1][2] + rows[2][1]) / 4;
if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
if (xx < CMP_EPSILON) {
x = 0;
y = Math_SQRT12;
z = Math_SQRT12;
} else {
x = Math::sqrt(xx);
y = xy / x;
z = xz / x;
}
} else if (yy > zz) { // rows[1][1] is the largest diagonal term.
if (yy < CMP_EPSILON) {
x = Math_SQRT12;
y = 0;
z = Math_SQRT12;
} else {
y = Math::sqrt(yy);
x = xy / y;
z = yz / y;
}
} else { // rows[2][2] is the largest diagonal term so base result on this.
if (zz < CMP_EPSILON) {
x = Math_SQRT12;
y = Math_SQRT12;
z = 0;
} else {
z = Math::sqrt(zz);
x = xz / z;
y = yz / z;
}
}
r_axis = Vector3(x, y, z);
r_angle = Math_PI;
return;
}
// As we have reached here there are no singularities so we can handle normally.
double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize.
if (Math::abs(s) < CMP_EPSILON) {
// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
s = 1;
}
x = (rows[2][1] - rows[1][2]) / s;
y = (rows[0][2] - rows[2][0]) / s;
z = (rows[1][0] - rows[0][1]) / s;
r_axis = Vector3(x, y, z);
// CLAMP to avoid NaN if the value passed to acos is not in [0,1].
r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0));
}
void Basis::set_quaternion(const Quaternion &p_quaternion) {
real_t d = p_quaternion.length_squared();
real_t s = 2.0f / d;
real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
set(1.0f - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0f - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0f - (xx + yy));
}
void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
#ifdef MATH_CHECKS
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
real_t cosine = Math::cos(p_angle);
rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);
real_t sine = Math::sin(p_angle);
real_t t = 1 - cosine;
real_t xyzt = p_axis.x * p_axis.y * t;
real_t zyxs = p_axis.z * sine;
rows[0][1] = xyzt - zyxs;
rows[1][0] = xyzt + zyxs;
xyzt = p_axis.x * p_axis.z * t;
zyxs = p_axis.y * sine;
rows[0][2] = xyzt + zyxs;
rows[2][0] = xyzt - zyxs;
xyzt = p_axis.y * p_axis.z * t;
zyxs = p_axis.x * sine;
rows[1][2] = xyzt - zyxs;
rows[2][1] = xyzt + zyxs;
}
void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) {
_set_diagonal(p_scale);
rotate(p_axis, p_angle);
}
void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) {
_set_diagonal(p_scale);
rotate(p_euler, p_order);
}
void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
_set_diagonal(p_scale);
rotate(p_quaternion);
}
// This also sets the non-diagonal elements to 0, which is misleading from the
// name, so we want this method to be private. Use `from_scale` externally.
void Basis::_set_diagonal(const Vector3 &p_diag) {
rows[0][0] = p_diag.x;
rows[0][1] = 0;
rows[0][2] = 0;
rows[1][0] = 0;
rows[1][1] = p_diag.y;
rows[1][2] = 0;
rows[2][0] = 0;
rows[2][1] = 0;
rows[2][2] = p_diag.z;
}
Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
Basis b;
b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight);
b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight);
b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight);
return b;
}
Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
//consider scale
Quaternion from(*this);
Quaternion to(p_to);
Basis b(from.slerp(to, p_weight));
b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight);
b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight);
b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight);
return b;
}
void Basis::rotate_sh(real_t *p_values) {
// code by John Hable
// http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
// this code is Public Domain
const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))
const static real_t s_c_scale = 1.0 / 0.91529123286551084;
const static real_t s_c_scale_inv = 0.91529123286551084;
const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
const static real_t s_c4_div_c3 = s_c4 / s_c3;
const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;
const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
real_t m00 = rows[0][0];
real_t m01 = rows[0][1];
real_t m02 = rows[0][2];
real_t m10 = rows[1][0];
real_t m11 = rows[1][1];
real_t m12 = rows[1][2];
real_t m20 = rows[2][0];
real_t m21 = rows[2][1];
real_t m22 = rows[2][2];
p_values[0] = src[0];
p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];
real_t sh0 = src[7] + src[8] + src[8] - src[5];
real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
real_t sh2 = src[4];
real_t sh3 = -src[7];
real_t sh4 = -src[5];
// Rotations. R0 and R1 just use the raw matrix columns
real_t r2x = m00 + m01;
real_t r2y = m10 + m11;
real_t r2z = m20 + m21;
real_t r3x = m00 + m02;
real_t r3y = m10 + m12;
real_t r3z = m20 + m22;
real_t r4x = m01 + m02;
real_t r4y = m11 + m12;
real_t r4z = m21 + m22;
// dense matrix multiplication one column at a time
// column 0
real_t sh0_x = sh0 * m00;
real_t sh0_y = sh0 * m10;
real_t d0 = sh0_x * m10;
real_t d1 = sh0_y * m20;
real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
real_t d3 = sh0_x * m20;
real_t d4 = sh0_x * m00 - sh0_y * m10;
// column 1
real_t sh1_x = sh1 * m02;
real_t sh1_y = sh1 * m12;
d0 += sh1_x * m12;
d1 += sh1_y * m22;
d2 += sh1 * (m22 * m22 + s_c4_div_c3);
d3 += sh1_x * m22;
d4 += sh1_x * m02 - sh1_y * m12;
// column 2
real_t sh2_x = sh2 * r2x;
real_t sh2_y = sh2 * r2y;
d0 += sh2_x * r2y;
d1 += sh2_y * r2z;
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
d3 += sh2_x * r2z;
d4 += sh2_x * r2x - sh2_y * r2y;
// column 3
real_t sh3_x = sh3 * r3x;
real_t sh3_y = sh3 * r3y;
d0 += sh3_x * r3y;
d1 += sh3_y * r3z;
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
d3 += sh3_x * r3z;
d4 += sh3_x * r3x - sh3_y * r3y;
// column 4
real_t sh4_x = sh4 * r4x;
real_t sh4_y = sh4 * r4y;
d0 += sh4_x * r4y;
d1 += sh4_y * r4z;
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
d3 += sh4_x * r4z;
d4 += sh4_x * r4x - sh4_y * r4y;
// extra multipliers
p_values[4] = d0;
p_values[5] = -d1;
p_values[6] = d2 * s_scale_dst2;
p_values[7] = -d3;
p_values[8] = d4 * s_scale_dst4;
}
Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero.");
ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero.");
#endif
Vector3 v_z = -p_target.normalized();
Vector3 v_x = p_up.cross(v_z);
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other.");
#endif
v_x.normalize();
Vector3 v_y = v_z.cross(v_x);
Basis basis;
basis.set_columns(v_x, v_y, v_z);
return basis;
}