godot/modules/bullet/rigid_body_bullet.cpp
Rémi Verschelde 71066cd63b
Update copyright statements to 2022
Happy new year to the wonderful Godot community!

(cherry picked from commit a627cdafc5)
2022-01-13 16:00:37 +01:00

1076 lines
34 KiB
C++

/*************************************************************************/
/* rigid_body_bullet.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "rigid_body_bullet.h"
#include "btRayShape.h"
#include "bullet_physics_server.h"
#include "bullet_types_converter.h"
#include "bullet_utilities.h"
#include "godot_motion_state.h"
#include "joint_bullet.h"
#include <BulletCollision/CollisionDispatch/btGhostObject.h>
#include <BulletCollision/CollisionShapes/btConvexPointCloudShape.h>
#include <BulletDynamics/Dynamics/btRigidBody.h>
#include <btBulletCollisionCommon.h>
#include <assert.h>
/**
@author AndreaCatania
*/
BulletPhysicsDirectBodyState *BulletPhysicsDirectBodyState::singleton = nullptr;
Vector3 BulletPhysicsDirectBodyState::get_total_gravity() const {
Vector3 gVec;
B_TO_G(body->btBody->getGravity(), gVec);
return gVec;
}
float BulletPhysicsDirectBodyState::get_total_angular_damp() const {
return body->btBody->getAngularDamping();
}
float BulletPhysicsDirectBodyState::get_total_linear_damp() const {
return body->btBody->getLinearDamping();
}
Vector3 BulletPhysicsDirectBodyState::get_center_of_mass() const {
Vector3 gVec;
B_TO_G(body->btBody->getCenterOfMassPosition(), gVec);
return gVec;
}
Basis BulletPhysicsDirectBodyState::get_principal_inertia_axes() const {
return Basis();
}
float BulletPhysicsDirectBodyState::get_inverse_mass() const {
return body->btBody->getInvMass();
}
Vector3 BulletPhysicsDirectBodyState::get_inverse_inertia() const {
Vector3 gVec;
B_TO_G(body->btBody->getInvInertiaDiagLocal(), gVec);
return gVec;
}
Basis BulletPhysicsDirectBodyState::get_inverse_inertia_tensor() const {
Basis gInertia;
B_TO_G(body->btBody->getInvInertiaTensorWorld(), gInertia);
return gInertia;
}
void BulletPhysicsDirectBodyState::set_linear_velocity(const Vector3 &p_velocity) {
body->set_linear_velocity(p_velocity);
}
Vector3 BulletPhysicsDirectBodyState::get_linear_velocity() const {
return body->get_linear_velocity();
}
void BulletPhysicsDirectBodyState::set_angular_velocity(const Vector3 &p_velocity) {
body->set_angular_velocity(p_velocity);
}
Vector3 BulletPhysicsDirectBodyState::get_angular_velocity() const {
return body->get_angular_velocity();
}
void BulletPhysicsDirectBodyState::set_transform(const Transform &p_transform) {
body->set_transform(p_transform);
}
Transform BulletPhysicsDirectBodyState::get_transform() const {
return body->get_transform();
}
Vector3 BulletPhysicsDirectBodyState::get_velocity_at_local_position(const Vector3 &p_position) const {
btVector3 local_position;
G_TO_B(p_position, local_position);
Vector3 velocity;
B_TO_G(body->btBody->getVelocityInLocalPoint(local_position), velocity);
return velocity;
}
void BulletPhysicsDirectBodyState::add_central_force(const Vector3 &p_force) {
body->apply_central_force(p_force);
}
void BulletPhysicsDirectBodyState::add_force(const Vector3 &p_force, const Vector3 &p_pos) {
body->apply_force(p_force, p_pos);
}
void BulletPhysicsDirectBodyState::add_torque(const Vector3 &p_torque) {
body->apply_torque(p_torque);
}
void BulletPhysicsDirectBodyState::apply_central_impulse(const Vector3 &p_impulse) {
body->apply_central_impulse(p_impulse);
}
void BulletPhysicsDirectBodyState::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) {
body->apply_impulse(p_pos, p_impulse);
}
void BulletPhysicsDirectBodyState::apply_torque_impulse(const Vector3 &p_impulse) {
body->apply_torque_impulse(p_impulse);
}
void BulletPhysicsDirectBodyState::set_sleep_state(bool p_enable) {
body->set_activation_state(p_enable);
}
bool BulletPhysicsDirectBodyState::is_sleeping() const {
return !body->is_active();
}
int BulletPhysicsDirectBodyState::get_contact_count() const {
return body->collisionsCount;
}
Vector3 BulletPhysicsDirectBodyState::get_contact_local_position(int p_contact_idx) const {
return body->collisions[p_contact_idx].hitLocalLocation;
}
Vector3 BulletPhysicsDirectBodyState::get_contact_local_normal(int p_contact_idx) const {
return body->collisions[p_contact_idx].hitNormal;
}
float BulletPhysicsDirectBodyState::get_contact_impulse(int p_contact_idx) const {
return body->collisions[p_contact_idx].appliedImpulse;
}
int BulletPhysicsDirectBodyState::get_contact_local_shape(int p_contact_idx) const {
return body->collisions[p_contact_idx].local_shape;
}
RID BulletPhysicsDirectBodyState::get_contact_collider(int p_contact_idx) const {
return body->collisions[p_contact_idx].otherObject->get_self();
}
Vector3 BulletPhysicsDirectBodyState::get_contact_collider_position(int p_contact_idx) const {
return body->collisions[p_contact_idx].hitWorldLocation;
}
ObjectID BulletPhysicsDirectBodyState::get_contact_collider_id(int p_contact_idx) const {
return body->collisions[p_contact_idx].otherObject->get_instance_id();
}
int BulletPhysicsDirectBodyState::get_contact_collider_shape(int p_contact_idx) const {
return body->collisions[p_contact_idx].other_object_shape;
}
Vector3 BulletPhysicsDirectBodyState::get_contact_collider_velocity_at_position(int p_contact_idx) const {
RigidBodyBullet::CollisionData &colDat = body->collisions.write[p_contact_idx];
btVector3 hitLocation;
G_TO_B(colDat.hitLocalLocation, hitLocation);
Vector3 velocityAtPoint;
B_TO_G(colDat.otherObject->get_bt_rigid_body()->getVelocityInLocalPoint(hitLocation), velocityAtPoint);
return velocityAtPoint;
}
PhysicsDirectSpaceState *BulletPhysicsDirectBodyState::get_space_state() {
return body->get_space()->get_direct_state();
}
RigidBodyBullet::KinematicUtilities::KinematicUtilities(RigidBodyBullet *p_owner) :
owner(p_owner),
safe_margin(0.001) {
}
RigidBodyBullet::KinematicUtilities::~KinematicUtilities() {
just_delete_shapes(shapes.size()); // don't need to resize
}
void RigidBodyBullet::KinematicUtilities::setSafeMargin(btScalar p_margin) {
safe_margin = p_margin;
copyAllOwnerShapes();
}
void RigidBodyBullet::KinematicUtilities::copyAllOwnerShapes() {
const Vector<CollisionObjectBullet::ShapeWrapper> &shapes_wrappers(owner->get_shapes_wrappers());
const int shapes_count = shapes_wrappers.size();
just_delete_shapes(shapes_count);
const CollisionObjectBullet::ShapeWrapper *shape_wrapper;
btVector3 owner_scale(owner->get_bt_body_scale());
for (int i = shapes_count - 1; 0 <= i; --i) {
shape_wrapper = &shapes_wrappers[i];
if (!shape_wrapper->active) {
continue;
}
shapes.write[i].transform = shape_wrapper->transform;
shapes.write[i].transform.getOrigin() *= owner_scale;
switch (shape_wrapper->shape->get_type()) {
case PhysicsServer::SHAPE_SPHERE:
case PhysicsServer::SHAPE_BOX:
case PhysicsServer::SHAPE_CAPSULE:
case PhysicsServer::SHAPE_CYLINDER:
case PhysicsServer::SHAPE_CONVEX_POLYGON:
case PhysicsServer::SHAPE_RAY: {
shapes.write[i].shape = static_cast<btConvexShape *>(shape_wrapper->shape->create_bt_shape(owner_scale * shape_wrapper->scale, safe_margin));
} break;
default:
WARN_PRINT("This shape is not supported to be kinematic!");
shapes.write[i].shape = nullptr;
}
}
}
void RigidBodyBullet::KinematicUtilities::just_delete_shapes(int new_size) {
for (int i = shapes.size() - 1; 0 <= i; --i) {
if (shapes[i].shape) {
bulletdelete(shapes.write[i].shape);
}
}
shapes.resize(new_size);
}
RigidBodyBullet::RigidBodyBullet() :
RigidCollisionObjectBullet(CollisionObjectBullet::TYPE_RIGID_BODY),
kinematic_utilities(nullptr),
locked_axis(0),
mass(1),
gravity_scale(1),
linearDamp(0),
angularDamp(0),
can_sleep(true),
omit_forces_integration(false),
can_integrate_forces(false),
maxCollisionsDetection(0),
collisionsCount(0),
prev_collision_count(0),
maxAreasWhereIam(10),
areaWhereIamCount(0),
countGravityPointSpaces(0),
isScratchedSpaceOverrideModificator(false),
previousActiveState(true),
force_integration_callback(nullptr) {
godotMotionState = bulletnew(GodotMotionState(this));
// Initial properties
const btVector3 localInertia(0, 0, 0);
btRigidBody::btRigidBodyConstructionInfo cInfo(mass, godotMotionState, nullptr, localInertia);
btBody = bulletnew(btRigidBody(cInfo));
reload_shapes();
setupBulletCollisionObject(btBody);
set_mode(PhysicsServer::BODY_MODE_RIGID);
reload_axis_lock();
areasWhereIam.resize(maxAreasWhereIam);
for (int i = areasWhereIam.size() - 1; 0 <= i; --i) {
areasWhereIam.write[i] = NULL;
}
btBody->setSleepingThresholds(0.2, 0.2);
prev_collision_traces = &collision_traces_1;
curr_collision_traces = &collision_traces_2;
}
RigidBodyBullet::~RigidBodyBullet() {
bulletdelete(godotMotionState);
if (force_integration_callback) {
memdelete(force_integration_callback);
}
destroy_kinematic_utilities();
}
void RigidBodyBullet::init_kinematic_utilities() {
kinematic_utilities = memnew(KinematicUtilities(this));
reload_kinematic_shapes();
}
void RigidBodyBullet::destroy_kinematic_utilities() {
if (kinematic_utilities) {
memdelete(kinematic_utilities);
kinematic_utilities = nullptr;
}
}
void RigidBodyBullet::main_shape_changed() {
CRASH_COND(!get_main_shape());
btBody->setCollisionShape(get_main_shape());
set_continuous_collision_detection(is_continuous_collision_detection_enabled()); // Reset
}
void RigidBodyBullet::reload_body() {
if (space) {
space->remove_rigid_body(this);
if (get_main_shape()) {
space->add_rigid_body(this);
}
}
}
void RigidBodyBullet::set_space(SpaceBullet *p_space) {
// Clear the old space if there is one
if (space) {
can_integrate_forces = false;
isScratchedSpaceOverrideModificator = false;
// Remove any constraints
space->remove_rigid_body_constraints(this);
// Remove this object form the physics world
space->remove_rigid_body(this);
}
space = p_space;
if (space) {
space->add_rigid_body(this);
}
}
void RigidBodyBullet::dispatch_callbacks() {
/// The check isFirstTransformChanged is necessary in order to call integrated forces only when the first transform is sent
if ((btBody->isKinematicObject() || btBody->isActive() || previousActiveState != btBody->isActive()) && force_integration_callback && can_integrate_forces) {
if (omit_forces_integration) {
btBody->clearForces();
}
BulletPhysicsDirectBodyState *bodyDirect = BulletPhysicsDirectBodyState::get_singleton(this);
Variant variantBodyDirect = bodyDirect;
Object *obj = ObjectDB::get_instance(force_integration_callback->id);
if (!obj) {
// Remove integration callback
set_force_integration_callback(0, StringName());
} else {
const Variant *vp[2] = { &variantBodyDirect, &force_integration_callback->udata };
Variant::CallError responseCallError;
int argc = (force_integration_callback->udata.get_type() == Variant::NIL) ? 1 : 2;
obj->call(force_integration_callback->method, vp, argc, responseCallError);
}
}
if (isScratchedSpaceOverrideModificator || 0 < countGravityPointSpaces) {
isScratchedSpaceOverrideModificator = false;
reload_space_override_modificator();
}
/// Lock axis
btBody->setLinearVelocity(btBody->getLinearVelocity() * btBody->getLinearFactor());
btBody->setAngularVelocity(btBody->getAngularVelocity() * btBody->getAngularFactor());
previousActiveState = btBody->isActive();
}
void RigidBodyBullet::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) {
if (force_integration_callback) {
memdelete(force_integration_callback);
force_integration_callback = nullptr;
}
if (p_id != 0) {
force_integration_callback = memnew(ForceIntegrationCallback);
force_integration_callback->id = p_id;
force_integration_callback->method = p_method;
force_integration_callback->udata = p_udata;
}
}
void RigidBodyBullet::scratch_space_override_modificator() {
isScratchedSpaceOverrideModificator = true;
}
void RigidBodyBullet::on_collision_filters_change() {
if (space) {
space->reload_collision_filters(this);
}
set_activation_state(true);
}
void RigidBodyBullet::on_collision_checker_start() {
prev_collision_count = collisionsCount;
collisionsCount = 0;
// Swap array
Vector<RigidBodyBullet *> *s = prev_collision_traces;
prev_collision_traces = curr_collision_traces;
curr_collision_traces = s;
}
void RigidBodyBullet::on_collision_checker_end() {
// Always true if active and not a static or kinematic body
isTransformChanged = btBody->isActive() && !btBody->isStaticOrKinematicObject();
}
bool RigidBodyBullet::add_collision_object(RigidBodyBullet *p_otherObject, const Vector3 &p_hitWorldLocation, const Vector3 &p_hitLocalLocation, const Vector3 &p_hitNormal, const float &p_appliedImpulse, int p_other_shape_index, int p_local_shape_index) {
if (collisionsCount >= maxCollisionsDetection) {
return false;
}
CollisionData &cd = collisions.write[collisionsCount];
cd.hitLocalLocation = p_hitLocalLocation;
cd.otherObject = p_otherObject;
cd.hitWorldLocation = p_hitWorldLocation;
cd.hitNormal = p_hitNormal;
cd.appliedImpulse = p_appliedImpulse;
cd.other_object_shape = p_other_shape_index;
cd.local_shape = p_local_shape_index;
curr_collision_traces->write[collisionsCount] = p_otherObject;
++collisionsCount;
return true;
}
bool RigidBodyBullet::was_colliding(RigidBodyBullet *p_other_object) {
for (int i = prev_collision_count - 1; 0 <= i; --i) {
if ((*prev_collision_traces)[i] == p_other_object) {
return true;
}
}
return false;
}
void RigidBodyBullet::set_activation_state(bool p_active) {
if (p_active) {
btBody->activate();
} else {
btBody->setActivationState(WANTS_DEACTIVATION);
}
}
bool RigidBodyBullet::is_active() const {
return btBody->isActive();
}
void RigidBodyBullet::set_omit_forces_integration(bool p_omit) {
omit_forces_integration = p_omit;
}
void RigidBodyBullet::set_param(PhysicsServer::BodyParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer::BODY_PARAM_BOUNCE:
btBody->setRestitution(p_value);
break;
case PhysicsServer::BODY_PARAM_FRICTION:
btBody->setFriction(p_value);
break;
case PhysicsServer::BODY_PARAM_MASS: {
ERR_FAIL_COND(p_value < 0);
mass = p_value;
_internal_set_mass(p_value);
break;
}
case PhysicsServer::BODY_PARAM_LINEAR_DAMP:
linearDamp = p_value;
// Mark for updating total linear damping.
scratch_space_override_modificator();
break;
case PhysicsServer::BODY_PARAM_ANGULAR_DAMP:
angularDamp = p_value;
// Mark for updating total angular damping.
scratch_space_override_modificator();
break;
case PhysicsServer::BODY_PARAM_GRAVITY_SCALE:
gravity_scale = p_value;
// The Bullet gravity will be is set by reload_space_override_modificator.
// Mark for updating total gravity scale.
scratch_space_override_modificator();
break;
default:
WARN_PRINT("Parameter " + itos(p_param) + " not supported by bullet. Value: " + itos(p_value));
}
}
real_t RigidBodyBullet::get_param(PhysicsServer::BodyParameter p_param) const {
switch (p_param) {
case PhysicsServer::BODY_PARAM_BOUNCE:
return btBody->getRestitution();
case PhysicsServer::BODY_PARAM_FRICTION:
return btBody->getFriction();
case PhysicsServer::BODY_PARAM_MASS: {
const btScalar invMass = btBody->getInvMass();
return 0 == invMass ? 0 : 1 / invMass;
}
case PhysicsServer::BODY_PARAM_LINEAR_DAMP:
return linearDamp;
case PhysicsServer::BODY_PARAM_ANGULAR_DAMP:
return angularDamp;
case PhysicsServer::BODY_PARAM_GRAVITY_SCALE:
return gravity_scale;
default:
WARN_PRINT("Parameter " + itos(p_param) + " not supported by bullet");
return 0;
}
}
void RigidBodyBullet::set_mode(PhysicsServer::BodyMode p_mode) {
// This is necessary to block force_integration untile next move
can_integrate_forces = false;
destroy_kinematic_utilities();
// The mode change is relevant to its mass
switch (p_mode) {
case PhysicsServer::BODY_MODE_KINEMATIC:
mode = PhysicsServer::BODY_MODE_KINEMATIC;
reload_axis_lock();
_internal_set_mass(0);
init_kinematic_utilities();
break;
case PhysicsServer::BODY_MODE_STATIC:
mode = PhysicsServer::BODY_MODE_STATIC;
reload_axis_lock();
_internal_set_mass(0);
break;
case PhysicsServer::BODY_MODE_RIGID:
mode = PhysicsServer::BODY_MODE_RIGID;
reload_axis_lock();
_internal_set_mass(0 == mass ? 1 : mass);
scratch_space_override_modificator();
break;
case PhysicsServer::BODY_MODE_CHARACTER:
mode = PhysicsServer::BODY_MODE_CHARACTER;
reload_axis_lock();
_internal_set_mass(0 == mass ? 1 : mass);
scratch_space_override_modificator();
break;
}
btBody->setAngularVelocity(btVector3(0, 0, 0));
btBody->setLinearVelocity(btVector3(0, 0, 0));
}
PhysicsServer::BodyMode RigidBodyBullet::get_mode() const {
return mode;
}
void RigidBodyBullet::set_state(PhysicsServer::BodyState p_state, const Variant &p_variant) {
switch (p_state) {
case PhysicsServer::BODY_STATE_TRANSFORM:
set_transform(p_variant);
break;
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY:
set_linear_velocity(p_variant);
break;
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY:
set_angular_velocity(p_variant);
break;
case PhysicsServer::BODY_STATE_SLEEPING:
set_activation_state(!bool(p_variant));
break;
case PhysicsServer::BODY_STATE_CAN_SLEEP:
can_sleep = bool(p_variant);
if (!can_sleep) {
// Can't sleep
btBody->forceActivationState(DISABLE_DEACTIVATION);
} else {
btBody->forceActivationState(ACTIVE_TAG);
}
break;
}
}
Variant RigidBodyBullet::get_state(PhysicsServer::BodyState p_state) const {
switch (p_state) {
case PhysicsServer::BODY_STATE_TRANSFORM:
return get_transform();
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY:
return get_linear_velocity();
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY:
return get_angular_velocity();
case PhysicsServer::BODY_STATE_SLEEPING:
return !is_active();
case PhysicsServer::BODY_STATE_CAN_SLEEP:
return can_sleep;
default:
WARN_PRINT("This state " + itos(p_state) + " is not supported by Bullet");
return Variant();
}
}
void RigidBodyBullet::apply_central_impulse(const Vector3 &p_impulse) {
btVector3 btImpu;
G_TO_B(p_impulse, btImpu);
if (Vector3() != p_impulse) {
btBody->activate();
}
btBody->applyCentralImpulse(btImpu);
}
void RigidBodyBullet::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) {
btVector3 btImpu;
btVector3 btPos;
G_TO_B(p_impulse, btImpu);
G_TO_B(p_pos, btPos);
if (Vector3() != p_impulse) {
btBody->activate();
}
btBody->applyImpulse(btImpu, btPos);
}
void RigidBodyBullet::apply_torque_impulse(const Vector3 &p_impulse) {
btVector3 btImp;
G_TO_B(p_impulse, btImp);
if (Vector3() != p_impulse) {
btBody->activate();
}
btBody->applyTorqueImpulse(btImp);
}
void RigidBodyBullet::apply_force(const Vector3 &p_force, const Vector3 &p_pos) {
btVector3 btForce;
btVector3 btPos;
G_TO_B(p_force, btForce);
G_TO_B(p_pos, btPos);
if (Vector3() != p_force) {
btBody->activate();
}
btBody->applyForce(btForce, btPos);
}
void RigidBodyBullet::apply_central_force(const Vector3 &p_force) {
btVector3 btForce;
G_TO_B(p_force, btForce);
if (Vector3() != p_force) {
btBody->activate();
}
btBody->applyCentralForce(btForce);
}
void RigidBodyBullet::apply_torque(const Vector3 &p_torque) {
btVector3 btTorq;
G_TO_B(p_torque, btTorq);
if (Vector3() != p_torque) {
btBody->activate();
}
btBody->applyTorque(btTorq);
}
void RigidBodyBullet::set_applied_force(const Vector3 &p_force) {
btVector3 btVec = btBody->getTotalTorque();
if (Vector3() != p_force) {
btBody->activate();
}
btBody->clearForces();
btBody->applyTorque(btVec);
G_TO_B(p_force, btVec);
btBody->applyCentralForce(btVec);
}
Vector3 RigidBodyBullet::get_applied_force() const {
Vector3 gTotForc;
B_TO_G(btBody->getTotalForce(), gTotForc);
return gTotForc;
}
void RigidBodyBullet::set_applied_torque(const Vector3 &p_torque) {
btVector3 btVec = btBody->getTotalForce();
if (Vector3() != p_torque) {
btBody->activate();
}
btBody->clearForces();
btBody->applyCentralForce(btVec);
G_TO_B(p_torque, btVec);
btBody->applyTorque(btVec);
}
Vector3 RigidBodyBullet::get_applied_torque() const {
Vector3 gTotTorq;
B_TO_G(btBody->getTotalTorque(), gTotTorq);
return gTotTorq;
}
void RigidBodyBullet::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool lock) {
if (lock) {
locked_axis |= p_axis;
} else {
locked_axis &= ~p_axis;
}
reload_axis_lock();
}
bool RigidBodyBullet::is_axis_locked(PhysicsServer::BodyAxis p_axis) const {
return locked_axis & p_axis;
}
void RigidBodyBullet::reload_axis_lock() {
btBody->setLinearFactor(btVector3(float(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_X)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_Y)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_Z))));
if (PhysicsServer::BODY_MODE_CHARACTER == mode) {
/// When character angular is always locked
btBody->setAngularFactor(btVector3(0., 0., 0.));
} else {
btBody->setAngularFactor(btVector3(float(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_X)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_Y)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_Z))));
}
}
void RigidBodyBullet::set_continuous_collision_detection(bool p_enable) {
if (p_enable) {
// This threshold enable CCD if the object moves more than
// 1 meter in one simulation frame
btBody->setCcdMotionThreshold(1e-7);
/// Calculate using the rule writte below the CCD swept sphere radius
/// CCD works on an embedded sphere of radius, make sure this radius
/// is embedded inside the convex objects, preferably smaller:
/// for an object of dimensions 1 meter, try 0.2
btScalar radius(1.0);
if (btBody->getCollisionShape()) {
btVector3 center;
btBody->getCollisionShape()->getBoundingSphere(center, radius);
}
btBody->setCcdSweptSphereRadius(radius * 0.2);
} else {
btBody->setCcdMotionThreshold(10000.0);
btBody->setCcdSweptSphereRadius(0.);
}
}
bool RigidBodyBullet::is_continuous_collision_detection_enabled() const {
return 0. < btBody->getCcdMotionThreshold();
}
void RigidBodyBullet::set_linear_velocity(const Vector3 &p_velocity) {
btVector3 btVec;
G_TO_B(p_velocity, btVec);
if (Vector3() != p_velocity) {
btBody->activate();
}
btBody->setLinearVelocity(btVec);
}
Vector3 RigidBodyBullet::get_linear_velocity() const {
Vector3 gVec;
B_TO_G(btBody->getLinearVelocity(), gVec);
return gVec;
}
void RigidBodyBullet::set_angular_velocity(const Vector3 &p_velocity) {
btVector3 btVec;
G_TO_B(p_velocity, btVec);
if (Vector3() != p_velocity) {
btBody->activate();
}
btBody->setAngularVelocity(btVec);
}
Vector3 RigidBodyBullet::get_angular_velocity() const {
Vector3 gVec;
B_TO_G(btBody->getAngularVelocity(), gVec);
return gVec;
}
void RigidBodyBullet::set_transform__bullet(const btTransform &p_global_transform) {
if (mode == PhysicsServer::BODY_MODE_KINEMATIC) {
if (space && space->get_delta_time() != 0) {
btBody->setLinearVelocity((p_global_transform.getOrigin() - btBody->getWorldTransform().getOrigin()) / space->get_delta_time());
}
// The kinematic use MotionState class
godotMotionState->moveBody(p_global_transform);
} else {
// Is necessary to avoid wrong location on the rendering side on the next frame
godotMotionState->setWorldTransform(p_global_transform);
}
CollisionObjectBullet::set_transform__bullet(p_global_transform);
}
const btTransform &RigidBodyBullet::get_transform__bullet() const {
if (is_static()) {
return RigidCollisionObjectBullet::get_transform__bullet();
} else {
return godotMotionState->getCurrentWorldTransform();
}
}
void RigidBodyBullet::reload_shapes() {
RigidCollisionObjectBullet::reload_shapes();
const btScalar invMass = btBody->getInvMass();
const btScalar mass = invMass == 0 ? 0 : 1 / invMass;
if (mainShape) {
// inertia initialised zero here because some of bullet's collision
// shapes incorrectly do not set the vector in calculateLocalIntertia.
// Arbitrary zero is preferable to undefined behaviour.
btVector3 inertia(0, 0, 0);
if (EMPTY_SHAPE_PROXYTYPE != mainShape->getShapeType()) { // Necessary to avoid assertion of the empty shape
mainShape->calculateLocalInertia(mass, inertia);
}
btBody->setMassProps(mass, inertia);
}
btBody->updateInertiaTensor();
reload_kinematic_shapes();
set_continuous_collision_detection(btBody->getCcdMotionThreshold() < 9998.0);
reload_body();
}
void RigidBodyBullet::on_enter_area(AreaBullet *p_area) {
/// Add this area to the array in an ordered way
++areaWhereIamCount;
if (areaWhereIamCount >= maxAreasWhereIam) {
--areaWhereIamCount;
return;
}
for (int i = 0; i < areaWhereIamCount; ++i) {
if (NULL == areasWhereIam[i]) {
// This area has the highest priority
areasWhereIam.write[i] = p_area;
break;
} else {
if (areasWhereIam[i]->get_spOv_priority() > p_area->get_spOv_priority()) {
// The position was found, just shift all elements
for (int j = areaWhereIamCount; j > i; j--) {
areasWhereIam.write[j] = areasWhereIam[j - 1];
}
areasWhereIam.write[i] = p_area;
break;
}
}
}
if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED != p_area->get_spOv_mode()) {
scratch_space_override_modificator();
}
if (p_area->is_spOv_gravityPoint()) {
++countGravityPointSpaces;
ERR_FAIL_COND(countGravityPointSpaces <= 0);
}
}
void RigidBodyBullet::on_exit_area(AreaBullet *p_area) {
RigidCollisionObjectBullet::on_exit_area(p_area);
/// Remove this area and keep the order
/// N.B. Since I don't want resize the array I can't use the "erase" function
bool wasTheAreaFound = false;
for (int i = 0; i < areaWhereIamCount; ++i) {
if (p_area == areasWhereIam[i]) {
// The area was found, just shift down all elements
for (int j = i; j < areaWhereIamCount; ++j) {
areasWhereIam.write[j] = areasWhereIam[j + 1];
}
wasTheAreaFound = true;
break;
}
}
if (wasTheAreaFound) {
if (p_area->is_spOv_gravityPoint()) {
--countGravityPointSpaces;
ERR_FAIL_COND(countGravityPointSpaces < 0);
}
--areaWhereIamCount;
areasWhereIam.write[areaWhereIamCount] = NULL; // Even if this is not required, I clear the last element to be safe
if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED != p_area->get_spOv_mode()) {
scratch_space_override_modificator();
}
}
}
void RigidBodyBullet::reload_space_override_modificator() {
if (mode == PhysicsServer::BODY_MODE_STATIC) {
return;
}
Vector3 newGravity(0.0, 0.0, 0.0);
real_t newLinearDamp = MAX(0.0, linearDamp);
real_t newAngularDamp = MAX(0.0, angularDamp);
AreaBullet *currentArea;
// Variable used to calculate new gravity for gravity point areas, it is pointed by currentGravity pointer
Vector3 support_gravity(0, 0, 0);
bool stopped = false;
for (int i = areaWhereIamCount - 1; (0 <= i) && !stopped; --i) {
currentArea = areasWhereIam[i];
if (!currentArea || PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED == currentArea->get_spOv_mode()) {
continue;
}
/// Here is calculated the gravity
if (currentArea->is_spOv_gravityPoint()) {
/// It calculates the direction of new gravity
support_gravity = currentArea->get_transform().xform(currentArea->get_spOv_gravityVec()) - get_transform().get_origin();
real_t distanceMag = support_gravity.length();
// Normalized in this way to avoid the double call of function "length()"
if (distanceMag == 0) {
support_gravity.x = 0;
support_gravity.y = 0;
support_gravity.z = 0;
} else {
support_gravity.x /= distanceMag;
support_gravity.y /= distanceMag;
support_gravity.z /= distanceMag;
}
/// Here is calculated the final gravity
if (currentArea->get_spOv_gravityPointDistanceScale() > 0) {
// Scaled gravity by distance
support_gravity *= currentArea->get_spOv_gravityMag() / Math::pow(distanceMag * currentArea->get_spOv_gravityPointDistanceScale() + 1, 2);
} else {
// Unscaled gravity
support_gravity *= currentArea->get_spOv_gravityMag();
}
} else {
support_gravity = currentArea->get_spOv_gravityVec() * currentArea->get_spOv_gravityMag();
}
switch (currentArea->get_spOv_mode()) {
case PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED:
/// This area does not affect gravity/damp. These are generally areas
/// that exist only to detect collisions, and objects entering or exiting them.
break;
case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE:
/// This area adds its gravity/damp values to whatever has been
/// calculated so far. This way, many overlapping areas can combine
/// their physics to make interesting
newGravity += support_gravity;
newLinearDamp += currentArea->get_spOv_linearDamp();
newAngularDamp += currentArea->get_spOv_angularDamp();
break;
case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE:
/// This area adds its gravity/damp values to whatever has been calculated
/// so far. Then stops taking into account the rest of the areas, even the
/// default one.
newGravity += support_gravity;
newLinearDamp += currentArea->get_spOv_linearDamp();
newAngularDamp += currentArea->get_spOv_angularDamp();
stopped = true;
break;
case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE:
/// This area replaces any gravity/damp, even the default one, and
/// stops taking into account the rest of the areas.
newGravity = support_gravity;
newLinearDamp = currentArea->get_spOv_linearDamp();
newAngularDamp = currentArea->get_spOv_angularDamp();
stopped = true;
break;
case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE:
/// This area replaces any gravity/damp calculated so far, but keeps
/// calculating the rest of the areas, down to the default one.
newGravity = support_gravity;
newLinearDamp = currentArea->get_spOv_linearDamp();
newAngularDamp = currentArea->get_spOv_angularDamp();
break;
}
}
// Add default gravity and damping from space.
if (!stopped) {
newGravity += space->get_gravity_direction() * space->get_gravity_magnitude();
newLinearDamp += space->get_linear_damp();
newAngularDamp += space->get_angular_damp();
}
btVector3 newBtGravity;
G_TO_B(newGravity * gravity_scale, newBtGravity);
btBody->setGravity(newBtGravity);
btBody->setDamping(newLinearDamp, newAngularDamp);
}
void RigidBodyBullet::reload_kinematic_shapes() {
if (!kinematic_utilities) {
return;
}
kinematic_utilities->copyAllOwnerShapes();
}
void RigidBodyBullet::notify_transform_changed() {
RigidCollisionObjectBullet::notify_transform_changed();
can_integrate_forces = true;
}
void RigidBodyBullet::_internal_set_mass(real_t p_mass) {
btVector3 localInertia(0, 0, 0);
int clearedCurrentFlags = btBody->getCollisionFlags();
clearedCurrentFlags &= ~(btCollisionObject::CF_KINEMATIC_OBJECT | btCollisionObject::CF_STATIC_OBJECT | btCollisionObject::CF_CHARACTER_OBJECT);
// Rigidbody is dynamic if and only if mass is non Zero, otherwise static
const bool isDynamic = p_mass != 0.f;
if (isDynamic) {
if (PhysicsServer::BODY_MODE_RIGID != mode && PhysicsServer::BODY_MODE_CHARACTER != mode) {
return;
}
m_isStatic = false;
if (mainShape) {
mainShape->calculateLocalInertia(p_mass, localInertia);
}
if (PhysicsServer::BODY_MODE_RIGID == mode) {
btBody->setCollisionFlags(clearedCurrentFlags); // Just set the flags without Kin and Static
} else {
btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_CHARACTER_OBJECT);
}
if (can_sleep) {
btBody->forceActivationState(ACTIVE_TAG); // ACTIVE_TAG 1
} else {
btBody->forceActivationState(DISABLE_DEACTIVATION); // DISABLE_DEACTIVATION 4
}
} else {
if (PhysicsServer::BODY_MODE_STATIC != mode && PhysicsServer::BODY_MODE_KINEMATIC != mode) {
return;
}
m_isStatic = true;
if (PhysicsServer::BODY_MODE_STATIC == mode) {
btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_STATIC_OBJECT);
} else {
btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_KINEMATIC_OBJECT);
set_transform__bullet(btBody->getWorldTransform()); // Set current Transform using kinematic method
}
btBody->forceActivationState(DISABLE_SIMULATION); // DISABLE_SIMULATION 5
}
btBody->setMassProps(p_mass, localInertia);
btBody->updateInertiaTensor();
reload_body();
}