godot/scene/3d/character_camera.cpp
Rémi Verschelde c7bc44d5ad Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!
2017-01-01 22:03:33 +01:00

719 lines
18 KiB
C++

/*************************************************************************/
/* character_camera.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "character_camera.h"
#include "physics_body.h"
#if 0
void CharacterCamera::_set(const String& p_name, const Variant& p_value) {
if (p_name=="type")
set_camera_type((CameraType)((int)(p_value)));
else if (p_name=="orbit")
set_orbit(p_value);
else if (p_name=="height")
set_height(p_value);
else if (p_name=="inclination")
set_inclination(p_value);
else if (p_name=="max_orbit_x")
set_max_orbit_x(p_value);
else if (p_name=="min_orbit_x")
set_min_orbit_x(p_value);
else if (p_name=="max_distance")
set_max_distance(p_value);
else if (p_name=="min_distance")
set_min_distance(p_value);
else if (p_name=="distance")
set_distance(p_value);
else if (p_name=="clip")
set_clip(p_value);
else if (p_name=="autoturn")
set_autoturn(p_value);
else if (p_name=="autoturn_tolerance")
set_autoturn_tolerance(p_value);
else if (p_name=="autoturn_speed")
set_autoturn_speed(p_value);
}
Variant CharacterCamera::_get(const String& p_name) const {
if (p_name=="type")
return get_camera_type();
else if (p_name=="orbit")
return get_orbit();
else if (p_name=="height")
return get_height();
else if (p_name=="inclination")
return get_inclination();
else if (p_name=="max_orbit_x")
return get_max_orbit_x();
else if (p_name=="min_orbit_x")
return get_min_orbit_x();
else if (p_name=="max_distance")
return get_max_distance();
else if (p_name=="min_distance")
return get_min_distance();
else if (p_name=="distance")
return get_distance();
else if (p_name=="clip")
return has_clip();
else if (p_name=="autoturn")
return has_autoturn();
else if (p_name=="autoturn_tolerance")
return get_autoturn_tolerance();
else if (p_name=="autoturn_speed")
return get_autoturn_speed();
return Variant();
}
void CharacterCamera::_get_property_list( List<PropertyInfo> *p_list) const {
p_list->push_back( PropertyInfo( Variant::INT, "type", PROPERTY_HINT_ENUM, "Fixed,Follow") );
p_list->push_back( PropertyInfo( Variant::VECTOR2, "orbit" ) );
p_list->push_back( PropertyInfo( Variant::REAL, "height", PROPERTY_HINT_RANGE,"-1024,1024,0.01" ) );
p_list->push_back( PropertyInfo( Variant::REAL, "inclination", PROPERTY_HINT_RANGE,"-90,90,0.01" ) ); ;
p_list->push_back( PropertyInfo( Variant::REAL, "max_orbit_x", PROPERTY_HINT_RANGE,"-90,90,0.01" ) );
p_list->push_back( PropertyInfo( Variant::REAL, "min_orbit_x", PROPERTY_HINT_RANGE,"-90,90,0.01" ) );
p_list->push_back( PropertyInfo( Variant::REAL, "min_distance", PROPERTY_HINT_RANGE,"0,100,0.01" ) );
p_list->push_back( PropertyInfo( Variant::REAL, "max_distance", PROPERTY_HINT_RANGE,"0,100,0.01" ) );
p_list->push_back( PropertyInfo( Variant::REAL, "distance", PROPERTY_HINT_RANGE,"0.01,1024,0,01") );
p_list->push_back( PropertyInfo( Variant::BOOL, "clip") );
p_list->push_back( PropertyInfo( Variant::BOOL, "autoturn") );
p_list->push_back( PropertyInfo( Variant::REAL, "autoturn_tolerance", PROPERTY_HINT_RANGE,"1,90,0.01") );
p_list->push_back( PropertyInfo( Variant::REAL, "autoturn_speed", PROPERTY_HINT_RANGE,"1,90,0.01") );
}
void CharacterCamera::_compute_camera() {
// update the transform with the next proposed transform (camera is 1 logic frame delayed)
/*
float time = get_root_node()->get_frame_time();
Vector3 oldp = accepted.get_origin();
Vector3 newp = proposed.get_origin();
float frame_dist = time *
if (oldp.distance_to(newp) >
*/
float time = get_root_node()->get_frame_time();
if (true) {
if (clip_ray[0].clipped && clip_ray[1].clipped && clip_ray[2].clipped) {
//all have been clipped
proposed.origin=clip_ray[1].clip_pos;
} else {
Vector3 rel=proposed.origin-target_pos;
if (clip_ray[0].clipped && !clip_ray[2].clipped) {
float distance = target_pos.distance_to(clip_ray[0].clip_pos);
real_t amount = 1.0-(distance/clip_len);
amount = CLAMP(amount,0,1);
rel=Matrix3(Vector3(0,1,0)),
rotate_orbit(Vector2(0,autoturn_speed*time*amount));
}
if (clip_ray[2].clipped && !clip_ray[0].clipped) {
float distance = target_pos.distance_to(clip_ray[2].clip_pos);
real_t amount = 1.0-(distance/clip_len);
amount = CLAMP(amount,0,1);
rotate_orbit(Vector2(0,-autoturn_speed*time*amount));
}
}
}
Transform final;
static float pos_ratio = 0.9;
static float rot_ratio = 10;
Vector3 vec1 = accepted.origin;
Vector3 vec2 = proposed.origin;
final.origin = vec2.linear_interpolate(vec1, pos_ratio * time);;
Quat q1 = accepted.basis;
Quat q2 = proposed.basis;
final.basis = q1.slerp(q2, rot_ratio * time);
accepted=final;
_update_camera();
// calculate the next proposed transform
Vector3 new_pos;
Vector3 character_pos = get_global_transform().origin;
character_pos.y+=height; // height compensate
if(type==CAMERA_FOLLOW) {
/* calculate some variables */
Vector3 rel = follow_pos - character_pos;
float l = rel.length();
Vector3 rel_n = (l > 0) ? (rel/l) : Vector3();
#if 1
float ang = Math::acos(rel_n.dot( Vector3(0,1,0) ));
Vector3 tangent = rel_n;
tangent.y=0; // get rid of y
if (tangent.length_squared() < CMP_EPSILON2)
tangent=Vector3(0,0,1); // use Z as tangent if rel is parallel to y
else
tangent.normalize();
/* now start applying the rules */
//clip distance
if (l > max_distance)
l=max_distance;
if (l < min_distance)
l=min_distance;
//fix angle
float ang_min = Math_PI * 0.5 + Math::deg2rad(min_orbit_x);
float ang_max = Math_PI * 0.5 + Math::deg2rad(max_orbit_x);
if (ang<ang_min)
ang=ang_min;
if (ang>ang_max)
ang=ang_max;
/* finally, rebuild the validated camera position */
new_pos=Vector3(0,Math::cos(ang),0);
new_pos+=tangent*Math::sin(ang);
new_pos*=l;
new_pos+=character_pos;
#else
if (l > max_distance)
l=max_distance;
if (l < min_distance)
l=min_distance;
new_pos = character_pos + rel_n * l;
#endif
follow_pos=new_pos;
} else if (type==CAMERA_FIXED) {
if (distance<min_distance)
distance=min_distance;
if (distance>max_distance)
distance=max_distance;
if (orbit.x<min_orbit_x)
orbit.x=min_orbit_x;
if (orbit.x>max_orbit_x)
orbit.x=max_orbit_x;
Matrix3 m;
m.rotate(Vector3(0,1,0),Math::deg2rad(orbit.y));
m.rotate(Vector3(1,0,0),Math::deg2rad(orbit.x));
new_pos = (m.get_axis(2) * distance) + character_pos;
if (use_lookat_target) {
Transform t = get_global_transform();
Vector3 y = t.basis.get_axis(1).normalized();
Vector3 z = lookat_target - character_pos;
z= (z - y * y.dot(z)).normalized();
orbit.y = -Math::rad2deg(Math::atan2(z.x,z.z)) + 180;
/*
Transform t = get_global_transform();
Vector3 y = t.basis.get_axis(1).normalized();
Vector3 z = lookat_target - t.origin;
z= (z - y * y.dot(z)).normalized();
Vector3 x = z.cross(y).normalized();
Transform t2;
t2.basis.set_axis(0,x);
t2.basis.set_axis(1,y);
t2.basis.set_axis(2,z);
t2.origin=t.origin;
Vector3 local = t2.xform_inv(camera_pos);
float ang = Math::atan2(local.x,local.y);
*/
/*
Vector3 vec1 = lookat_target - new_pos;
vec1.normalize();
Vector3 vec2 = character_pos - new_pos;
vec2.normalize();
float dot = vec1.dot(vec2);
printf("dot %f\n", dot);
if ( dot < 0.5) {
rotate_orbit(Vector2(0, 90));
};
*/
};
}
Vector3 target;
if (use_lookat_target) {
target = lookat_target;
} else {
target = character_pos;
};
proposed.set_look_at(new_pos,target,Vector3(0,1,0));
proposed = proposed * Transform(Matrix3(Vector3(1,0,0),Math::deg2rad(inclination)),Vector3()); //inclination
Vector<RID> exclude;
exclude.push_back(target_body);
Vector3 rel = new_pos-target;
for(int i=0;i<3;i++) {
PhysicsServer::get_singleton()->query_intersection(clip_ray[i].query,get_world().get_space(),exclude);
PhysicsServer::get_singleton()->query_intersection_segment(clip_ray[i].query,target,target+Matrix3(Vector3(0,1,0),Math::deg2rad(autoturn_tolerance*(i-1.0))).xform(rel));
clip_ray[i].clipped=false;
clip_ray[i].clip_pos=Vector3();
}
target_pos=target;
clip_len=rel.length();
}
void CharacterCamera::set_use_lookat_target(bool p_use, const Vector3 &p_lookat) {
use_lookat_target = p_use;
lookat_target = p_lookat;
};
void CharacterCamera::_notification(int p_what) {
switch(p_what) {
case NOTIFICATION_PROCESS: {
_compute_camera();
} break;
case NOTIFICATION_ENTER_SCENE: {
if (type==CAMERA_FOLLOW) {
set_orbit(orbit);
set_distance(distance);
}
accepted=get_global_transform();
proposed=accepted;
target_body = RID();
Node* parent = get_parent();
while (parent) {
PhysicsBody* p = parent->cast_to<PhysicsBody>();
if (p) {
target_body = p->get_body();
break;
};
parent = parent->get_parent();
};
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
} break;
case NOTIFICATION_EXIT_SCENE: {
if (type==CAMERA_FOLLOW) {
distance=get_distance();
orbit=get_orbit();
}
} break;
case NOTIFICATION_BECAME_CURRENT: {
set_process(true);
} break;
case NOTIFICATION_LOST_CURRENT: {
set_process(false);
} break;
}
}
void CharacterCamera::set_camera_type(CameraType p_camera_type) {
if (p_camera_type==type)
return;
type=p_camera_type;
// do conversions
}
CharacterCamera::CameraType CharacterCamera::get_camera_type() const {
return type;
}
void CharacterCamera::set_orbit(const Vector2& p_orbit) {
orbit=p_orbit;
if(type == CAMERA_FOLLOW && is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
float d = char_pos.distance_to(follow_pos);
Matrix3 m;
m.rotate(Vector3(0,1,0),orbit.y);
m.rotate(Vector3(1,0,0),orbit.x);
follow_pos=char_pos + m.get_axis(2) * d;
}
}
void CharacterCamera::set_orbit_x(float p_x) {
orbit.x=p_x;
if(type == CAMERA_FOLLOW && is_inside_scene())
set_orbit(Vector2( p_x, get_orbit().y ));
}
void CharacterCamera::set_orbit_y(float p_y) {
orbit.y=p_y;
if(type == CAMERA_FOLLOW && is_inside_scene())
set_orbit(Vector2( get_orbit().x, p_y ));
}
Vector2 CharacterCamera::get_orbit() const {
if (type == CAMERA_FOLLOW && is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
Vector3 rel = (follow_pos - char_pos).normalized();
Vector2 ret_orbit;
ret_orbit.x = Math::acos( Vector3(0,1,0).dot( rel ) ) - Math_PI * 0.5;
ret_orbit.y = Math::atan2(rel.x,rel.z);
return ret_orbit;
}
return orbit;
}
void CharacterCamera::rotate_orbit(const Vector2& p_relative) {
if (type == CAMERA_FOLLOW && is_inside_scene()) {
Matrix3 m;
m.rotate(Vector3(0,1,0),Math::deg2rad(p_relative.y));
m.rotate(Vector3(1,0,0),Math::deg2rad(p_relative.x));
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
Vector3 rel = (follow_pos - char_pos);
rel = m.xform(rel);
follow_pos=char_pos+rel;
}
orbit+=p_relative;
}
void CharacterCamera::set_height(float p_height) {
height=p_height;
}
float CharacterCamera::get_height() const {
return height;
}
void CharacterCamera::set_max_orbit_x(float p_max) {
max_orbit_x=p_max;
}
float CharacterCamera::get_max_orbit_x() const {
return max_orbit_x;
}
void CharacterCamera::set_min_orbit_x(float p_min) {
min_orbit_x=p_min;
}
float CharacterCamera::get_min_orbit_x() const {
return min_orbit_x;
}
float CharacterCamera::get_min_distance() const {
return min_distance;
}
float CharacterCamera::get_max_distance() const {
return max_distance;
}
void CharacterCamera::set_min_distance(float p_min) {
min_distance=p_min;
}
void CharacterCamera::set_max_distance(float p_max) {
max_distance = p_max;
}
void CharacterCamera::set_distance(float p_distance) {
if (type == CAMERA_FOLLOW && is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
Vector3 rel = (follow_pos - char_pos).normalized();
rel*=p_distance;
follow_pos=char_pos+rel;
}
distance=p_distance;
}
float CharacterCamera::get_distance() const {
if (type == CAMERA_FOLLOW && is_inside_scene()) {
Vector3 char_pos = get_global_transform().origin;
char_pos.y+=height;
return (follow_pos - char_pos).length();
}
return distance;
}
void CharacterCamera::set_clip(bool p_enabled) {
clip=p_enabled;
}
bool CharacterCamera::has_clip() const {
return clip;
}
void CharacterCamera::set_autoturn(bool p_enabled) {
autoturn=p_enabled;
}
bool CharacterCamera::has_autoturn() const {
return autoturn;
}
void CharacterCamera::set_autoturn_tolerance(float p_degrees) {
autoturn_tolerance=p_degrees;
}
float CharacterCamera::get_autoturn_tolerance() const {
return autoturn_tolerance;
}
void CharacterCamera::set_inclination(float p_degrees) {
inclination=p_degrees;
}
float CharacterCamera::get_inclination() const {
return inclination;
}
void CharacterCamera::set_autoturn_speed(float p_speed) {
autoturn_speed=p_speed;
}
float CharacterCamera::get_autoturn_speed() const {
return autoturn_speed;
}
void CharacterCamera::_bind_methods() {
ObjectTypeDB::bind_method(_MD("set_camera_type","type"),&CharacterCamera::set_camera_type);
ObjectTypeDB::bind_method(_MD("get_camera_type"),&CharacterCamera::get_camera_type);
ObjectTypeDB::bind_method(_MD("set_orbit","orbit"),&CharacterCamera::set_orbit);
ObjectTypeDB::bind_method(_MD("get_orbit"),&CharacterCamera::get_orbit);
ObjectTypeDB::bind_method(_MD("set_orbit_x","x"),&CharacterCamera::set_orbit_x);
ObjectTypeDB::bind_method(_MD("set_orbit_y","y"),&CharacterCamera::set_orbit_y);
ObjectTypeDB::bind_method(_MD("set_min_orbit_x","x"),&CharacterCamera::set_min_orbit_x);
ObjectTypeDB::bind_method(_MD("get_min_orbit_x"),&CharacterCamera::get_min_orbit_x);
ObjectTypeDB::bind_method(_MD("set_max_orbit_x","x"),&CharacterCamera::set_max_orbit_x);
ObjectTypeDB::bind_method(_MD("get_max_orbit_x"),&CharacterCamera::get_max_orbit_x);
ObjectTypeDB::bind_method(_MD("rotate_orbit"),&CharacterCamera::rotate_orbit);
ObjectTypeDB::bind_method(_MD("set_distance","distance"),&CharacterCamera::set_distance);
ObjectTypeDB::bind_method(_MD("get_distance"),&CharacterCamera::get_distance);
ObjectTypeDB::bind_method(_MD("set_clip","enable"),&CharacterCamera::set_clip);
ObjectTypeDB::bind_method(_MD("has_clip"),&CharacterCamera::has_clip);
ObjectTypeDB::bind_method(_MD("set_autoturn","enable"),&CharacterCamera::set_autoturn);
ObjectTypeDB::bind_method(_MD("has_autoturn"),&CharacterCamera::has_autoturn);
ObjectTypeDB::bind_method(_MD("set_autoturn_tolerance","degrees"),&CharacterCamera::set_autoturn_tolerance);
ObjectTypeDB::bind_method(_MD("get_autoturn_tolerance"),&CharacterCamera::get_autoturn_tolerance);
ObjectTypeDB::bind_method(_MD("set_autoturn_speed","speed"),&CharacterCamera::set_autoturn_speed);
ObjectTypeDB::bind_method(_MD("get_autoturn_speed"),&CharacterCamera::get_autoturn_speed);
ObjectTypeDB::bind_method(_MD("set_use_lookat_target","use","lookat"),&CharacterCamera::set_use_lookat_target, DEFVAL(Vector3()));
ObjectTypeDB::bind_method(_MD("_ray_collision"),&CharacterCamera::_ray_collision);
BIND_CONSTANT( CAMERA_FIXED );
BIND_CONSTANT( CAMERA_FOLLOW );
}
void CharacterCamera::_ray_collision(Vector3 p_point, Vector3 p_normal, int p_subindex, ObjectID p_against,int p_idx) {
clip_ray[p_idx].clip_pos=p_point;
clip_ray[p_idx].clipped=true;
};
Transform CharacterCamera::get_camera_transform() const {
return accepted;
}
CharacterCamera::CharacterCamera() {
type=CAMERA_FOLLOW;
height=1;
orbit=Vector2(0,0);
distance=3;
min_distance=2;
max_distance=5;
autoturn=false;
autoturn_tolerance=15;
autoturn_speed=20;
min_orbit_x=-50;
max_orbit_x=70;
inclination=0;
clip=false;
use_lookat_target = false;
for(int i=0;i<3;i++) {
clip_ray[i].query=PhysicsServer::get_singleton()->query_create(this, "_ray_collision", i, true);
clip_ray[i].clipped=false;
}
}
CharacterCamera::~CharacterCamera() {
for(int i=0;i<3;i++) {
PhysicsServer::get_singleton()->free(clip_ray[i].query);
}
}
#endif