godot/servers/rendering/renderer_rd/shaders/effects/cubemap_roughness_inc.glsl
clayjohn b2b89d7294 Properly remap roughness when reading from radiance map
This ensures that we consistently use perceptual roughness which matches the behaviour of most other PBR renderers like Blender, Ue4 and Godot 3
2022-12-02 15:39:20 -08:00

85 lines
2.5 KiB
GLSL

#define M_PI 3.14159265359
layout(push_constant, std430) uniform Params {
uint face_id;
uint sample_count;
float roughness;
bool use_direct_write;
float face_size;
}
params;
vec3 texelCoordToVec(vec2 uv, uint faceID) {
mat3 faceUvVectors[6];
// -x
faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
// +x
faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
// -y
faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
// +y
faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
// -z
faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
// +z
faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
return normalize(result);
}
vec3 ImportanceSampleGGX(vec2 xi, float roughness4) {
// Compute distribution direction
float Phi = 2.0 * M_PI * xi.x;
float CosTheta = sqrt((1.0 - xi.y) / (1.0 + (roughness4 - 1.0) * xi.y));
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
// Convert to spherical direction
vec3 H;
H.x = SinTheta * cos(Phi);
H.y = SinTheta * sin(Phi);
H.z = CosTheta;
return H;
}
float DistributionGGX(float NdotH, float roughness4) {
float NdotH2 = NdotH * NdotH;
float denom = (NdotH2 * (roughness4 - 1.0) + 1.0);
denom = M_PI * denom * denom;
return roughness4 / denom;
}
float radicalInverse_VdC(uint bits) {
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
vec2 Hammersley(uint i, uint N) {
return vec2(float(i) / float(N), radicalInverse_VdC(i));
}