godot/servers/rendering/renderer_scene_cull.h

1060 lines
34 KiB
C++

/*************************************************************************/
/* renderer_scene_cull.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RENDERING_SERVER_SCENE_CULL_H
#define RENDERING_SERVER_SCENE_CULL_H
#include "core/templates/pass_func.h"
#include "servers/rendering/renderer_compositor.h"
#include "core/math/dynamic_bvh.h"
#include "core/math/geometry_3d.h"
#include "core/math/octree.h"
#include "core/os/semaphore.h"
#include "core/os/thread.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
#include "core/templates/paged_array.h"
#include "core/templates/rid_owner.h"
#include "core/templates/self_list.h"
#include "servers/rendering/renderer_scene.h"
#include "servers/rendering/renderer_scene_render.h"
#include "servers/xr/xr_interface.h"
class RendererSceneCull : public RendererScene {
public:
RendererSceneRender *scene_render;
enum {
SDFGI_MAX_CASCADES = 8,
SDFGI_MAX_REGIONS_PER_CASCADE = 3,
MAX_INSTANCE_PAIRS = 32,
MAX_UPDATE_SHADOWS = 512
};
uint64_t render_pass;
static RendererSceneCull *singleton;
/* CAMERA API */
struct Camera {
enum Type {
PERSPECTIVE,
ORTHOGONAL,
FRUSTUM
};
Type type;
float fov;
float znear, zfar;
float size;
Vector2 offset;
uint32_t visible_layers;
bool vaspect;
RID env;
RID effects;
Transform transform;
Camera() {
visible_layers = 0xFFFFFFFF;
fov = 75;
type = PERSPECTIVE;
znear = 0.05;
zfar = 4000;
size = 1.0;
offset = Vector2();
vaspect = false;
}
};
mutable RID_PtrOwner<Camera, true> camera_owner;
virtual RID camera_allocate();
virtual void camera_initialize(RID p_rid);
virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far);
virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far);
virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far);
virtual void camera_set_transform(RID p_camera, const Transform &p_transform);
virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers);
virtual void camera_set_environment(RID p_camera, RID p_env);
virtual void camera_set_camera_effects(RID p_camera, RID p_fx);
virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable);
virtual bool is_camera(RID p_camera) const;
/* SCENARIO API */
struct Instance;
struct PlaneSign {
_ALWAYS_INLINE_ PlaneSign() {}
_ALWAYS_INLINE_ PlaneSign(const Plane &p_plane) {
if (p_plane.normal.x > 0) {
signs[0] = 0;
} else {
signs[0] = 3;
}
if (p_plane.normal.y > 0) {
signs[1] = 1;
} else {
signs[1] = 4;
}
if (p_plane.normal.z > 0) {
signs[2] = 2;
} else {
signs[2] = 5;
}
}
uint32_t signs[3];
};
struct Frustum {
Vector<Plane> planes;
Vector<PlaneSign> plane_signs;
const Plane *planes_ptr;
const PlaneSign *plane_signs_ptr;
uint32_t plane_count;
_ALWAYS_INLINE_ Frustum() {}
_ALWAYS_INLINE_ Frustum(const Frustum &p_frustum) {
planes = p_frustum.planes;
plane_signs = p_frustum.plane_signs;
planes_ptr = planes.ptr();
plane_signs_ptr = plane_signs.ptr();
plane_count = p_frustum.plane_count;
}
_ALWAYS_INLINE_ void operator=(const Frustum &p_frustum) {
planes = p_frustum.planes;
plane_signs = p_frustum.plane_signs;
planes_ptr = planes.ptr();
plane_signs_ptr = plane_signs.ptr();
plane_count = p_frustum.plane_count;
}
_ALWAYS_INLINE_ Frustum(const Vector<Plane> &p_planes) {
planes = p_planes;
planes_ptr = planes.ptrw();
plane_count = planes.size();
for (int i = 0; i < planes.size(); i++) {
PlaneSign ps(p_planes[i]);
plane_signs.push_back(ps);
}
plane_signs_ptr = plane_signs.ptr();
}
};
struct InstanceBounds {
// Efficiently store instance bounds.
// Because bounds checking is performed first,
// keep it separated from data.
real_t bounds[6];
_ALWAYS_INLINE_ InstanceBounds() {}
_ALWAYS_INLINE_ InstanceBounds(const AABB &p_aabb) {
bounds[0] = p_aabb.position.x;
bounds[1] = p_aabb.position.y;
bounds[2] = p_aabb.position.z;
bounds[3] = p_aabb.position.x + p_aabb.size.x;
bounds[4] = p_aabb.position.y + p_aabb.size.y;
bounds[5] = p_aabb.position.z + p_aabb.size.z;
}
_ALWAYS_INLINE_ bool in_frustum(const Frustum &p_frustum) const {
// This is not a full SAT check and the possibility of false positives exist,
// but the tradeoff vs performance is still very good.
for (uint32_t i = 0; i < p_frustum.plane_count; i++) {
Vector3 min(
bounds[p_frustum.plane_signs_ptr[i].signs[0]],
bounds[p_frustum.plane_signs_ptr[i].signs[1]],
bounds[p_frustum.plane_signs_ptr[i].signs[2]]);
if (p_frustum.planes_ptr[i].distance_to(min) >= 0.0) {
return false;
}
}
return true;
}
_ALWAYS_INLINE_ bool in_aabb(const AABB &p_aabb) const {
Vector3 end = p_aabb.position + p_aabb.size;
if (bounds[0] >= end.x) {
return false;
}
if (bounds[3] <= p_aabb.position.x) {
return false;
}
if (bounds[1] >= end.y) {
return false;
}
if (bounds[4] <= p_aabb.position.y) {
return false;
}
if (bounds[2] >= end.z) {
return false;
}
if (bounds[5] <= p_aabb.position.z) {
return false;
}
return true;
}
};
struct InstanceData {
// Store instance pointer as well as common instance processing information,
// to make processing more cache friendly.
enum Flags {
FLAG_BASE_TYPE_MASK = 0xFF,
FLAG_CAST_SHADOWS = (1 << 8),
FLAG_CAST_SHADOWS_ONLY = (1 << 9),
FLAG_REDRAW_IF_VISIBLE = (1 << 10),
FLAG_GEOM_LIGHTING_DIRTY = (1 << 11),
FLAG_GEOM_REFLECTION_DIRTY = (1 << 12),
FLAG_GEOM_DECAL_DIRTY = (1 << 13),
FLAG_GEOM_GI_PROBE_DIRTY = (1 << 14),
FLAG_LIGHTMAP_CAPTURE = (1 << 15),
FLAG_USES_BAKED_LIGHT = (1 << 16),
FLAG_USES_MESH_INSTANCE = (1 << 17),
FLAG_REFLECTION_PROBE_DIRTY = (1 << 18),
};
uint32_t flags = 0;
uint32_t layer_mask = 0; //for fast layer-mask discard
RID base_rid;
union {
uint64_t instance_data_rid;
RendererSceneRender::GeometryInstance *instance_geometry;
};
Instance *instance = nullptr;
};
PagedArrayPool<InstanceBounds> instance_aabb_page_pool;
PagedArrayPool<InstanceData> instance_data_page_pool;
struct Scenario {
enum IndexerType {
INDEXER_GEOMETRY, //for geometry
INDEXER_VOLUMES, //for everything else
INDEXER_MAX
};
DynamicBVH indexers[INDEXER_MAX];
RS::ScenarioDebugMode debug;
RID self;
List<Instance *> directional_lights;
RID environment;
RID fallback_environment;
RID camera_effects;
RID reflection_probe_shadow_atlas;
RID reflection_atlas;
SelfList<Instance>::List instances;
LocalVector<RID> dynamic_lights;
PagedArray<InstanceBounds> instance_aabbs;
PagedArray<InstanceData> instance_data;
Scenario() {
indexers[INDEXER_GEOMETRY].set_index(INDEXER_GEOMETRY);
indexers[INDEXER_VOLUMES].set_index(INDEXER_VOLUMES);
debug = RS::SCENARIO_DEBUG_DISABLED;
}
};
int indexer_update_iterations = 0;
mutable RID_PtrOwner<Scenario, true> scenario_owner;
static void _instance_pair(Instance *p_A, Instance *p_B);
static void _instance_unpair(Instance *p_A, Instance *p_B);
void _instance_update_mesh_instance(Instance *p_instance);
virtual RID scenario_allocate();
virtual void scenario_initialize(RID p_rid);
virtual void scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode);
virtual void scenario_set_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_camera_effects(RID p_scenario, RID p_fx);
virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count);
virtual bool is_scenario(RID p_scenario) const;
virtual RID scenario_get_environment(RID p_scenario);
/* INSTANCING API */
struct InstancePair {
Instance *a;
Instance *b;
SelfList<InstancePair> list_a;
SelfList<InstancePair> list_b;
InstancePair() :
list_a(this), list_b(this) {}
};
PagedAllocator<InstancePair> pair_allocator;
struct InstanceBaseData {
virtual ~InstanceBaseData() {}
};
struct Instance {
RS::InstanceType base_type;
RID base;
RID skeleton;
RID material_override;
RID mesh_instance; //only used for meshes and when skeleton/blendshapes exist
Transform transform;
float lod_bias;
Vector<RID> materials;
RS::ShadowCastingSetting cast_shadows;
uint32_t layer_mask;
//fit in 32 bits
bool mirror : 8;
bool receive_shadows : 8;
bool visible : 8;
bool baked_light : 2; //this flag is only to know if it actually did use baked light
bool dynamic_gi : 2; //same above for dynamic objects
bool redraw_if_visible : 4;
Instance *lightmap;
Rect2 lightmap_uv_scale;
int lightmap_slice_index;
uint32_t lightmap_cull_index;
Vector<Color> lightmap_sh; //spherical harmonic
AABB aabb;
AABB transformed_aabb;
AABB prev_transformed_aabb;
struct InstanceShaderParameter {
int32_t index = -1;
Variant value;
Variant default_value;
PropertyInfo info;
};
Map<StringName, InstanceShaderParameter> instance_shader_parameters;
bool instance_allocated_shader_parameters = false;
int32_t instance_allocated_shader_parameters_offset = -1;
//
RID self;
//scenario stuff
DynamicBVH::ID indexer_id;
int32_t array_index;
Scenario *scenario;
SelfList<Instance> scenario_item;
//aabb stuff
bool update_aabb;
bool update_dependencies;
SelfList<Instance> update_item;
AABB *custom_aabb; // <Zylann> would using aabb directly with a bool be better?
float extra_margin;
ObjectID object_id;
float lod_begin;
float lod_end;
float lod_begin_hysteresis;
float lod_end_hysteresis;
RID lod_instance;
Vector<Color> lightmap_target_sh; //target is used for incrementally changing the SH over time, this avoids pops in some corner cases and when going interior <-> exterior
uint64_t last_frame_pass;
uint64_t version; // changes to this, and changes to base increase version
InstanceBaseData *base_data;
SelfList<InstancePair>::List pairs;
uint64_t pair_check;
RendererStorage::DependencyTracker dependency_tracker;
static void dependency_changed(RendererStorage::DependencyChangedNotification p_notification, RendererStorage::DependencyTracker *tracker) {
Instance *instance = (Instance *)tracker->userdata;
switch (p_notification) {
case RendererStorage::DEPENDENCY_CHANGED_SKELETON_DATA:
case RendererStorage::DEPENDENCY_CHANGED_AABB: {
singleton->_instance_queue_update(instance, true, false);
} break;
case RendererStorage::DEPENDENCY_CHANGED_MATERIAL: {
singleton->_instance_queue_update(instance, false, true);
} break;
case RendererStorage::DEPENDENCY_CHANGED_MESH:
case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH:
case RendererStorage::DEPENDENCY_CHANGED_DECAL:
case RendererStorage::DEPENDENCY_CHANGED_LIGHT:
case RendererStorage::DEPENDENCY_CHANGED_REFLECTION_PROBE: {
singleton->_instance_queue_update(instance, true, true);
} break;
case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES:
case RendererStorage::DEPENDENCY_CHANGED_SKELETON_BONES: {
//ignored
} break;
}
}
static void dependency_deleted(const RID &p_dependency, RendererStorage::DependencyTracker *tracker) {
Instance *instance = (Instance *)tracker->userdata;
if (p_dependency == instance->base) {
singleton->instance_set_base(instance->self, RID());
} else if (p_dependency == instance->skeleton) {
singleton->instance_attach_skeleton(instance->self, RID());
} else {
singleton->_instance_queue_update(instance, false, true);
}
}
Instance() :
scenario_item(this),
update_item(this) {
base_type = RS::INSTANCE_NONE;
cast_shadows = RS::SHADOW_CASTING_SETTING_ON;
receive_shadows = true;
visible = true;
layer_mask = 1;
baked_light = false;
dynamic_gi = false;
redraw_if_visible = false;
lightmap_slice_index = 0;
lightmap = nullptr;
lightmap_cull_index = 0;
lod_bias = 1.0;
scenario = nullptr;
update_aabb = false;
update_dependencies = false;
extra_margin = 0;
visible = true;
lod_begin = 0;
lod_end = 0;
lod_begin_hysteresis = 0;
lod_end_hysteresis = 0;
last_frame_pass = 0;
version = 1;
base_data = nullptr;
custom_aabb = nullptr;
pair_check = 0;
array_index = -1;
dependency_tracker.userdata = this;
dependency_tracker.changed_callback = dependency_changed;
dependency_tracker.deleted_callback = dependency_deleted;
}
~Instance() {
if (base_data) {
memdelete(base_data);
}
if (custom_aabb) {
memdelete(custom_aabb);
}
}
};
SelfList<Instance>::List _instance_update_list;
void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies = false);
struct InstanceGeometryData : public InstanceBaseData {
RendererSceneRender::GeometryInstance *geometry_instance = nullptr;
Set<Instance *> lights;
bool can_cast_shadows;
bool material_is_animated;
Set<Instance *> decals;
Set<Instance *> reflection_probes;
Set<Instance *> gi_probes;
Set<Instance *> lightmap_captures;
InstanceGeometryData() {
can_cast_shadows = true;
material_is_animated = true;
}
};
struct InstanceReflectionProbeData : public InstanceBaseData {
Instance *owner;
Set<Instance *> geometries;
RID instance;
SelfList<InstanceReflectionProbeData> update_list;
int render_step;
InstanceReflectionProbeData() :
update_list(this) {
render_step = -1;
}
};
struct InstanceDecalData : public InstanceBaseData {
Instance *owner;
RID instance;
Set<Instance *> geometries;
InstanceDecalData() {
}
};
SelfList<InstanceReflectionProbeData>::List reflection_probe_render_list;
struct InstanceParticlesCollisionData : public InstanceBaseData {
RID instance;
};
struct InstanceLightData : public InstanceBaseData {
RID instance;
uint64_t last_version;
List<Instance *>::Element *D; // directional light in scenario
bool shadow_dirty;
Set<Instance *> geometries;
Instance *baked_light;
RS::LightBakeMode bake_mode;
uint32_t max_sdfgi_cascade = 2;
InstanceLightData() {
bake_mode = RS::LIGHT_BAKE_DISABLED;
shadow_dirty = true;
D = nullptr;
last_version = 0;
baked_light = nullptr;
}
};
struct InstanceGIProbeData : public InstanceBaseData {
Instance *owner;
Set<Instance *> geometries;
Set<Instance *> dynamic_geometries;
Set<Instance *> lights;
struct LightCache {
RS::LightType type;
Transform transform;
Color color;
float energy;
float bake_energy;
float radius;
float attenuation;
float spot_angle;
float spot_attenuation;
bool has_shadow;
bool sky_only;
};
Vector<LightCache> light_cache;
Vector<RID> light_instances;
RID probe_instance;
bool invalid;
uint32_t base_version;
SelfList<InstanceGIProbeData> update_element;
InstanceGIProbeData() :
update_element(this) {
invalid = true;
base_version = 0;
}
};
SelfList<InstanceGIProbeData>::List gi_probe_update_list;
struct InstanceLightmapData : public InstanceBaseData {
RID instance;
Set<Instance *> geometries;
Set<Instance *> users;
InstanceLightmapData() {
}
};
uint64_t pair_pass = 1;
struct PairInstances {
Instance *instance = nullptr;
PagedAllocator<InstancePair> *pair_allocator = nullptr;
SelfList<InstancePair>::List pairs_found;
DynamicBVH *bvh = nullptr;
DynamicBVH *bvh2 = nullptr; //some may need to cull in two
uint32_t pair_mask;
uint64_t pair_pass;
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
if (instance != p_instance && instance->transformed_aabb.intersects(p_instance->transformed_aabb) && (pair_mask & (1 << p_instance->base_type))) {
//test is more coarse in indexer
p_instance->pair_check = pair_pass;
InstancePair *pair = pair_allocator->alloc();
pair->a = instance;
pair->b = p_instance;
pairs_found.add(&pair->list_a);
}
return false;
}
void pair() {
if (bvh) {
bvh->aabb_query(instance->transformed_aabb, *this);
}
if (bvh2) {
bvh2->aabb_query(instance->transformed_aabb, *this);
}
while (instance->pairs.first()) {
InstancePair *pair = instance->pairs.first()->self();
Instance *other_instance = instance == pair->a ? pair->b : pair->a;
if (other_instance->pair_check != pair_pass) {
//unpaired
_instance_unpair(instance, other_instance);
} else {
//kept
other_instance->pair_check = 0; // if kept, then put pair check to zero, so we can distinguish with the newly added ones
}
pair_allocator->free(pair);
}
while (pairs_found.first()) {
InstancePair *pair = pairs_found.first()->self();
pairs_found.remove(pairs_found.first());
if (pair->b->pair_check == pair_pass) {
//paired
_instance_pair(instance, pair->b);
}
pair->a->pairs.add(&pair->list_a);
pair->b->pairs.add(&pair->list_b);
}
}
};
Set<Instance *> heightfield_particle_colliders_update_list;
PagedArrayPool<Instance *> instance_cull_page_pool;
PagedArrayPool<RendererSceneRender::GeometryInstance *> geometry_instance_cull_page_pool;
PagedArrayPool<RID> rid_cull_page_pool;
PagedArray<Instance *> instance_cull_result;
PagedArray<Instance *> instance_shadow_cull_result;
struct FrustumCullResult {
PagedArray<RendererSceneRender::GeometryInstance *> geometry_instances;
PagedArray<Instance *> lights;
PagedArray<RID> light_instances;
PagedArray<RID> lightmaps;
PagedArray<RID> reflections;
PagedArray<RID> decals;
PagedArray<RID> gi_probes;
PagedArray<RID> mesh_instances;
struct DirectionalShadow {
PagedArray<RendererSceneRender::GeometryInstance *> cascade_geometry_instances[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES];
} directional_shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS];
PagedArray<RendererSceneRender::GeometryInstance *> sdfgi_region_geometry_instances[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE];
PagedArray<RID> sdfgi_cascade_lights[SDFGI_MAX_CASCADES];
void clear() {
geometry_instances.clear();
lights.clear();
light_instances.clear();
lightmaps.clear();
reflections.clear();
decals.clear();
gi_probes.clear();
mesh_instances.clear();
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].clear();
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].clear();
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].clear();
}
}
void reset() {
geometry_instances.reset();
lights.reset();
light_instances.reset();
lightmaps.reset();
reflections.reset();
decals.reset();
gi_probes.reset();
mesh_instances.reset();
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].reset();
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].reset();
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].reset();
}
}
void append_from(FrustumCullResult &p_cull_result) {
geometry_instances.merge_unordered(p_cull_result.geometry_instances);
lights.merge_unordered(p_cull_result.lights);
light_instances.merge_unordered(p_cull_result.light_instances);
lightmaps.merge_unordered(p_cull_result.lightmaps);
reflections.merge_unordered(p_cull_result.reflections);
decals.merge_unordered(p_cull_result.decals);
gi_probes.merge_unordered(p_cull_result.gi_probes);
mesh_instances.merge_unordered(p_cull_result.mesh_instances);
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].merge_unordered(p_cull_result.directional_shadows[i].cascade_geometry_instances[j]);
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].merge_unordered(p_cull_result.sdfgi_region_geometry_instances[i]);
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].merge_unordered(p_cull_result.sdfgi_cascade_lights[i]);
}
}
void init(PagedArrayPool<RID> *p_rid_pool, PagedArrayPool<RendererSceneRender::GeometryInstance *> *p_geometry_instance_pool, PagedArrayPool<Instance *> *p_instance_pool) {
geometry_instances.set_page_pool(p_geometry_instance_pool);
light_instances.set_page_pool(p_rid_pool);
lights.set_page_pool(p_instance_pool);
lightmaps.set_page_pool(p_rid_pool);
reflections.set_page_pool(p_rid_pool);
decals.set_page_pool(p_rid_pool);
gi_probes.set_page_pool(p_rid_pool);
mesh_instances.set_page_pool(p_rid_pool);
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].set_page_pool(p_geometry_instance_pool);
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].set_page_pool(p_geometry_instance_pool);
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].set_page_pool(p_rid_pool);
}
}
};
FrustumCullResult frustum_cull_result;
LocalVector<FrustumCullResult> frustum_cull_result_threads;
RendererSceneRender::RenderShadowData render_shadow_data[MAX_UPDATE_SHADOWS];
uint32_t max_shadows_used = 0;
RendererSceneRender::RenderSDFGIData render_sdfgi_data[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE];
RendererSceneRender::RenderSDFGIUpdateData sdfgi_update_data;
uint32_t thread_cull_threshold = 200;
RID_PtrOwner<Instance, true> instance_owner;
uint32_t geometry_instance_pair_mask; // used in traditional forward, unnecesary on clustered
virtual RID instance_allocate();
virtual void instance_initialize(RID p_rid);
virtual void instance_set_base(RID p_instance, RID p_base);
virtual void instance_set_scenario(RID p_instance, RID p_scenario);
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask);
virtual void instance_set_transform(RID p_instance, const Transform &p_transform);
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id);
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material);
virtual void instance_set_visible(RID p_instance, bool p_visible);
virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb);
virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton);
virtual void instance_set_exterior(RID p_instance, bool p_enabled);
virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin);
// don't use these in a game!
virtual Vector<ObjectID> instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario = RID()) const;
virtual void instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled);
virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting);
virtual void instance_geometry_set_material_override(RID p_instance, RID p_material);
virtual void instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin);
virtual void instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance);
virtual void instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index);
virtual void instance_geometry_set_lod_bias(RID p_instance, float p_lod_bias);
void _update_instance_shader_parameters_from_material(Map<StringName, Instance::InstanceShaderParameter> &isparams, const Map<StringName, Instance::InstanceShaderParameter> &existing_isparams, RID p_material);
virtual void instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value);
virtual void instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const;
virtual Variant instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const;
virtual Variant instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const;
_FORCE_INLINE_ void _update_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance);
_FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance);
void _unpair_instance(Instance *p_instance);
void _light_instance_setup_directional_shadow(int p_shadow_index, Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect);
_FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario, float p_scren_lod_threshold);
RID _render_get_environment(RID p_camera, RID p_scenario);
struct Cull {
struct Shadow {
RID light_instance;
struct Cascade {
Frustum frustum;
CameraMatrix projection;
Transform transform;
real_t zfar;
real_t split;
real_t shadow_texel_size;
real_t bias_scale;
real_t range_begin;
Vector2 uv_scale;
} cascades[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES]; //max 4 cascades
uint32_t cascade_count;
} shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS];
uint32_t shadow_count;
struct SDFGI {
//have arrays here because SDFGI functions expects this, plus regions can have areas
AABB region_aabb[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade
uint32_t region_cascade[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade
uint32_t region_count = 0;
uint32_t cascade_light_index[SDFGI_MAX_CASCADES];
uint32_t cascade_light_count = 0;
} sdfgi;
SpinLock lock;
Frustum frustum;
} cull;
struct FrustumCullData {
Cull *cull;
Scenario *scenario;
RID shadow_atlas;
Transform cam_transform;
uint32_t visible_layers;
Instance *render_reflection_probe;
};
void _frustum_cull_threaded(uint32_t p_thread, FrustumCullData *cull_data);
void _frustum_cull(FrustumCullData &cull_data, FrustumCullResult &cull_result, uint64_t p_from, uint64_t p_to);
bool _render_reflection_probe_step(Instance *p_instance, int p_step);
void _render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_render_buffers, RID p_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, bool p_using_shadows = true);
void render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas);
void render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, float p_screen_lod_threshold, RID p_shadow_atlas);
void render_camera(RID p_render_buffers, Ref<XRInterface> &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, float p_screen_lod_threshold, RID p_shadow_atlas);
void update_dirty_instances();
void render_particle_colliders();
virtual void render_probes();
TypedArray<Image> bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size);
//pass to scene render
/* ENVIRONMENT API */
#ifdef PASSBASE
#undef PASSBASE
#endif
#define PASSBASE scene_render
PASS2(directional_shadow_atlas_set_size, int, bool)
PASS1(gi_probe_set_quality, RS::GIProbeQuality)
/* SKY API */
PASS0R(RID, sky_allocate)
PASS1(sky_initialize, RID)
PASS2(sky_set_radiance_size, RID, int)
PASS2(sky_set_mode, RID, RS::SkyMode)
PASS2(sky_set_material, RID, RID)
PASS4R(Ref<Image>, sky_bake_panorama, RID, float, bool, const Size2i &)
PASS0R(RID, environment_allocate)
PASS1(environment_initialize, RID)
PASS1RC(bool, is_environment, RID)
PASS2(environment_set_background, RID, RS::EnvironmentBG)
PASS2(environment_set_sky, RID, RID)
PASS2(environment_set_sky_custom_fov, RID, float)
PASS2(environment_set_sky_orientation, RID, const Basis &)
PASS2(environment_set_bg_color, RID, const Color &)
PASS2(environment_set_bg_energy, RID, float)
PASS2(environment_set_canvas_max_layer, RID, int)
PASS7(environment_set_ambient_light, RID, const Color &, RS::EnvironmentAmbientSource, float, float, RS::EnvironmentReflectionSource, const Color &)
PASS6(environment_set_ssr, RID, bool, int, float, float, float)
PASS1(environment_set_ssr_roughness_quality, RS::EnvironmentSSRRoughnessQuality)
PASS10(environment_set_ssao, RID, bool, float, float, float, float, float, float, float, float)
PASS6(environment_set_ssao_quality, RS::EnvironmentSSAOQuality, bool, float, int, float, float)
PASS11(environment_set_glow, RID, bool, Vector<float>, float, float, float, float, RS::EnvironmentGlowBlendMode, float, float, float)
PASS1(environment_glow_set_use_bicubic_upscale, bool)
PASS1(environment_glow_set_use_high_quality, bool)
PASS9(environment_set_tonemap, RID, RS::EnvironmentToneMapper, float, float, bool, float, float, float, float)
PASS7(environment_set_adjustment, RID, bool, float, float, float, bool, RID)
PASS9(environment_set_fog, RID, bool, const Color &, float, float, float, float, float, float)
PASS10(environment_set_volumetric_fog, RID, bool, float, const Color &, float, float, float, float, bool, float)
PASS2(environment_set_volumetric_fog_volume_size, int, int)
PASS1(environment_set_volumetric_fog_filter_active, bool)
PASS11(environment_set_sdfgi, RID, bool, RS::EnvironmentSDFGICascades, float, RS::EnvironmentSDFGIYScale, bool, float, bool, float, float, float)
PASS1(environment_set_sdfgi_ray_count, RS::EnvironmentSDFGIRayCount)
PASS1(environment_set_sdfgi_frames_to_converge, RS::EnvironmentSDFGIFramesToConverge)
PASS1(environment_set_sdfgi_frames_to_update_light, RS::EnvironmentSDFGIFramesToUpdateLight)
PASS1RC(RS::EnvironmentBG, environment_get_background, RID)
PASS1RC(int, environment_get_canvas_max_layer, RID)
PASS3R(Ref<Image>, environment_bake_panorama, RID, bool, const Size2i &)
PASS3(screen_space_roughness_limiter_set_active, bool, float, float)
PASS1(sub_surface_scattering_set_quality, RS::SubSurfaceScatteringQuality)
PASS2(sub_surface_scattering_set_scale, float, float)
/* CAMERA EFFECTS */
PASS0R(RID, camera_effects_allocate)
PASS1(camera_effects_initialize, RID)
PASS2(camera_effects_set_dof_blur_quality, RS::DOFBlurQuality, bool)
PASS1(camera_effects_set_dof_blur_bokeh_shape, RS::DOFBokehShape)
PASS8(camera_effects_set_dof_blur, RID, bool, float, float, bool, float, float, float)
PASS3(camera_effects_set_custom_exposure, RID, bool, float)
PASS1(shadows_quality_set, RS::ShadowQuality)
PASS1(directional_shadow_quality_set, RS::ShadowQuality)
PASS2(sdfgi_set_debug_probe_select, const Vector3 &, const Vector3 &)
/* Render Buffers */
PASS0R(RID, render_buffers_create)
PASS7(render_buffers_configure, RID, RID, int, int, RS::ViewportMSAA, RS::ViewportScreenSpaceAA, bool)
PASS1(gi_set_use_half_resolution, bool)
/* Shadow Atlas */
PASS0R(RID, shadow_atlas_create)
PASS3(shadow_atlas_set_size, RID, int, bool)
PASS3(shadow_atlas_set_quadrant_subdivision, RID, int, int)
PASS1(set_debug_draw_mode, RS::ViewportDebugDraw)
virtual void update();
bool free(RID p_rid);
void set_scene_render(RendererSceneRender *p_scene_render);
RendererSceneCull();
virtual ~RendererSceneCull();
};
#endif // VISUALSERVERSCENE_H